OpenStack Federation in Experimentation Multi-cloud Testbeds

Juan Angel Lorenzo del Castillo, Kate Mallichan, Y ahya Al-Hazmi

HP Laboratories
HPL-2013-58

Keyword(s):
Cloud Federation; cloud computing; openstack

Abstract:

There is an increasing number of cloud platforms emerging in both academia and industry. They often
federate resources from multiple infrastructures in order to benefit from the unique features that each
presents. After introducing the main capabilities and features of OpenStack, this article addresses the
integration of OpenStack-based platformsinto larger, heterogeneous multi-cloud infrastructures, taking the
EU FP7 BonFIRE project as an integration use case. Ultimately, we aim to contribute to the state of the art
and provide guidelines to integrators looking to federate Open Stack testbeds into more complex
architectures.

External Posting Date: August 21, 2013 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2013 [Fulltext]
To be published in UNICO 2013: Workshop, UsiNg and building CLOud Testbeds

© Copyright 2013 Hewlett-Packard Development Company, L.P.

OpenStack Federation in Experimentation
Multi-cloud Testbeds

Juan Angel Lorenzo del Castillo
Hewlett-Packard Laboratories, Bristol
Email: juan.lorenzo-del-castillo@hp.com

Abstract—There is an increasing number of cloud platforms
emerging in both academia and industry. They often federate
resources from multiple infrastructures in order to benefit from
the unique features that each presents. After introducing the
main capabilities and features of OpenStack, this article ad-
dresses the integration of OpenStack-based platforms into larger,
heterogeneous multi-cloud infrastructures, taking the EU FP7
BonFIRE project as an integration use case. Ultimately, we aim
to contribute to the state of the art and provide guidelines to
integrators looking to federate Open Stack testbeds into more
complex architectures.

I. INTRODUCTION

Resource federation is recognised as a promising mech-
anism aimed at interconnection of heterogeneous resources
across several independent infrastructures. In providing a
larger-scale and higher performance infrastructure, federation
enables on-demand provisioning of complex services. Due to
the heterogeneity of such infrastructures in terms of provided
features, APIs, tools, etc., there is a need for federation mecha-
nisms so that resources can interoperate in a standardised man-
ner. The federated architecture has to be designed to include
these mechanisms and fulfil all collaboration requirements.
Several architectural approaches are possible, each has its pros
and cons. Among those introduced in [1] are:

e A central management system: Separate infrastruc-
tures replace their management systems with a com-
mon one. This allows for easy deployment, manage-
ment, and maintenance. However, it implies adoption
of new software and potential compatibility issues.

e Homogeneous federation running the same man-
agement system on all infrastructures: Each in-
frastructure manages its resources independent from
a central point, but each management system must be
replaced and users must adopt the new tools.

e Central front-end point: Infrastructures and their
tools are listed on a portal. Each infrastructure keeps
its management system. This is the easiest and cheap-
est approach, although there is no real federation and
users still need to use multiple accounts, tools, etc.

e Common APIs on top of distinct independent
management systems: Site resources are managed at
federation level through standardised interfaces. This
requires sub-interfaces for the individual management
mechanisms such as provisioning, control, etc. The
interface definition is not a trivial task, but allows for
an easy integration of further infrastructures.

Kate Mallichan
Hewlett-Packard Laboratories, Bristol
Email: kate.mallichan@hp.com

Yahya Al-Hazmi
Technical University Berlin, Berlin
Email: yahya.al-hazmi@tu-berlin.de

The last approach might be the most suitable approach
for large and dynamic federations with heterogeneous infras-
tructures. However, for small and stable federations, as those
studied in this article, the centralised approach works well.
This article focuses on two key aspects of the federation:
observability and controllability.

Observability is an important topic for monitoring (watch-
ing for system changes) and metering (watching system us-
age, typically for billing purposes). Most commercial clouds
provide that information only at application level. Apart from
further tools that users install or implement on their VM, little
or no information is available about the VMs or the underlying
infrastructure. However, in the absence of those restrictions,
much other information can be exposed. Measurements can
be taken from the physical infrastructure, such as the degree
of machine occupancy or the memory and CPU available on
a given host. Information at VM-level might relate to status
and performance such as network performance or the disk
read/write rate. At application level, custom metrics can be
gathered by users according to the applications in use such
as the number of open database connections or the load in a
webserver. Monitoring at cloud management level is usually
provided by a notification service that collects events relating
to instance, network, or storage resources, and additional
information such as the current VM allocation policy. Other
sources of monitoring information include log files, status
pages or accounting services.

In the case of centrally-managed, horizontally-federated
infrastructures, most monitoring information is gathered from
each member and made available through a unique access
point. In order to federate a cloud infrastructure into a larger
one, the former needs to provide mechanisms to be observed
and controlled. Observed, meaning that the main infrastructure
receives timely meaningful state notifications. And controlled,
so that it can receive and interpret commands like the rest of
the federated sites. Note that this implies an agreement in the
degree of homogeneity about the information sent and received
from any site.

It should be noted that some of the monitoring capabilities
are agnostic of the Cloud platform used. Nagios [2] or Zabbix
[3] can be used to monitor hosts and support any cloud plat-
form thus will not pose a further concern regarding federation.

We have chosen OpenStack [4] to study its federation ca-
pabilities in multi-cloud, heterogeneous environments. Open-
Stack is the Open Source Cloud Computing platform most
widely adopted in Industry. Meant to be simple to implement,

this Infrastructure as a Service (IaaS) is open and massively
scalable. Examples of companies that use OpenStack are
Hewlett-Packard, Rackspace and Red Hat, to cite some.

The rest of this article is structured as follows: Section II
introduces the observability and controllability features in
OpenStack. Section III presents the multi-cloud, federated
infrastructure BonFIRE. Section IV provides an example of
OpenStack integration with BonFIRE and discusses the current
limitations of OpenStack in terms of federation capabilities,
suggesting solutions for them. Finally, the main conclusions
and future work are presented in Section V.

II. OPENSTACK

OpenStack comprises several modules, the core ones being
Nova (computing), Glance (VM repository), Neutron (net-
working) and Swift and Cinder (storage). As a virtual in-
frastructure platform, OpenStack manages a group of inter-
dependent virtual resources such as virtual machines, virtual
networks and volumes, and defines the several levels of virtual
resource granularity. Resources exist in most other cloud plat-
forms, and are comprised of computes, networks and storage.
The term Composite is not defined by OpenStack itself but,
in this article, when referring to OpenStack, we will use this
term to describe an interdependent group and configuration of
resources.

OpenStack offers several mechanisms to interact with it,
from a REST and Python APIs to a complete notification ser-
vice. In addition, a separate project provides an implementation
of the Open Cloud Computing Interface (OCCI) [S]. These
features make it easy for external systems to control OpenStack
and obtain system status. The next sections elaborate on this.

A. Observing events in OpenStack

OpenStack modules use notifications to intercommunicate
and provide information about their current status. These are in
JSON format and managed by an AMQP (Advanced Message
Queuing Protocol) broker. From a monitoring point of view,
events on a queue are more convenient than a set of log
files on a host. Events are pre-structured and queues can be
accessed programmatically. The queue assures delivery and
consistency of events. This is extremely suited to services that
require high reliability such as billing. Examples of events
are resource created/deleted, IP assigned/detached or security
group/s changed. A complete list of events for system usage is
available in [6] and [7]. A list of exchanges and queues created
by OpenStack is detailed in [8]. Details of the events’ payload
can be found in [9].

Currently there exist several projects and tools to gather,
access and utilise the events generated by OpenStack. At the
moment of writing this article, the most relevant are:

e Ceilometer [7]: Collects metering data and offers
a single point of contact for billing systems imple-
mented on top of it. Data are offered through a REST
API to facilitate access from external resources.

e Kombu [10]: A messaging framework for Python that
encapsulates the AMQP API to facilitate its access and
provide a high-level to interact with the AMQP.

e Yagi [11]: Highly reliable, it is an external publisher
that gives support to AtomHopper, a system that turns
notifications into Atom feeds that may be consumed
by other systems like billing.

e Marconi [12]: A messaging and notifications queue
system. Still in development stage, it provides an
open alternative to SQS (producer-consumer) and SNS
(pub-sub) in OpenStack. It will provide a REST APIL.

e StackTach [13]: A debugging tool to collect and
report notifications sent by Nova. A daemon consumes
them from the AMQP queues and makes them avail-
able through a SQL database. Notifications can be
displayed on a web UI or accessed by CLI tools.

Given the amount of similar initiatives, several efforts are
being made to unify them into a single system. The solution
that is gaining weight among the OpenStack community is
Kombu. Listing 1 shows a Python code snippet that demon-
strates how events may be easily collected from resources
and used. After defining a connection to a given queue (the
notifications.info queue from Nova, in this example),
the code goes into an infinite loop consuming the received
events and printing them on the screen. Kombu facilitates the
development of tools to adapt and integrate event management
from different cloud sites to a single point.

Listing 1 Capturing OpenStack events with Kombu

from kombu import Connection, Exchange, Queue
from pprint import pprint

nova_x = Exchange(’nova’, type="topic’, durable=False)
info_ = Queue(’notifications.info’, exchange=nova_x,
routing_key="notifications.info’)

durable=False,

def process_msg(body, message):
print "="*80
pprint(body)
message.ack()

with Connection(’amqp://guest:guest@openstackserverip//’) as conn:
with conn.Consumer(info_g, callbacks=[process_msg]):
while True:
try:
conn.drain_events()
except KeyboardInterrupt:
break

B. Controllability in OpenStack

OpenStack defines the term Server to refer to a virtual
machine resource. We will use the terms “compute”, “compute
resource”, “VM” and “server” synonymously in the rest of this
article. OpenStack exposes 2 types of APIs: REST based and
a Python CLI [14]. Both can be used to perform similar tasks,
though the Python language bindings are particularly useful for
programmatic control of OpenStack. The following paragraph

describe the different levels of controllability in OpenStack.

1) Resource-level controllability: OpenStack allows cre-
ate, fetch, update and delete operations at per-resource level.
Update operations provide features such as setting resource
metadata, changing the power state of a VM, attaching/de-
taching volumes and networks from a VM. For a complete list
refer to the OpenStack API reference [15].

2) Composite-level controllability: The OpenStack Heat
Project [16] provides a service to allow creation of composite
cloud applications by submitting a descriptive template file.

3) Infrastructure-level controllability: OpenStack’s APIs
allow not only interaction with virtual resources, but also
provide a limited amount of interaction with the underlying
hypervisors and physical hosts [15].

4) Data persistence: OpenStack provides a distributed
object storage platform that is accessible from applications,
for persistent data storage. An additional API for block storage
allows block devices to be attached to VMs.

5) Application-level controllability: Compute resources
can be pre-configured with application-specific parameters,
like SSH keys. This is achieved by injecting metadata supplied
through the API at creation time.

6) Elasticity: OpenStack does not provide automatic scal-
ing, so any such functionality must be implemented in applica-
tion code. Vertical elasticity of compute resources is manually
allowed by an APL

III. BONFIRE

BonFIRE [17] offers a federated facility that supports
large-scale testing of applications, services and systems over
multiple, geographically distributed, heterogeneous cloud and
network testbeds. Users can control and monitor the execution
of their experiments to a degree not found in traditional cloud
facilities. Architecturally, BonFIRE uses a central broker that
exposes a common API to interact with private and public
clouds. BonFIRE defines two aspects of granularity: Resources
and Experiments. Resources exist in most other cloud plat-
forms and are comprised of computes, networks and storage.
Experiments is a term particular to BonFIRE. This can be
thought of as a container for a group of resources, which may
be interdependent and are a typically a custom configuration,
according to the user’s requirements. The experiment concept
is managed by the BonFIRE internal components. The testbed
infrastructures themselves have no knowledge of it.

A. Observability in BonFIRE

BonFIRE defines several types of observability with mul-
tiple entry points.

1) Experiment Message Queue: The Experiment Message
Queue is a BonFIRE service that consumes messages specific
to each experiment. Those messages record both experiment
and resource status such as created, deleted, updated, as well as
state changes (active, suspend, etc.). Messages are tagged with
a unique id to identify the experiment and posted to the queue
by both BonFIRE’s internal components and the testbeds. The
messages are in JSON format, as shown in Listing 2:

As well as being accessible by BonFIRE internal services,
software running on user VMs are able to connect to this
queue. With access granted to all VMs, the queue can also
be used as a messaging service between user VMs if desired.

BonFIRE has an internal accounting service which sub-
scribes to experiment message queue and uses the timestamped
messages to store information in a database that could support
accounting and billing systems on a per experiment or per-user

Listing 2 An example of BonFIRE network create message.

uk-hplabs.network.create

“timestamp”:”1370946265”,

“groupld”: usergroup”,

“objectData”:{
“experimentld”:”3013”,
“address™:’10.25.2.48”,
”name”:’netwkHP”,
7size”:"6”

source”:uk-hplabs”,
”:”subnet-3-19”,

“eventType™:"create”,
“objectType”: "network”

basis. It exposes a REST interface to present usage reports,
though this is currently not available to users.

2) Infrastructure metrics: Provides information about the
underlying hypervisors system capabilities and network per-
formance. Typical examples are the load on the hypervisor’s
CPU, the number of VMs on the same CPU, or network
QoS metrics such as bandwidth utilisation, pack loss rate or
delay. These allow experiments to measure, understand and,
ultimately, account for uncontrollable outside influences that
affect the execution of an experiment.

3) Application-level monitoring: The application metrics
will be defined by the experimenter according to the specific
software applications being used by the experiment.

4) VM-level monitoring: VM metrics provide system in-
formation about the status of the VM regarding CPU, memory,
disk space, etc.

5) API to access monitoring information: Graphical tool
(based on Zabbix GUI) to display metric values and metric
value graphs in real time while an experiment is executing.
The Network resources allow any VM or site to connect to
and are used to manage and monitor the VMs.

B. Controllability in BonFIRE

BonFIRE exposes 3 APIs to the user: A REST-based one at
both resource and experiment level, and a set of command line
tools which can be used to manage bonfire experiment(s) from
a user application. The REST interface is an implementation
of the Open Cloud Computing Interface (OCCI) [5].

1) Resource-level controllability: A user can perform basic
create, delete and update operations at a per-resource level.
Update applies to computes only. It allows controllability of
power state and saving a customised compute volume to a new
golden image so that further computes may be booted from it.

2) Experiment-level controllability: From an empty ex-
periment, a user may construct their desired configuration
at either resource level granularity, or more powerfully by
submitting a document-based description of it, referred to
as an experiment descriptor. BonFIRE parses it, works out
dependencies, schedules appropriately and then instantiates the
collection of resources. This is similar to the functionality
provided by OpenStack’s Heat project.

3) Data persistence: BonFIRE allows for block storage
creation both in and out of the context of an experiment. Such
storage can be made persistent, so that it can be attached and
detached from VMs, whilst preserving all data that is written
to it. A customised VM image can also be saved as a new
golden image to be reused to boot further VMs.

4) Application-level controllability: Compute resources
can be configured with application specific contextualisation,
which is configuration information provided to the VM and
made available to applications when the machine is started.

5) Elasticity: Elasticity can be controlled by either user
application logic, or by BonFIRE itself at sites that allow
automatic vertical and/or horizontal elasticity. Both use the
BonFIRE monitoring API to detect thresholds and take action.

6) Connectivity to external facilities: Thanks to an Ama-
zon EC2 interconnect facility [18].

After evaluating the current capabilities of OpenStack,
subsequent sections will summarise their potential to satisfy
BonFIRE requirements and propose solutions for identified
shortcomings.

IV. USE CASE: FEDERATING OPENSTACK IN BONFIRE

This section studies, as a use case, the set of features that
a new OpenStack testbed must fulfil in order to be federated
in BonFIRE. To do so, issues such as event observability,
controllability and API compatibility are considered.

There exist two types of cloud federation: Vertical and
Horizontal. Vertical federation allows integration of new in-
frastructures with the purpose of providing new capabilities.
Horizontal federation refers to expanding the capacity of the
existing cloud by integrating a new site. When working on
a federated heterogeneous infrastructure, the most common
scenario is one in which an existing infrastructure needs to
increase its offer of resources to their users. In the case of
BonFIRE, a central service provides a single access point
(REST API, CLI, Web Portal). Still taking into account the
heterogeneity and different features of its members, the current
objective in BonFIRE is to provide enough capacity to host the
experiments carried out on it. Because of these reasons, this
section focuses on horizontal federation.

Figure 1 shows the lowest layers in the BonFIRE architec-
ture. A Web Portal and a REST API provided by an Experi-
ment Manager (not shown) will capture the user requisites to
create and manage experiments. Requests are then translated
into OCCI requests that are sent to the Resource Manager or
Broker. The Broker maintains the set of resources in use by
each experiment and the lifecycle state of an experiment. It also
writes experiment and resource state changes to the BonFIRE
Message Queue.

The Enactor is a client to each of the testbed OCCI servers.
It transforms the XML payloads of these messages to and
from a common OCCI XML schema that is understood by the
Broker. The Enactor uses a set of adaptors (labelled endpoints
in Figure 1) for each type of testbed. Horizontal federation only
requires that the new site supports the requests made by the
Enactor. In this case, a new adaptor will have to be developed
at the Enactor. We have identified the following adaptations

| Monitoring | oca |
Q v N)

LDAP Amap

ResourceManager
Message

Queue Server

Identity
Manager
ocal
(Used by Portal, (Provides publish/
Experiment subscribe
Manager, messaging for
Resource Manager BonFIRE
and Testbeds) management and
expriments)

Enactor

EndPoint

I
S
a
k-]
2
i

Autobahn
EndPoint

£
S
a
k-]
2
i

EndPoint

8 %
2

g 3
< <
; 5
< Q
u o
&

Virtual Wall
OCCI EndPoint

Open Nebula

HP Cells
OCCI EndPoint
Amazon EC2
VMWare vCloud

£
S
o
5
2
o
5]
Q
]

0CCI/Non-0CCl API
Cloud Testbed

Monitoring
APl

wm
(Monitoring ™ vm
Aggregator)

M M

Fig. 1. Bottom layers of the BonFIRE architecture.

that will be required at the OpenStack site in order to meet
BonFIRE’s requirements:

A. Mapping of BonFIRE tasks to the OpenStack REST APls

Table 1 shows a mapping of the actions that can be
performed through BonFIRE, against the equivalent operations
exposed by the OpenStack REST APIL. Only the HTTP request
type and relative URLs are provided. The REST API endpoint
is the URL root.

B. Controlling instance placement

OpenStack can be configured to allow host-level control-
lability of VM placement. This can be done by defining an
availability zone in the configuration of each host. Each host
should be assigned a unique zone id. This id can then be passed
to OpenStack as a parameter in a compute create request,
through the REST API; the OpenStack internal scheduler will
then place the resource appropriately. For the user to choose
and specify a host for a new compute resource, they need to
be able to view information about the hosts that are available.
Section II-B shows how the OpenStack APIs can be used to list
the available hosts, their capacities and current resource usage.
To create a compute resource on a specific host, specify the
availability_zone parameter in the JSON body of the create
request as shown in Listing 3.

Listing 3 Setting the availability zone of a new OpenStack server
{

“server”: {
"flavorRef™: http://openstack.example.com/openstack/flavors/1”,
“imageRef”: "http://openstack.example.com/openstack/images/70a599e0-31e7-
49b7-b260-868f441e862b”,
“metadata”: {
"My Server Name”: ”Apachel”

}

ame”: “new-server-test”,
“security_groups”™: [{”name”: "sgl1”}]
“availability_zone”: "host1”

C. Retrieving Event information from OpenStack

A set of BonFIRE-defined events are generated by each of
the federated sites and sent to the Central Services for monitor-
ing purposes, billing, etc. Table II shows the BonFIRE events

TABLE 1.

MAPPING OF BONFIRE OPERATIONS TO THE OPENSTACK REST APIS

OpenStack REST API Call

Category Operation
HTTP Type URL
List all VMs GET /servers/detail?7image=(imageRef) &flavor=(flavorRef) &name=(serverName) &status=
(serverStatus) &marker=(markerID) &limit=(int) &changes- since=(dateTime)
Create a new VM POST /servers
Compute Create a new VM with host ~ POST /servers (specify availablity_zone parameter in the request body[?]http://api.openstack.
placement org/api-ref.html#compute_servers)
Get description of a VM GET /servers/(id)
Delete a VM DELETE /servers/(id)
Update a VM PUT /servers/(id)
Save a modified VM volume POST server/(id)/(action) (action = createlmage)
as a new golden image
Network List all Networks GET /networks
Create a new Network POST /networks
Get description of a Network GET /metworks/(netid)
Delete a Network DELETE /networks/(netid)
List all Storage GET /volumes/details (datablocks) GET /v2/images (golden images)
Create a new Storage POST /volumes (datablock)*
Storage Get description of a Storage GET /volumes/(volid) (datablock) GET /v2/images/(imageid) (golden image)
Delete a Storage DELETE /volumes/(volid) (datablock) DELETE /v2/images/({imageid)
TABLE II. BONFIRE EVENTS AND CORRESPONDANCE TO OPENSTACK
Category Event Description
BonFIRE OpenStack
vm.create compute.instance.create.start/.end VM has been created
vm.delete compute.instance.delete.start/.end VM has been deleted
vm.state.reserved compute.instance.power_on.start Resources allocated, but VM not booted yet
Compute vm.state.active.up compute.instance.exists VM in booted and running state
vm.state.stopping.off compute.instance.shutdown.start/.end VM has entered a shutdown state
vm.state.active.standby - VM has entered a standby/suspended state
vm.state.failed.error compute.instance.create.error VM has entered an error state
Network network.create network.create Network created
network.delete network.delete Network deleted
storage.create volume.create.start/.end storage has been created
storage.delete volume.delete.start/.end storage has been deleted
Storage storage.state.locked compute.instance.snapshot.start/.end save-as transfer is in progress to this target volume

storage.state.ready compute.instance.snapshot.end

save-as transfer completed. Image ready to use

storage.state.error -

save-as transfer or volume creation has failed

and a subset of corresponding OpenStack events. OpenStack
generates two events for every activity; one when the activity
starts and another when the activity ends. BonFIRE events
are only triggered on completion. As seen in the table, most
of them match easily to similar events in OpenStack. Since
BonFIRE does not require information about time taken for
activity completion, it could safely discard those .start events
and match only the .end OpenStack events to the BonFIRE
notification model.

For some BonFIRE events, there are no OpenStack equiv-
alents or only partial matches. We suggest some alternatives:

o vm.state.reserved: There is no event in OpenStack to
denote resource allocation while waiting for a VM to
boot. Instead, the event compute.instance.create.start
can be used to denote the moment at which resources
are allocated to start booting a VM in OpenStack.

e vm.state.active.standby: There is no event to denote
when a VM is suspended. However, one of the possi-

ble server states in OpenStack is SUSPENDED, so it
should be possible to obtain this state from the APIL.

e compute.instance.create.error: Sent when a VM en-
ters an error state. OpenStack only sends this event
if an error occurs when booting. For a running VM,
check the event compute.instance.exists, which is pe-
riodically generated by a cron daemon.

e storage.state.error: An alternative for this event
would be also to periodically check that the vol-
ume.exists event is generated.

The information about network events in Neutron (formerly
Quantum) is very scarce. According to the Ceilometer code
available in GitHub [19], it is possible to capture network,
subnet, port and router events. In addition, there is an in-
progress initiative to make network events available to Neutron
administrators [20].

D. Sending events to BonFIRE from the OpenStack site

In order to make OpenStack events usable by BonFIRE, it
would be necessary to develop a software component to run
at the site alongside the OpenStack deployment. This would
consist of 2 parts: one to parse and reformat event data into
the BonFIRE format, and a second one to act as a RabbitMQ
producer client to post these messages to the queue. Since the
OpenStack event retrieval code would likely be implemented
in Python, it would make sense to also develop this component
in Python, using one of the many client libraries available [21].

E. Security model compatibility

The recommended method for user authentication in Open-
Stack is by auth-token. BonFIRE does not use this system,
so BonFIRE would have to generate this on behalf of the
BonFIRE LDAP user and additionally deal with token expiry.
If it is assumed that the BonFIRE experiment concept can be
equated with the OpenStack tenant concept, we will encounter
incompatibilities with this parallel such as the BonFIRE exper-
iment Walltime, which does not apply to the OpenStack tenant
concept. An additional task would be how to map BonFIRE
group permissions to the OpenStack security model.

These issues are related to the modification of the BonFIRE
central services, not to OpenStack itself and are thus beyond
the scope of this article. However, we make the suggestion
that a single tenant and OpenStack user be used for authenti-
cation with the BonFIRE central services, and that BonFIRE
user/group information be stored as metadata with each virtual
resource. This model is the one used for the integration of HP
Cells and avoids the complications of attempting to merge two
conflicting/incompatible security models.

F. Suitability and Status of the OpenStack OCCI API

The OpenStack OCCI project is currently under develop-
ment and lacks basic create/delete functionality for networks.
The BonFIRE Enactor adaptor would instead need to interact
with the testbed site through the native OpenStack REST API.

V. CONCLUSION

OpenStack is one of the most promising cloud computing
platforms to date, with a user base in academia and industry.
This article has presented and discussed OpenStack’s capa-
bilities in observability and controllability. We have shown
how these features make OpenStack suitable for horizontal
federation into larger, heterogeneous infrastructures. Finally,
we have studied, as a use case, the work required to integrate
OpenStack in BonFIRE, a cloud testbed for research and
experimentation which presents more strict requirements than
a conventional cloud infrastructure.

For efficient integration, a new testbed must provide the
means to be observed and controlled. OpenStack can be
observed at VM, application and infrastructure levels. At
cloud operating system level, its notification service provides
a useful source of information. In fact, we showed how by just
providing a subset of the available events to BonFIRE, it was
sufficient for a proper federation.

Control of OpenStack turned out to be more challenging.
We demonstrated that BonFIRE requests can be mapped to

OpenStack with some modifications to some modifications
to the OpenStack API or intermediate layers. An OCCI API
project for OpenStack is under development, but it still lacks
the necessary features to be used as the only point of exchange
between OpenStack and the federating infrastructure.

Based on this study, further work will involve the develop-
ment of a component to translate and transmit the event data
from OpenStack to BonFIRE and another one for the BonFIRE
central services to interact with the OpenStack REST API.

ACKNOWLEDGMENT

This work was undertaken in the context of the BonFIRE
project which is funded by the European Union 7th Frame-
work Programme under grant agreement number 257386. The
authors would like to thank all of the BonFIRE development
team for their contribution and support.

REFERENCES

[1] W. Vandenberghe et al., “Architecture for the heterogeneous federa-
tion of future internet experimentation facilities,” Future Network and
Mobile Summit, 2013.

[2]1 Nagios monitoring tool, http://www.nagios.org.
[3]1 Zabbix: Open source monitoring solution, http://www.zabbix.com.
[4] OpenStack, http://www.openstack.org.
[S] OCCI - OpenStack, https://wiki.openstack.org/wiki/Occi.
[6] Event types and payload data in OpenStack, https://wiki.openstack.org
/wiki/SystemUsageData.
[7]1 The Ceilometer Project, http://docs.openstack.org/developer/ceilometer/
measurements.html.
[8] Queues and Exchanges in OpenStack, http://ilearnstack.com/2013
/04/24/messaging-in-openstack-using-rabbitmg.
[91 Notification payloads in OpenStack, https://wiki.openstack.org/wiki/
NotificationEventExamples.
[10] Kombu, http://kombu.readthedocs.org/en/latest/.
[11] Yagi, https://github.com/Cerberus98/yagi.
[12] Marconi, https://wiki.openstack.org/wiki/Marconi.
[13] StackTach, http://www.sandywalsh.com/2012/10/debugging-openstack-
with-stacktach-and.html.
[14] OpenStack API language bindings, http://docs.openstack.org/developer
/language-bindings.htm.
[15] OpenStack Complete API Reference, http://api.openstack.org/api-
ref.html.
[16] OpenStack Orchestration: Heat, https://wiki.openstack.org/wiki/Heat.
[17] A. C. Hume et al., “Bonfire: a multi-cloud test facility for internet
of services experimentation,” in 8th International ICST Conference on
Testbeds and Research Infrastructures for the Development of Networks

and Communities, Proceedings. Ghent University, Department of
Information technology, 2012, pp. 1-16.

[18] BonFIRE’s connector to Amazon EC2, http://doc.bonfire-project.eu
/R3.1/reference/amazon-connector.html.

[19] Notification management with Python in Ceilometer,
https://wiki.openstack.org/wiki/Neutron/APIv2-specification.

[20] Quantum Notifications, https://wiki.openstack.org/wiki/QuantumNotifications.

[21] RabbitMQ Python Client
devtools.html#python-dev.

Libraries, http://www.rabbitmq.com/

