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Abstract OpenStack is an open source cloud com-
puting project that is enjoying wide popularity. While
many cloud deployments may be stand-alone, it is
clear that secure federated community clouds, i.e.,
inter-clouds, are needed. Hence, there must be meth-
ods for federated identity management (FIM) that
enable authentication and authorisation to be flexibly
enforced across federated environments. Since there
are many different FIM protocols either in use or in
development today, this paper addresses the goal of
adding protocol independent federated identity man-
agement to the OpenStack services. After giving a
motivating example for secure cloud federation, and
describing the conceptual design for protocol inde-
pendent federated access, a detailed federated iden-
tity protocol sequence is presented. The paper then
describes the implementation of the protocol indepen-
dent system components, along with the incorporation
of two different FIM protocols, namely SAML and
Keystone proprietary. Finally performance measure-
ments of the protocol independent components, and
the two different protocols dependent components are
presented, before the paper concludes with the current
limitations.
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1 Introduction

OpenStack is a relatively new open source cloud com-
puting project. It has rapidly become very popular
since its first release on 21st October 2010. It cur-
rently boasts over 6600 members, comprising technol-
ogists, developers, researchers, and cloud computing
experts from 87 countries [1]. Over 140 organisations
are members of the OpenStack foundation, including
many well-known multinational computer companies
such as HP, Intel, IBM, AT&T, Cisco and Dell.

OpenStack provides several cloud services, which
are all accessible via RESTful APIs [2]. There are no
proprietary hardware or software requirements placed
on installing these services and they are all customiz-
able to different environments. Swift is the storage
service which provides both block storage and object
storage. Nova is the compute service used for pro-
visioning and managing large networks of virtual
machines. Neutron is the networking service used for
managing networks and IP addresses. Glance is the
image service which provides for the registration, dis-
covery and delivery of virtual machine images. It
can use Swift to store its images, Neutron to transfer
them, and Nova to run them. Horizon is a web based
graphical user interface (or dashboard) which allows
administrators to manage their OpenStack installation.
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Keystone is the identity service which authenticates
users and provides them with an authorisation token
to use the various OpenStack services. The services
use the token to get authorisation information about
the user, in terms of the user’s ID, the project and
domain the user is a member of, and the role he has in
this project. The services use either role based access
control to determine which privileges are available to
each role, or access control lists to give direct access
to users.

The current Keystone implementation is cen-
tralised, in that all users need to be enrolled in its
database, either manually by the OpenStack admin-
istrator (via a command line interface or Horizon),
or via bulk loading from a corporate database such
as LDAP, before they can access any of the services.
There are a number of well-known limitations with
this design, such as users having accounts in each
system they access and having to remember different
credentials for each one.

This paper focuses on the addition of federated
identity management (FIM) to OpenStack, which
facilitates both flexible authentication methods and
federated authorisation management. Federated iden-
tity management is a necessary but insufficient step
in implementing federated clouds. Cloud federation
is concerned with cloud service providers federating
together in order to share their resources, so that when
one of them is overloaded, it may, transparently to its
users, move their work to another cloud provider that
has spare capacity. We do not address this latter aspect
of cloud federation in this paper.

Instead we concentrate on how we have added
protocol independent federated identity management
to OpenStack Keystone, so that any different FIM
protocol can be plugged into the protocol indepen-
dent infrastructure. In our design, authentication and
authorisation become separate functions, and users
no longer need to be pre-registered in Keystone.
Instead, users may use their existing corporate creden-
tials to access OpenStack services, and their existing
identity attributes are mapped into OpenStack autho-
risation attributes. Users are automatically enrolled
as temporary Keystone users, through the process of
auto-provisioning.

The rest of this paper is structured as follows.
Section 2 describes a motivating example for our
research. Section 3 describes related research in the

area of federated identity management and its appli-
cation to clouds and Grids. Section 4 describes the
current Keystone implementation for authentication
and authorisation. Section 5 describes the conceptual
model for federated identity management, authen-
tication and authorisation. Section 6 describes the
conceptual model for federated access to Keystone,
and the important design choices we made. Section 7
describes the implementation, which includes plug-
ins for two different federation protocols. Section 8
describes the performance evaluation of our imple-
mentation whilst Section 9 discusses the current limi-
tations and concludes the paper.

2 A Motivating Example

Our motivating example for federated identity man-
agement in OpenStack is an international geospatial
data community cloud for disaster response. Effective
international disaster response requires the coordina-
tion of many stakeholders around the world. Natural
disasters, such as massive earthquakes and tsunamis,
are currently unpredictable with any significant accu-
racy or lead time. Hence, to respond, stakeholders
must collaborate in real-time, on-demand. A critical
part of any such collaboration is information sharing.
While some IT resources within a disaster area may
be destroyed or non-operational, many stakeholders
and responders will be outside this immediate area.
Clearly, the challenges of disaster response include
continuity of operations and communication within the
disaster area (most likely mobile devices). Nonethe-
less, as more and more IT resources and information
becomes cloud-hosted, it is only a matter of time
until collaboration for disaster response requires on-
demand cloud federation.

Conceptually speaking, when a disaster occurs, a
dynamic virtual organisation (VO) or federation needs
to be instantiated whose member organisations are
stakeholders in the disaster response effort. Each VO
user should be able to access the new federation’s
resources using his existing organizational credentials,
without having to wait for new credentials to be issued
to him. However, not all users from each member
organization will need to access the new federation,
only those who have been assigned roles in the relief
effort. These roles should define what authorisations
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they have, e.g., reading satellite data archives, exe-
cuting codes to identify damaged civic infrastructure,
and storing intermediate data products where they can
be accessed by first responders in the field. A fed-
erated authentication and authorization infrastructure
is needed that can be rapidly constructed simply by
configuring existing cloud infrastructures.

Such fundamental cloud federation use cases,
as disaster response, have been recognized in the
NIST US Government Cloud Computing Technol-
ogy Roadmap. This is a large document in three
volumes, giving guidance to US federal agencies
on cloud adoption. Volume I of this document [3]
identifies ten, high-priority requirements. Require-
ment 5 targets ”Frameworks to Support Federated
Community Clouds”. Federated community clouds
are necessary to support all manner of interna-
tional, government-to-government, agency-to-agency,
or business-to-business collaborations. Such efforts
have been reported as part of NIST’s on-going
cloud workshop series [4, 5] and promoted within
the Middleware And Grid Interagency Coordination
(MAGIC) working group of the Networking and
Information Technology Research and Development
(NITRD) Program [6], whose charter is to coordi-
nate IT research, development, and adoption across
US federal agencies.

All of these activities clearly recognize the funda-
mental importance of federated identity management
in cloud computing. Adding federated identity man-
agement to an open source cloud system such as
OpenStack, will greatly facilitate further experimen-
tation and evaluation of practical systems to enable
an essentially global identity ecosystem for federated
inter-clouds.

3 Related Research

Identity management in distributed, networked envi-
ronments has been a recognized challenge for many
years. The advent of cloud computing, and specifically
federated inter-clouds, is just creating another instance
of this challenge, only on a much greater scale and
requiring more general solutions. Many groups and
projects have identified the needs, motivations, issues
and challenges surrounding FIM [7–11] and there are
a few that are making concrete efforts.

Kerberos [12] was one of the earliest, being devel-
oped at MIT starting in the late 1980s. Kerberos
uses an Authentication Server and protocol to manage
secure interactions between a client and a principal.
The Authentication Server initially issues a Ticket
Granting Ticket (TGT) to the client. When the client
wishes to communicate with a principal, it sends the
TGT to the Ticket Granting Service that verifies the
TGT and returns a Ticket and session keys to the
client. These are then used to access the principal. The
use of a third-party Authentication Server in Kerberos
was a fundamental development of network security,
and the Keystone identity service in OpenStack is
modelled on Kerberos. However, Kerberos did not
address the issues of discovery or interoperability in a
heterogeneous environment.

In the late 1990s, Globus toolkit was developed to
protect high performance computer (HPC) Grids. The
Grid Security Infrastructure (GSI) [13] relies on an
X.509 Public Key Infrastructure (PKI) [14] in which
public key certificates are issued to users by trusted
Certification Authorities (CAs). A HPC authenticates
a user by requiring the user’s client to sign a message,
and then validating the signature with the user’s cer-
tificate. Mutual authentication can be accomplished
if the client and HPC trust the CAs that signed
each other’s certificates. SSO and delegation (or more
precisely impersonation) are accomplished by using
proxy certificates issued by the user’s original cer-
tificate [15]. Authorisation is provided by embedding
X.509 attribute certificates in the proxy certificate
[16].

The Security Assertion Markup Language
(SAML), an OASIS standard [17], built on X.509
by defining authentication and attribute assertions
in XML rather than in ASN.1, and by also defining
request and response protocols for carrying these
assertions. Shibboleth [18], an implementation of
the SAML standard, was developed as part of the
Internet2 Middleware Initiative, starting in 2000, to
address resource sharing among organizations that
use differing authentication and authorization mecha-
nisms. Shibboleth uses a third-party Identity Provider
(IdP) to provide security assertions to the Service
Provider (SP), as described in Section 5. SAML based
federations have proved to be very successful in the
academic community. For example, InCommon [19],
which is operated by Internet2, provides a Shibboleth-
based federation as a service to US universities, whilst
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the UK Access Management Federation [20] provides
a similar service in the UK. EduGAIN is a more
recent development that is inter-connecting these
national federations into one large global federation.
By the fall of 2013 there were 20 national federations
interconnected together, with another 5 in the process
of joining, and an additional 5 as candidates for future
participation [21]. These federations span the globe
from Canada to Brazil, include most European coun-
tries, as well as Australia and Japan. EduGAIN is
funded by GEANT, the 40 million euro pan-European
research and education networking project.

Due to the relative success of SAML and Shibbo-
leth, compared to X.509, the Grid world has embraced
SAML in various ways. Globus toolkit built in sup-
port for SAML by allowing it to retrieve attributes
from an IdP by using the SAML protocol [16], whilst
the Shibboleth Enabled Bridge to Access the National
Grid Service (SHEBANGS) project at the Univer-
sity of Manchester [22] enabled Shibboleth users to
access the NGS using their institutional usernames
and passwords instead of being required to obtain
X.509 certificates first. The latter are generated on the
fly by the Shebangs components, once the user has
been authenticated by Shibboleth.

Meanwhile in the commercial world, IBM and
Microsoft jointly developed the WS-Federation pro-
tocol standard [23] to build on the WS-Trust and
WS-Security standards. In WS-Federation, a federa-
tion is a collection of realms, i.e., security domains.
A resource provider in one realm can make autho-
rization decisions based on claims about a principal
asserted by an IdP in another realm. WS-Federation
specifies how this can be accomplished by the bro-
kering of identities, attribute discovery and retrieval,
and the secure transport of claims among realms. WS-
Federation is widely supported in Microsoft products.
Ironically, one of the most common formats for WS-
Federation claims are SAML assertions, although the
WS-Federation and SAML protocols are incompati-
ble, and therefore do not interwork.

OpenIDv1 and v2 [24] follow the same model
of clients, SPs/relying parties (RPs), and IdPs as
described in Section 5. When a client is requesting a
web service, they can specify their preferred OpenID
IdP, which the SP/RP can then use to authenticate the
user. OpenID also offers an Attribute Exchange facil-
ity whereby different user attributes can be sent to the
RP, depending on the user’s preferences and the RP’s

requirements. In comparison, OAuthv1 and v2 [25] is
a delegation of authority protocol, which allows a user
to grant an SP access to the user’s resources stored
at another SP. One can immediately see if the “other
SP” is actually an IdP, then the user could grant the
SP access to its identity attributes at the “other SP”,
and thus gain authorised access to the SP’s resources.
However OAuth was not designed for this type of use
case, and does not standardise the protocol details that
are needed to implement FIM securely. For this reason
OpenID Connect [26] is being developed, which is a
profile of OAuthv2 specifically designed for federated
identity management and SSO.

The latest FIM protocol to be standardised is the
ABFAB protocol suite from the IETF [27]. Whereas
most of the previous FIM protocols were developed
for users who would be using web browsers as the
client software, and were therefore capable of being
redirected from one site to another, ABFAB is an
extension of the Radius protocol [28] that is used
extensively by the eduroam (education roaming) net-
work [29] for wireless access. It does not require
redirects, and is therefore suitable for use by com-
mand line and other non-browser clients. Eduroam
is a federated authentication system widely used in
the academic sector, which allows users from any
participating university to authenticate to any other
participating university’s wireless network (the SP)
by authenticating via their home university (the IdP).
Whilst eduroam does not provide federated authori-
sation, ABFAB has added this by allowing SAML
assertions to be transferred from the IdP to the SP as
Radius attributes.

While such tools address a large segment of users
and applications, they do not address the key issue
of attribute management in the context of general
cloud federations. One previous approach to this is
the Virtual Organization (VO) concept [30], developed
in the Grid computing community over the last ten
years [31–33]. A VO is essentially a security context
where each member of a VO can be associated with a
set of authorization attributes (typically roles). These
authorisation attributes can be managed for users from
multiple administrative domains by using an exter-
nal VO Membership Service (VOMS) server [34] that
maintains all status information for a set of VOs. Once
created, each VO has its own VO administrator. This
administrator can define any number of groups or
roles within that VO. The VO administrator can grant,
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deny or revoke a user’s membership in the VO. In
current VOMSs, such as used by the Open Science
Grid, a user authenticates to a VOMS for a specific
VO. The VOMS replies with a SAML assertion defin-
ing the user’s authorizations. The user’s client uses
this information to build an X.509 proxy certificate,
based on the user’s primary certificate, and this is used
for authorization at the protected service. The Policy
Enforcement Point (PEP) that is protecting the ser-
vice consults a Policy Decision Point (PDP) to make
the actual authorization decision. This established
model of PEPs and PDPs that separates concerns, pro-
vides benefits for both manageability and scalability.
To date, support for VOs has been integrated into
the lowest levels of system software [35] and VOs
are used operationally [30, 36]. Detailed information
describing the operation of VOMS is available in [34].
The VO concept has been implicitly integrated into
our OpenStack federated identity management design,
through the use of an Attribute Mapping service, so
that a separate VOMS server is no longer needed.
Instead an administrator can say which IdP asserted
identity attributes should be mapped into which Open-
Stack authorisation attributes. In this way, different
groups of VO users can be created. The Attribute
Mapping service addresses the semantic interoper-
abiity problem of mapping user identity attributes
from potentially thousands of different IdPs into Key-
stone’s model of tenants/projects and roles, thereby
enabling proper authorization decisions to be made.
This capability is fundamentally missing from Ker-
beros, Shibboleth and GSI. It is also REST-based, as is
all of OpenStack, in contrast to WS-Federation, which
is SOAP-based (even though a RESTful profile of
WS-Federation could presumably be defined).

An important related issue is how to manage a
user’s authorization attributes that are asserted by sev-
eral different IdPs and VOMS servers, for example, an
employer IdP asserts an organisational role, whereas
a bank IdP asserts possession of a credit card, and
a VOMS server asserts group membership. Collect-
ing these various assertions together and proving that
they all belong to the same user, is the concept of
attribute aggregation. It can be architected in several
different ways. Cantor [37] has developed a simple
attribute resolver for Shibboleth, whereby the SP pulls
attributes from different IdPs based on a globally
unique identifier that they all hold for the user. As
Cantor admits, this is not a good solution for either

user privacy or control, but it is simple to imple-
ment. However, ABFAB is taking the same approach,
since the user’s Network Access Identifier is glob-
ally unique. Chadwick and Inman [38] on the other
hand have developed a privacy protecting intermedi-
ate service that sits between the client and the attribute
providers, which performs the aggregation on the
user’s behalf, based on policies set by the user. They
call this the linking service, and it is managed by the
users themselves, without ever learning the true iden-
tities of the users. However in user trials carried out by
Watt et al. [39], they found that users did not feel to
be sufficiently in control of the aggregation, since the
linking was done in real time during login based on
policies that had been set sometime in the past. Conse-
quently a revised system was built, called the Trusted
Attribute Aggregation Service (TAAS), which allows
the user to dynamically select his or her attributes from
multiple issuers during session authentication with the
SP [40].

While nearly all of the above protocols and ser-
vices were developed prior to cloud computing, many
of the issues they were addressing and the capabilities
they were developing are directly relevant. Another
decade of development and deployment of networked
devices and systems, and the advent of on-demand,
cloud resources, only underscores the need to integrate
federated identity management into cloud software.
However, the mechanism must be FIM protocol inde-
pendent, due to the number of protocols that are now
available. Our design allows for this.

At we noted in the introduction, cloud federation
is a much broader topic than federated identity man-
agement. With regards to other cloud software stacks
that are endeavouring to support cloud federation, the
Reservoir project supports federation in at least two
different contexts. First, Reservoir’s Virtual Execution
Environment Managers (VEEMs) can federate among
themselves, allowing a VEEM to flexibly place Vir-
tual Execution Environments (VEEs) locally or at any
remote site [41]. This would be analogous to allowing
a Nova-Scheduler to instantiate VMIs at other Open-
Stack sites. At the identity level, however, Reservoir
is defining an InterCloud Identity Management Infras-
tructure (ICIMI) that is adopting the SAML model
and architecture [42]. Thus it is limited in its federated
identity management capabilities.

The EGI-InSPIRE project represents an existing,
operational Grid that is incorporating cloud software
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stacks [43, 44]. By leveraging much of the exist-
ing Grid infrastructure for authentication, authoriza-
tion, monitoring, accounting, etc., a federated cloud
testbed has been deployed that incorporates Open-
Stack, OpenNebula, and StratusLab sites. One of
the goals of the EGI-InSPIRE project is to allow
researchers to deploy the compute environments they
want, where they need to. This includes traditional
Grid software stacks. While this goal is laudable, the
approach of EGI-InSPIRE is largely providing bro-
kerage services across the different cloud platforms,
rather than achieving a ”native” federation among het-
erogeneous IdPs and SPs. It is the external X.509 PKI
infrastructure that provides the SSO and distributed
authentication functionalities, rather than a federated
identity management capability that is integrated into
the cloud services themselves.

The EU Contrail Project [45] is also pursuing the
cloud brokerage model for cloud federation, but with
a much more complete level of integration. Contrail
users have a single interface whereby cloud resources
from multiple cloud providers can be acquired. This is
done by structuring Contrail into a Federation Layer,
Provider Layer, and Resource Layer. When the user
submits a job, the best provider can be selected based
on the user’s requirements. Applications can be scaled
and migrated, using support for SLAs, the XtreemFS
file system, virtual networks, and other capabilities.
With regards to identity management, Contrail main-
tains an external database of SAML attributes and
uses OpenID to verify user identities for the various
resource providers. OAuth delegation is the primary
mechanism whereby Contrail uses a user’s credentials
to manage the various cloud resources that have been
acquired on the user’s behalf. While this achieves an
important and useful capability, Contrail is not actu-
ally integrating FIM into any cloud stacks, but is
providing an interoperability layer across them.

Such work in cloud federation dovetails with
broader goals in both North America and Europe.
NIST’s National Strategy for Trusted Identity in
Cyberspace (NSTIC) program [46] is working to
achieve improved security, privacy, scalability, and
ease-of-use in a national “identity ecosystem”. Like-
wise, the European Network and Information Security
Agency (ENISA) is working to achieve resilience
for critical information infrastructures which nec-
essarily depends on federated identity management

in clouds [47]. In September 2013 the UK Cab-
inet Office’s Identity Assurance program signed
contracts with five commercial IdPs for them to
assert the identities of users for e-government ser-
vices (http://digital.cabinetoffice.gov.uk/2013/09/03/
identity-assurance-first-delivery-contracts-signed/).
This uses SAML assertions between the IdPs and
the government’s trusted hub that acts as an attribute
aggregator. These governmental efforts are supported
by international organizations, such as the Open
Identity Exchange (http://openidentityexchange.org/
about), the Cloud Security Alliance [48] and the
Kantara Initiative [49].

Finally, while not specifically targeting cloud envi-
ronments, the ABC4Trust project [50] is an ambi-
tious project to address federation and interoperabil-
ity using Attribute-Based Credentials (ABC) created
from either U-Prove or Idemix tokens. The Privacy-
ABC model defines additional entities beyond the
usual three: User, Issuer, Verifier, Revocation Author-
ity, and Inspector, even though these functions could
be combined in some deployments. An important goal
of the ABC4Trust project is to preserve the user’s
privacy. The Privacy-ABC model provides verifiable,
certifiable, and scope-exclusive pseudonyms to allow
users to remain private while nonetheless ensuring
authenticity. This applies for IdPs as well as SPs, such
that IdPs can verify identity, yet not be able to track
a user’s every move. Clearly such goals are beyond
that of the current work, yet its credentials could be
integrated into our protocol independent FIM system
by plugging in a new ABC4Trust protocol handling
module.

4 Existing Keystone

4.1 User Authentication

Keystone is the identity management service of Open-
Stack. It is trusted by the OpenStack services to
handle the creation and management of users’ identi-
ties and credentials. Users are enrolled in a Keystone
domain and made a member of one or more tenants (or
projects—the two terms are synonymous with project
being the newer term). A project is the account holder
of a set of OpenStack services. Each user is given
one or more roles within a project, and a role is used
by a service to determine the user’s access rights to

http://digital.cabinetoffice.gov.uk/2013/09/03/identity-assurance-first-delivery-contracts-signed/
http://digital.cabinetoffice.gov.uk/2013/09/03/identity-assurance-first-delivery-contracts-signed/
http://openidentityexchange.org/about
http://openidentityexchange.org/about
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the service. The concept of a domain was only added
in the April 2013 release of Openstack, termed Griz-
zly, so that a cloud service provider can partition its
resources into different domains, and assign different
client organisations to different domains.

When a user wishes to access an OpenStack ser-
vice, the following steps are taken (these are shown
pictorially in Fig. 1):

1. The user enters his credentials to the service’s
client, along with the request he wishes to make.
Currently the OpenStack open source code only
provides command line clients for each of its ser-
vices, although a web based administrative client
called Horizon is also available.

2. The client sends an authentication request to the
Keystone server using the user’s credentials.

3. If the credentials are correct, and the user speci-
fied the project he wishes to use, Keystone sends
back a scoped token and a list of endpoints to the
different services that are available to him/her.
If the project was not specified, Keystone sends
back an unscoped token. An unscoped token can
only be used with Keystone to exchange it for
a scoped token, by providing a project ID. The
user needs a scoped token to access any of the
OpenStack services.

4. The client chooses the endpoint of its service
and sends the scoped token along with the user’s
request to the chosen service.

5. Assuming this is an opaque token and not a PKI
based token, the service sends the scoped token to
the Keystone server asking for it to be validated.
(If it is a PKI based token the service can validate
it itself by using the public key of the Keystone
server.)

Trust
Relationship

OpenStack

Service

Keystone

User Client

1
2

3

4

7

5 6

Fig. 1 Using keystone to access an OpenStack service

6. The Keystone server checks if the token is valid.
If it is, it sends back the user id, domain, project,
and the roles the user has in the project. The user
is then authenticated with the service.

7. The service now makes an authorisation deci-
sion based on either the role and the project
(and domain) that the user has (i.e. RBAC), or
user id (i.e. ACL). If the user is authorised, then
the service processes the request and sends the
response to the client, otherwise the user’s request
is rejected.

4.2 Keystone Internals

Keystone, like all the other OpenStack services, is
RESTful. REST is an architectural style for the client-
server model [2]. In this architecture, a client performs
an operation on a resource (server) by using a rep-
resentation of the resource (identified by a URL).
Each URL represents a different state of the resource.
RESTful architectures like OpenStack often use the
HTTP protocol because it provides the essential oper-
ators (or methods) for resource manipulation: GET
(read), POST (create), PUT (update) and DELETE
(remove). Thus all requests sent to Keystone are HTTP
operations on a set of URLs. Each request is han-
dled in two phases: firstly in a pipeline during which
the requests are pre-processed, and secondly after the
pipeline when the requests are directed to the right
service module for handling them, see Fig. 2. The
pipeline is composed of several middleware compo-
nents, which are all configurable. Middleware com-
ponents can modify both the incoming request and
the outgoing response. A middleware component can
also stop the processing of a request and can send
a response instead of the main service module. New
middleware components are easy to create and easy
to add into the pipeline thanks to the in-built features
of the Python language in which OpenStack is writ-
ten. At the end of the pipeline, the request is sent
to the Router module. The Router module sends the
request to the appropriate service module of the Key-
stone code (e.g. for authenticating the user, listing the
different users, validating a token, etc.) based upon the
HTTP method and the path of the URL (the path is the
last part of the URL the request was sent to e.g. for
http://keystone:5000/v2.0/tokens, the path is /tokens).
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Fig. 2 Keystone internal
architecture

In the current release of Keystone, the public ser-
vice’s pipeline is made up of the following middleware
components:

– Token Auth: Initializes the context of the request
for the next middleware component by copying
the token ID in the header of the request into the
request context.

– Admin Token Auth: Checks if a valid Adminis-
tration Token is provided in the request and if so,
updates the context so that the Keystone service
doesn’t need to do further authentication.

– XML Body: Detects if the content type of the
body of the request is XML and if so converts
it into JSON formatted content. When a response
comes back, it will convert the JSON content back
to XML, if the original request was formatted in
XML.

– JSON Body: Parses and extracts the parameters of
the JSON body.

– Debug: Logs all information about the request and
the response.

The middleware components of the pipeline are con-
figured in the Keystone configuration file.

5 Conceptual Model of Federated Access

Underpinning federated access is a trust relationship
between the SP and the IdP: the SP trusts the IdP
to authenticate and identify the user, whereas the IdP
trusts the SP to privacy protect the user’s identity
attributes. Federated access is a three party protocol
between the user, the IdP and the SP. The SP initiated
variant is shown in Fig. 3.

1. The user wants to access a resource on a service
provider.

2. The service provider determines the identity
provider of the user. This is known as the IdP dis-
covery problem, and can be solved by a variety of
means e.g. manual selection by the user clicking
on an IdP icon (known as the NASCAR solution,
but also the NASCAR problem when there are too
many icons to choose from), redirection to a sep-
arate Where Are You From Service (as used by
Shibboleth), or automatic discovery (e.g. from the
IP address or OpenID of the user, or because the
SP only supports one IdP as was the case with
Microsoft’s Passport service ).

3. The service provider redirects the user to his IdP.
A request for authentication and the user’s identity
attributes is sent with the redirection.

4. If the user is already authenticated with the IdP,
this step may be skipped if single sign on has been
implemented. Otherwise, the user authenticates
with his IdP. The authentication phase is usually
not part of the identity management protocol and
can differ between different IdPs, as each is free
to choose its own preferred method.

5. After successful authentication, the IdP redi-
rects the user back to the SP. An authentication
response is sent with the redirection. The response
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Fig. 3 SP initiated federated access to a resource
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may contain the identity attributes of the user and
may be encrypted and/or signed.

6. Now that the user has been authenticated and
identified, he is able to access the SP’s resource
based on his identity attributes.

6 Conceptual Design of Federated Keystone

6.1 Design Principles and Choices

Several different design choices had to be made for the
OpenStack FIM implementation. These were guided
by some overarching design principles that we formu-
lated at the outset. The chief one of these was keep
it simple for the cloud service providers. The existing
OpenStack services should not need to change when
federated access is introduced. They already trust Key-
stone to authenticate and identify the users, so if the
introduction of federation only effects Keystone, then
the existing services should be able to use centralised
or federated identity management without seeing any
difference. This means that each cloud service can
keep its existing projects and roles for authorisation
and trust Keystone to correctly issue these to the users.

A second similar principle was make it easy for
the existing clients to integrate federated access into
their code or way of working. This posed a signifi-
cant challenge due to the fact that the vast majority
of today’s IdPs assume that the user will be using a
web browser for authentication, whereas all the Open-
Stack clients are command line clients. We investi-
gated whether a command line client could sensibly
interact via the HTTP protocol with existing IdPs that
assume they are talking to a web browser, but this is
either very difficult or impossible to achieve, since the
authentication interaction is not standardised. Conse-
quently the client cannot know what type of HTTP
response content it will receive to its GET requests.
The browser manufacturers already have similar dif-
ficulties today in interpreting web pages and knowing
which fields can be auto-populated using the user’s
previously stored answers to similar questions. This
is why in some cases today you will find that your
email address attribute, say, may be auto-populated by
your browser when you complete a form from one web
site, and not, when you complete a similar looking
form from another web site. If browser manufactur-
ers, with all their resources, are not able to fully solve

this problem today, then it is clearly beyond the scope
of our small project. Thus our only practical solution
is to use a web browser for the authentication phase
(at least) of those FIM protocol implementations that
expect it. This is because a web browser can easily
render any type of IdP response into a web page that
is viewable by the user, and the user, using his native
intelligence, can easily see where he should enter his
username and password, or other authenticating infor-
mation, onto the web page. However, this left us with
a major design choice. Should we use the existing
command line clients for interaction with Keystone
and the cloud services, and launch a web browser just
for the authentication phase, or should we use a web
browser throughout as the user’s client for interacting
with Keystone, the cloud service and the IdP. The lat-
ter approach would require us to produce a new web
service that can act as both a service client to Open-
stack and a server to the web browser by providing
the service client functionality to the user via a series
of web pages. We decided that the former approach
would both be much easier to implement and pro-
vide users with a similar experience to the one they
are already accustomed to, whereas the latter approach
would offer users a completely new access method to
OpenStack services, which may not suit everyone. We
therefore decided to implement the former approach,
and to provide a single plugin module for the com-
mand line clients, that would handle the federated
authentication exchange for them.

Another important design choice was ‘what iden-
tity management protocol should be used? We decided
that the actual FIM protocol is not that important,
since FIM protocols are always being introduced and
revised. Our design should be impervious to them. The
design challenge then, is how to integrate them in a
common way, given that they interact in very different
ways. For example, the Shibboleth SAML implemen-
tation expects the IdP and SP to always communicate
indirectly via the user’s browser. OAuth expects the
IdP and SP to have a back channel for direct communi-
cation, whereas the latest IETF ABFAB work expects
the client to talk directly to the SP, the SP to talk
directly to the IdP, and all requests from the client to
the IdP to be routed via the SP. So how should all these
different protocols be plugged into Keystone without
effecting the overall architecture or conceptual model
of federation? We decided that we would have one
protocol dependent module that is responsible for both
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creating the authentication and attribute request mes-
sage(s) and getting this(them) to the IdP in a protocol
dependent manner, and for validating the response(s)
from the IdP, again in a protocol dependent manner,
before finally returning the user’s identity informa-
tion to the Keystone code in a standard format. All
protocol messages between the client and the pro-
tocol dependent module will be treated as opaque
messages by Keystone, so that it does not have to pro-
cess or understand them in any way. It will simply
act as a relay, passing them to and from the protocol
specific module. This module should be replaceable
as necessary, and indeed, multiple different modules
should be supported simultaneously, so that different
IdPs that support different federation protocols, can
be supported by the same Keystone implementation.
The details of how this was achieved are given in the
implementation section.

All the remaining federation functionality can then
be made protocol independent. Firstly this needs to
intercept the client’s initial request and determine if
federated authentication is requested or not. If it is,
a new discovery component is needed that can deter-
mine which IdP (and hence federation protocol) the
user should use. Once the IdP has been chosen by
the user, its pre-configured supported protocol can be
determined, so that the protocol independent feder-
ation code can call the appropriate protocol specific
module to issue a request to the chosen IdP. This pro-
tocol specific module should now be responsible for
all subsequent communications between Keystone and
the IdP until the final IdP response is received and val-
idated. The protocol specific module can then return
the set of validated identity information to Keystone.
However, there are thousands of identity providers in
existence today, issuing possibly thousands of differ-
ent attributes to their users, so secondly, Keystone
must be capable of a) determining which of these are
trusted and b) mapping between the trusted asserted
attributes and the existing cloud service projects and
roles which are used to make access control deci-
sions. Thus a) an Attribute Issuing Policy (AIP) is
needed to say which IdPs are trusted to assert which
identity attributes and b) an Attribute Mapping (AM)
capability is required that can take a user’s validated
identity attributes and map them into a set of authori-
sation attributes, namely domains, projects and roles,
which the services can understand. These policies and
mappings must be easily configurable by a Keystone

administrator, for example, through configuration files
or rest APIs.

An important design choice was how to handle the
IdP discovery problem. We decided that a conceptual
solution is for Keystone to have access to a directory
service (Dir) of known and trusted federation IdPs.
Querying the directory service will return the list of
known and trusted IdPs, so that these can be pre-
sented to the client, allowing the user to choose his
favoured one. The directory service approach can be
used to provide each of the solutions to the discov-
ery problem previously identified in Section 5. The
returned list could be turned into a set of icons by the
client (NASCAR approach), or displayed as a list or be
searchable (the Shibboleth WAYF approach), or auto-
matically selected if only one IdP is returned or the
client is configured to know which IdP it should use.
The only feature it cannot provide is automatic discov-
ery of one IdP from a set of IdPs, since in the general
case this is an intractable problem if user identifiers
are independently chosen by the IdPs. Consequently
we cannot be sure which IdP a user wants to use based
solely on his identifier. For example, if an IdP A uses
email addresses as user identifiers, and one of its users
uses the e-mail address “example@gmail.com”, the
user will probably want to use IdP A to authenticate to
the cloud and not Google (even though Google does
act as an IdP for some service providers). In this case,
the Keystone discovery service cannot automatically
determine, based solely on the user’s identifier, that
the user wants to use IdP A as his IdP. Automatic dis-
covery can only work if all user identifiers are globally
unique and conform to a standard that is employed
by all IdPs in a federation. Whilst this is the case for
OpenID, EduRoam [29] and ABFAB [27] identifiers,
it is not for federated identifiers in general. Thus auto-
matic discovery will have to be left up to the protocol
specific code for those protocols which support it.

Because trust is at the heart of federated iden-
tity management, the Keystone administrator has to
trust the IdPs to correctly authenticate the users
(authentication trust), and to assert the correct identity
attributes for them (identification trust). Furthermore
the OpenStack services trust Keystone to assign the
correct authorisation attributes to users (authorisation
trust). We should enable the Keystone administra-
tor to limit this trust as far as is possible, so as to
reduce the harm that would occur to an OpenStack
service if the IdP made an error, or had imperfect
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attribute assignment procedures. By controlling which
IdPs are present in the directory service, we have a
way of controlling the authentication trust. By intro-
ducing an Attribute Issuing Policy (AIP), we have a
way of controlling the identification trust. By intro-
ducing the Attribute Mapping functionality, we have
a way of controlling the authorisation trust. Providing
all this functionality in the protocol independent code
will ensure that Keystone only assigns authorisation
attributes to end user in conformance to these policies
regardless of the federation protocol.

Provisioning of users is a massive task that is under-
taken by all organisations today. When users join an
organisation their identities have to be vetted, their
qualifications have to be verified and their references
followed up. They then have to be entered into the
organisation’s IT systems, and their credentials, roles
and other attributes assigned to them. This informa-
tion needs to be properly managed and kept up to
date. Most importantly, when they leave the organ-
isation, their credentials and other privileges need
to be removed from the IT systems, otherwise they
would continue to have (unauthorised) access. Much
the same procedure has to take place when provision-
ing users in Keystone today. Their entries need to be
created, credentials have to be assigned to them, then
they need to be placed in the appropriate domains with
the correct projects and roles. Their privileges need to
be continually kept up to date, and when they have fin-
ished using OpenStack their entries need to be deleted.
When we add federated identity management to Key-
stone, the potential number of users could explode
exponentially. How are all these users to be efficiently
managed? After much discussion, we decided that
automatic provisioning and de-provisioning of users
is the ideal solution. Since IdPs are already provision-
ing their users and keeping their identity information
up to date, then we should leverage this effort in
Keystone, rather than duplicate it by requiring the
Keystone administrator to add and remove entries in
its database. But automatic User Provisioning (UP)
posed certain challenges, for example, how to know
when an entry should be deleted, and how to ensure
that the same user can gain the same access rights to
the same cloud services on subsequent accesses, espe-
cially if his Keystone entry is different each time?
Further details of how we solved these and other issues
are given in the implementation section.

6.2 Protocol Sequence

Given the set of new functionality added to feder-
ated Keystone (FK): Directory (Dir), Request Issuing
(RI), Federation Protocol Negotiation (Neg), Creden-
tial Validation (CV), Attribute Issuing Policy enforce-
ment (AIP), User Provisioning (UP) and Attribute
Mapping (AM), coupled with the existing Token Issu-
ing and Validation Services (TS), the call sequence for
federated access becomes that shown in the swimlanes
of Fig. 4. The steps are described as follows:

1. The user types in the command to the cloud
service client e.g. C:\Python27\Scripts>python
swift -F -A http://fedkeystone.sec.cs.kent.ac.uk:
5000/v2.0/ list textFiles. This command is call-
ing the Swift client, asking for federated login
(-F), giving it the address of the Keystone ser-
vice (-A <address>) and asking for a listing of
the files in the textFiles directory.

2. The client calls federated Keystone asking for
the list of IdPs.

3. Keystone calls the Directory Service to obtain
the list of federation IdPs.

4. Keystone sends the set of IdPs to the client.
5. The user chooses which IdP he wishes to use.
6. The client returns the chosen IdP to Keystone

and asks for an IdP request message.
7. Keystone performs a directory lookup on this

Identity Provider, to determine its supported pro-
tocol

8. Keystone asks the appropriate protocol depen-
dent Request Issuing function to create an
authentication and attribute request in the appro-
priate format for the chosen Identity Provider.

9. RI makes a request to the Directory Service to
obtain the IdP metadata.

10. RI returns the IdP request message to Keystone.
11. Keystone returns the request message transpar-

ently to the client.
12. The client passes the request to the IdP (either

directly or via Keystone, both mechanisms are
supported). Any negotiation or other proto-
col changes that are needed are also transpar-
ently supported (see implementation section for
details).

13. The IdP asks the user to authenticate by its
chosen method (out of scope of this proposal).
It could be PKI based, Kerberos based, simple
UN/PW, or OTP etc. How strongly the user is
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Fig. 4 Call sequence
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authenticated is reflected in the Level of Assur-
ance (LoA) that is returned in the response
(providing the protocol supports this). After the
user’s credentials have been validated, the IdP
creates its response, which may be returned
directly or indirectly to Keystone’s Credential
Validation function (both mechanisms are sup-
ported).

14. The client passes the IdP’s response to Keystone.
15. Keystone passes the IdP’s response to the proto-

col dependent Credential Validation function to
validate it.

16. Credential Validation calls the Directory to
obtain the meta data of the IdP in order to
validate the response.

17. Credential Validation returns the user’s ID, set of
identity attributes and IdP, and validity time to
Keystone.

18. Keystone calls the Attribute Issuing Policy
checker to ensure that only allowed attributes are
asserted by the trusted IdPs.

19. Keystone calls the User Provisioning module,
deletes any expired entries, and then creates (or
updates) the temporary entry for the user.

20. Keystone calls the Attribute Mapper to obtain
the local set of authorisation attributes that are
equivalent to the IdP provided identity attributes.

21. Keystone updates these attributes in the tempo-
rary user entry then calls the Token Service (TS)
to obtain an unscoped token for the user.

22. Keystone returns the unscoped token to the user,
along with a list of domains and projects avail-
able to the user.

23. The user choses which domain and project he
wishes to use.

24. The client passes the unscoped token and chosen
domain and project to Keystone.

25. Keystone calls the Token Service to validate the
unscoped token and issue a scoped token for the
user, for either the domain or the project.

26. Keystone returns to the client the scoped token
and list of cloud services at which this can be
used.

27. The client contacts the Cloud Service Provider
with the scoped token, requesting the service.

28. The Cloud Service Provider passes the scoped
token to Keystone for validation.

29. Keystone contacts the Token Service to validate
the token and gets the response.

30. Keystone sends the response to the Cloud Ser-
vice Provider.

31. The Cloud Service Provider asks the PDP if the
user is authorised for this request.

32. Assuming the PDP’s reply is granted, the Cloud
Service Provider provides the requested service
to the client.

33. The client makes additional requests to the
Cloud Service Provider using the same scoped
token, goto 27.



Adding Federated Identity Management to OpenStack 15

7 Implementation

7.1 The Directory Service

Keystone already has a simplistic directory service
which it calls the Service Catalog. This is used to
store details about the various OpenStack services. A
catalog entry consists of a service and one or more
endpoints for (or instances of) the service. The data
stored about a service is its type, service id and an
extra field (that is a JSON data structure that can
essentially store anything, but this is not indexed in
the backend database). In the Grizzly release the extra
field contains the service’s name and description. Mul-
tiple endpoints can be added to define which service
instance should be used depending on the region of the
cloud deployment. The data stored about an endpoint
is its endpoint id, region, service id, interface, URL
and an extra field (that again is a JSON data structure).
In the Grizzly release, the interface represents the type
of the URL of this endpoint, either ‘public’, ‘admin’ or
‘internal’. (In older versions of OpenStack, the URLs
for a given service were stored in the extra field of
the endpoint entity with all three types stored in a sin-
gle entity.) There are RESTful operations for creating,
deleting and reading services and similar operations
for creating, deleting and reading endpoints.

The details needed to define an Identity Provider in
the conceptual directory service are similar to the ser-
vice details in the service catalog. For example, the
service name in the catalog can be used to hold the ID
of the IdP that is used to uniquely identify it within
a federation; the public URL can be used to hold the
endpoint of the IdP that the client must contact (in
step 12 of the protocol), whilst the service type can
be used to indicate that the service is an IdP. Con-
sequently an enhanced service catalog can be used
to provide the required directory service. Because the
JSON data structures are unconstrained, then differ-
ent federated identity management protocols can store
different fields in the service and endpoint entries, as
the need arises.

In order to allow for different types of IdP, we have
used the format <type>.<subtype> for service type,
where <type> is set to ‘idp’ and <subtype> is set
to the protocol used by the IdP. In this way the fed-
eration protocol independent code will know which
federation protocol specific module to call, and the

latter will know how to formulate the correct pro-
tocol requests to the IdP. Our initial implementation
supports the SAML 2.0 protocol and Keystone’s pro-
prietary protocol for authenticating and authorising
users, so we have defined the service types ‘idp.saml’
and ‘idp.keystonev2’ to denote these. A new display
name extra field in the service catalog is used to hold
the user friendly display name of the IdP that is shown
to the user (in step 5 of the protocol), although the
existing service description field can be used instead.

Protocol specific extensions to the catalog are cur-
rently as follows: for SAML, the X.509 public key
certificate of the IdP endpoint, which is needed by the
Credential Validation function to validate the signed
SAML responses from the IdP, is stored in a new cert-
data JSON field; for KeystoneV2, either the public
key certificate of the Keystone IdP and its Certifica-
tion Authority required for PKI token validation, or
the administrator username and password required to
authenticate to the Keystone IdP for opaque token val-
idation, or both, are stored in a JSON creds field i.e.
{creds: {certdata:”x509data”, cacert:”x509cadata”}}
or {creds:{username:”un”, password:”pass”}}. Corre-
sponding parameters have been added to the Keystone
endpoint and service creation APIs so that the infor-
mation can be added to the service catalog.

The service retrieval API does not need extending
as the service read API method allows the enhanced
catalog module to retrieve the list of IdPs alongside
the standard list of services. All information in the
extra fields is already retrieved so no additional code
is needed for this. However we had to modify the
retrieval code that so that the administrator password
of the Keystone credential is not retrieved. Applica-
tions or modules using the extended service catalog
are responsible for handling the additional data in the
extra fields. So when a request for a list of trusted IdPs
is received by federated Keystone (step 2 of the proto-
col) the protocol independent code retrieves the list of
IdPs via a call to the service catalog to retrieve the list
of all services, and sorts these by type. The resultant
list is used to produce a new list of IdP {‘displayname’:
‘service id’} pairings which are returned to the client.
When a request is received by federated Keystone
either for an IdP request message (step 6 of the proto-
col), or to negotiate with an IdP (step 12) or to validate
an IdP response (step 14), the protocol independent
code makes a call to the service catalog to obtain the
type of the service, and from this can call the correct
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protocol dependent module. The protocol dependent
modules can store whatever additional information
they need in the service catalog, and retrieve it when
they are called.

7.2 The Federation Protocol Dependent Modules

Each federation protocol specific module must sup-
port three Python functions, although one of them
(negotiate) can effectively be null.

The first, “getIdpRequest”, will be called after the
user has chosen the IdP that he wishes to use. The
protocol module should create an authentication and
attribute request message to be sent to the chosen IdP.

The second function is “validate”, which will be
called after the IdP’s response has been received. It
will be passed two parameters: the ID of the IdP
used to authenticate the user, and the (untouched)
response from the IdP. Each of the protocol specific
validate functions must return the user’s identity infor-
mation in the same format. This should comprise three
parameters:

– a federation wide Unique ID of the user. This
allows the protocol independent code to ensure
that the same user entry is always created for the
same end user, regardless of how many times it
may be created and deleted (see Section 7.4). If
an IdP is not able to issue a unique identifier, for
example, for privacy protecting reasons, then it
means that any cloud services that use user IDs
in their access control lists won’t work correctly
with federated users. However, cloud services that
use PDPs and identity attributes for authorisation,
should not be affected by this lack of Unique ID.

– a set of {set of user identity attributes and the
name of IdP that asserted them}. By using the
‘set of set of’ construction, we have built in sup-
port for future attribute aggregation, whereby the
user may obtain multiple sets of attribute asser-
tions from different IdPs. Once these attributes
have been validated (see Section 7.3), they will be
mapped into OpenStack authorisation attributes of
domains, projects and roles.

– the validity time of the asserted identity. FIM pro-
tocols typically include a validity time with their
assertions. The returned value should be the inter-
section of all the aggregated IdP asserted validity
times. It will be used by the auto-provisioning
module to control the lifetime of the automatically

created user entry. If no validity time is returned,
then the user entry that is created will have an infi-
nite lifetime (as in the existing Keystone imple-
mentation) and the entry will subsequently need
to be deleted by administrative means.

The third optional function, “negotiate”, is only
needed when multiple message exchanges are needed
between the SP and the IdP. The IETF ABFAB pro-
tocol is an example of this type of federated access
protocol. This function has two parameters: the ID of
the IdP, and the message from the IdP to the SP. The
module processes the message, computes the response
to the IdP, and returns it to Keystone which returns
it to the client. There is no limit to the number of
such messages that can be exchanged via the client, so
that any arbitrarily complex FIM protocol can be sup-
ported. Once the negotiation has been completed, the
client signals this by sending the validate message to
Keystone.

Protocol modules which do not require negotiation
are still expected to implement the negotiate func-
tion with a body which simply raises an exception to
denote that this is not implemented or supported by the
current protocol. This is to ensure that the Keystone
server can handle erroneous requests from a client.

7.2.1 The SAML Implementation

The SAML version we have implemented is SAML
v2.0 [17]. The Request Issuing function supports the
SAML Web Browser SSO Profile [51]. In this profile,
the service provider sends a HTTP redirect message
to the browser, which causes the browser to send
it to the IdP. The request contains the “return to”
address, which in our case is set to “localhost”—this
is explained in step 6 of Section 7.7. Request Issuing
requires a PKI private key for signing the requests that
it creates. The corresponding public key certificate
needs to be inserted into the SAML federation meta-
data so that IdPs can validate the request signatures,
and optionally encrypt any responses. It also requires
a service provider name, which similarly needs to be
inserted into the federation metadata so that IdPs can
identify it. All of this information is specified in the
Keystone configuration file.

Credential Validation needs the IdP’s public key
in order to validate the signature of the returned
response. It obtains this from the extended service cat-
alog. It also requires access to the same private key as



Adding Federated Identity Management to OpenStack 17

Request Issuing, so that it can decrypt any encrypted
SAML responses. This is similarly obtained from the
Keystone configuration file.

7.2.2 The Keystone Proprietary Protocol
Implementation

Once we had designed and implemented the overall
federation architecture and the first SAML implemen-
tation, the Keystone proprietary protocol implementa-
tion was relatively trivial to perform. No changes are
needed to the Keystone implementation that is to act
as the IdP. A standard OpenStack release is sufficient.
All the Keystone administrator needs to do is add the
federated Keystone to its service catalog, as a new type
of cloud service. The user can then choose this service
as the recipient of the scoped token that is issued to
him/her after authentication.

The federated Keystone’s protocol specific mod-
ule needs to be capable of validating both types of
scoped token that Keystone supports: PKI based and
opaque. PKI based tokens are digitally signed by the
issuing Keystone, and can be validated by the recipi-
ent through the standard procedure of digital signature
validation. Opaque tokens on the other hand have
to be passed back to the Keystone issuer for vali-
dation. The requestor, typically a cloud service such
as Swift or Nova, must have an administrator user-
name and password for Keystone. This stops end
users from validating opaque tokens. The federated
Keystone administrator therefore needs to add the
standard Keystone to its service catalog as an IdP (of
type idp.keystonev2) along with the credentials that
are needed for validating its tokens (as described in
Section 7.1). The protocol specific code can now val-
idate any PKI tokens directly, whilst opaque tokens
have to be passed back to the Keystone IdP for vali-
dation, along with the shared administrator username
and password. Once the token has been validated,
its contents (user id, domain, projects and roles, IdP
name and validity time) are passed back to the pro-
tocol independent code for further processing (policy
validation and attribute mapping). Consequently, the
federated Keystone administrator must set up some
attribute mapping rules which map from the Keystone
IdP issued attributes (projects/roles etc.) into the local
ones that it understands, and then a local scoped token
can be issued to the user allowing him/her to access
the local OpenStack services.

This process of federating Keystones together is of
course recursive, in that multiple Keystones can be
chained together in this way. The token issued by one,
can be validated by another. Alternatively no Keystone
need act as an IdP, as one could use an external SAML
IdP for authentication and then pass the user and its
scoped token off to another Keystone for the latter to
validate and grant access to its resources. Furthermore,
the trust relationship between two Keystones can also
be made commutative, in that users could authenticate
to either Keystone as an IdP in order to gain access to
the services of both Keystones.

7.3 The Attribute Issuing Policy

As described in the previous section, the Attribute
Issuing Policy is a means for the Keystone admin-
istrator to limit the amount of identification trust it
must place in each IdP. This policy lists pairs of IdPs
and attribute types. An IdP is only trusted to issue the
identity attribute types it is paired with. The protocol
independent code checks the list of identity attributes
returned by the protocol dependent module for each
IdP, and discards those attributes that are not paired
with the given IdP in the policy. In this way, we can
tightly control which identity attributes are deemed
to be valid for subsequent mapping into OpenStack
authorisation attributes. A REST API has been defined
for setting and reading the Attribute Issuing Policy.
This allows administrators to define which IdPs are
trusted to issue which identity attributes.

7.4 User Auto-Provisioning

We decided to base the lifetime of the user’s auto-
provisioned Keystone entry on the validity time of the
identity assertion provided by the IdP(s) and returned
by the protocol dependent module. In this way, the
protocol independent code can automatically create
a new Keystone entry for a user when he/she first
accesses the system, and this entry can be automati-
cally purged after it has expired. There was however
a number of implementation issues that we had to
address with this design. Firstly, every Keystone user
entry needs to have a username, user id and password.
The user id is automatically created by Keystone when
the entry is first created, to guarantee its unique-
ness. Clearly we did not know any of these values
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for the federated users. So we decided that the user-
name and user id would be automatically created from
the Unique ID returned by the protocol dependent
module. Because the Unique ID could be of any arbi-
trary length, it is first hashed using SHA1 to create
a 20 byte string, then it is converted into a 40 hex-
adecimal character string. This hex string is used for
both the username and user id. If the protocol depen-
dent module is capable of returning the same Unique
ID for the same user, each time she authenticates via
the same IdP, then the same entry will be created
in Keystone’s database each time. If it is not, then
different entries will be created for the same user,
though they will all have the same set of authorisa-
tion attributes, and therefore the user will still get the
same access to OpenStack resources, provided they
use RBAC policies and not ACLs.

The password proved to be more problematical.
At first we simply generated a new random pass-
word for each new user entry, and then immediately
discarded it, since the user would never need it for
authentication. However, we subsequently realised
that Keystone’s Token Service API requires that both
the username and password are presented each time
a scoped or unscoped token is created. Consequently,
the protocol independent code needed to access each
user’s password, but this is not retrievable from Key-
stone’s database. We therefore decided to generate a
strong random password during initialization of the
Keystone server, hold this in memory (only) and use
it for all the temporary users’ passwords. The strong
password is generated as follows: a randomly gener-
ated number of size 128 bits is created, concatenated
with the current system timestamp in milliseconds,
reduced to 20 bytes by using the SHA1 algorithm, then
base 64 encoded to produce a 28 character password.
This is stored in memory and is lost when the system
is stopped. A side effect of this, is that any existing
Keystone tokens that were created by the federated
middleware before a shutdown, will be invalidated at
restart time if the user authenticates again, as a new
password will have been inserted into its entry. It is a
built in mechanism of Keystone user management to
invalidate existing tokens when a user’s password is
changed. However, we do not think that this is a sig-
nificant inconvenience to users, since their tokens will
still be valid if they do not authenticate again, but if
they do, then they will need to do it for every token
that they hold (and not just for one of them).

We had to modify the existing Keystone user cre-
ation function by adding two new optional parameters
to it: user id and validity time. If neither are present,
an entry with a new randomly generated user id and
no validity time is created, as per the existing code.
If either or both are present, then the newly created
entry will contain these values. The process of auto-
provisioning now runs as follows. Search the user
database for entries whose validity time is before the
current time. Delete these entries. If a user entry with
the computed user id already exists, then update its
validity time to match the latest value, else create a
new temporary user entry with the name and user
id created from the Unique ID and the validity time
returned from the protocol specific module.

7.5 Attribute Mapping

In order to fully integrate federated access into
Keystone it was necessary to implement an iden-
tity attribute to domain/tenant/role mapping service,
which can perform many to many mappings. This
required adding several new data entities to the Key-
stone backend storage, as well as adding several new
API methods. We added a new path to the Router of
‘/mappings’ so that requests to add, delete or read
mapping entities can be routed to the new processing
module. The attribute mapping service makes use of
the existing backend entities domain, tenant and role.
In addition, the following new entities were added:

i) Organisational attribute set represents a set
of IdP asserted identity attributes, which can
be mapped to a set of Openstack authorisation
attributes i.e. domains, tenants and roles.

ii) Organisational attribute represents an identity
attribute that can be assigned by an IdP to a
cloud user.

iii) Organisational attribute set association repre-
sents an association between an organisational
attribute set and an organisational attribute.

iv) OpenStack attribute set represents a set of
Openstack authorisation attributes, which can be
mapped to a set of organisational attributes.

v) OpenStack attribute set association represents
an association between an OpenStack authorisa-
tion attribute set and either a domain, tenant or
role.

vi) Attribute mapping maps an OpenStack attri-
bute set to an organisational attribute set.
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New RESTful APIs have been specified for creating,
deleting and reading each of these entities.

Figure 5 illustrates two attribute mappings:

1. The Openstack “admin” role, “member” role and
“kentusers” tenant are mapped to two organisa-
tional attributes: organisation = kent and account-
Type = staff.

2. The Openstack “member” role and “ken-
tusers” tenant are mapped to two organisational
attributes: organisation = kent and accountType
= student.

7.6 Integrating the Components into Keystone

As described in Section 4.2, the first place where we
can process a federated request is in a new middle-
ware component of the pipeline. The second place
where we can process a federated request is at the end
of the pipeline, by modifying the Router module. To
add a new route, e.g. “/federated”, Keystone must be

modified by adding a new rule to the Router and a
new module to the Keystone implementation to han-
dle the request. To add a new middleware component
the Keystone configuration file (keystone.conf) must
be altered. The main distinction between a new mid-
dleware component and a new core Keystone module
is that the middleware only needs to be enabled in the
configuration of Keystone, whereas the core module
must be integrated into the Keystone code base.

Our federated solution uses both approaches. Since
the existing service catalog is a core module, then the
modified version that stores IdPs also has to be. The
attribute mapping function, as well as the attribute
issuing policy function, were also implemented as new
core modules, whereas the protocol specific modules
and the protocol independent module are combined
into a new pipeline middleware module called the fed-
erated middleware module. In order to signal to this
module that federated access rather than centralised
access is required, each REST message from the client
to Keystone needs to indicate this. We represent this

Fig. 5 An example of
attribute mapping for the
default domain
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by inserting a new header X-Authentication-Type: fed-
erated into the HTTP messages. This signals to the
new pipeline module that federated access is needed,
and that the request should be trapped and processed
by it. Different actions are taken by this module
depending upon the contents of the HTTP body. When
the body is empty, this indicates that the client is
just starting the federation process, and that the list
of trusted IdPs should be returned from the direc-
tory service. When the body contains an idpRequest
JSON element, this indicates that a request message
to the identified IdP is required. When the body con-
tains an idpNegotiation element this indicates that the
encapsulated message is from the IdP and that a fur-
ther protocol negotiation message is required from
a protocol dependent module. The protocol specific
module is then called to produce the next message in
the sequence, which is returned to the client by the
pipeline module. When the body contains the idpRe-
sponse element it indicates that federated authentica-
tion has completed and the encapsulated message is
the final one from the IdP.

7.7 Modifying the Clients

We modified three of the Openstack command line
clients (for Swift, Glance and Nova) to support the
SAML 2 Web Browser SSO Profile [51]. The clients
did not have a standard implementation structure, so
in order to minimise code repetition and ensure a con-
sistent user experience, we decided that it was wise
to implement a single module to manage federated
access, which could be easily integrated into each and
every client. We added two new command line flags
to the entry point scripts of each client:

• –federated or -F – to denote that federated authen-
tication should be used. Unlike standard authen-
tication methods, this does not require the user-
name and password to be given.

• –realm or - R – the federated realm to use
(Optional)

When the federated flag is encountered the script
delegates authentication to our new module, which
manages the federated authentication before returning
control to the standard client code once a token has
been successfully obtained. In order to allow the Key-
stone middleware to detect when federated authentica-
tion is being attempted, the module attaches a HTTP

header to each request containing the key:value pair
“X-Authentication-Type:federated”.

Once the federated authentication process begins
the following steps are followed by our new client
module:

1. It requests a list of available IdPs from the speci-
fied Keystone server (step 2 of the protocol).

2. When the list is returned, if the user has provided
a realm then this is automatically selected from
the list otherwise it displays a numbered list of
available IdPs to the user (step 5 of the protocol),
reads the user’s choice and uses this to select the
IdP from the list.

3. It calls Keystone to obtain an authentication
request and IdP URL (step 6 of the protocol).

4. When the response is received it opens the user’s
default browser passing it the obtained message.
This causes the browser to send the message to the
SAML IdP.

5. The user authenticates to the IdP in the usual
manner via the browser.

6. It opens an HTTP server on the user’s localhost
to receive the returned authentication response
from the IdP (step 12 of the protocol), which is
redirected there via the browser.

7. It captures the IdP’s response, stops the HTTP
server, then calls Keystone with the response in
order to retrieve a list of available tenants and an
unscoped token.

8. If the user specified the tenant he wishes to use as
a command line parameter, then the client picks
this from the list, otherwise it presents the user
with a numbered list of available tenants (step 23
of the protocol) allowing him to choose one.

9. Finally it returns control to the standard client
code, which exchanges the unscoped token and
chosen tenant for a scoped token and a list of
service endpoints.

The HTTP server that is opened has to work over
SSL/TLS in order to conform to the SAML protocol.
This means that it needs a PKI key pair. Conse-
quently the new module requires a small amount of
configuration data. This is accomplished by reading a
configuration file (federated.cfg) at runtime. The file
contains three parameters:

• TIMEOUT—the maximum time in seconds to
wait for an IdP response before closing the HTTP
server and exiting the authentication process.
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• CERT—the public key certificate to be used by
the SSL HTTP server.

• KEY—the private key to be used by the SSL
HTTP server.

We modified the clients’ standard installation scripts
to copy this configuration file into the correct loca-
tions during client installation, so that the configura-
tion parsing code can locate it at runtime.

8 Performance Measurements

Federated Keystone has been implemented as open
source code in Python, and is freely available from the
OpenStack Git repository (https://github.com/kwss/
keystone.git). It was originally planned that this code
would only be an optional add-on to the next Open-
Stack release, called Havana, due in September 2013.
However, it is now likely that federation will also be
an integral part of the core OpenStack release due in
April 2014. Two different FIM protocols are currently
implemented: SAML and Keystone proprietary, and
the performance of each has been measured. We car-
ried out the performance tests in order to determine a)
the overhead of using federated identity management
in Keystone instead of centralised Keystone authenti-
cation, and b) the overhead of each FIM component,
for both protocols. In the Keystone proprietary case,
we only used X.509 tokens, rather than opaque ones.
We did not measure the performance of either of the
federated protocols in communicating with the IdPs,
or the IdPs themselves, since these are external to
Keystone and will vary with both the federation proto-
col and IdP implementation that are used. Comparing
and contrasting the performance of different federa-
tion protocols and different protocol implementations
is beyond the scope of this paper.

The performance tests were carried out with
Ubuntu 12.04 running on a virtual machine with an
Intel(R) Xeon(R) CPU E5520 @ 2.27 GHz and 4 GB
RAM. The times were measured in two ways:

1. across the network using Apache’s JMeter soft-
ware on the client. This measured the time taken
from sending the various HTTP requests to and
receiving a response from either the federated or
centralised Keystone;

2. internally to the federated Keystone server, by
outputting a timestamp from the system clock

both before and after the various functions were
called.

Each test was repeated 500 times in a session, and two
sessions were run consecutively over one night. The
mean and standard deviations of each session were
calculated. Any results which were more than a num-
ber of times the standard deviation were discarded as
anomalous outliers, and the mean and standard devi-
ation were recalculated. When the original standard
deviation was low (< 15 %) then 3 times the value
was used for outliers. When it was high (>50 %) then
1 times the value was used, when it was intermediate
then 2 times the value was used.

The results are shown in Table 1. The first column
lists the component whose performance is being mea-
sured in the remaining columns. Discovery refers to
trapping a user’s initial request for federated authen-
tication, accessing the Service Catalog to retrieve the
list of trusted IdPs, and preparing a response (Fed-
erated) or sending the initial request from the client
and receiving the response (J Meter). The difference
between them is the time taken by the remaining mid-
dleware components in the Keystone pipeline and the
network overhead to carry the request and response
messages. Get IdP Request refers to trapping the
users request that has selected an IdP, calling the FIM
protocol specific module to create an authentication
request to the IdP and preparing the response (Fed-
erated) or sending the request from the client and
receiving the response (J Meter). Validate Response
refers to trapping the user’s request containing the
IdP’s response, passing it to the FIM protocol specific
module for validation, obtaining the set of identity
attributes from it, and validating them against the
Attribute Issuing Policy. In the J Meter column this is
the time taken from submitting the IdP’s response up
to receiving the unscoped token along with the set of
projects and domains. User Provisioning refers to the
process of deleting any existing expired user entries,
then either creating a new temporary user entry, or
updating an existing one by extending its validity time.
Map Attributes refers to the process of mapping
the user’s identity attributes into OpenStack domains,
projects and roles. Update User Attributes refers to
the process of updating the user’s existing OpenStack
roles etc. to match the current set, in case the user’s
entry already existed. Get Unscoped Token measures
the performance of the pre-existing Keystone code
which creates a token and stores it in the database.

https://github.com/kwss/keystone.git
https://github.com/kwss/keystone.git
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This provides a baseline to compare our federated
code against. Get Projects is similarly pre-existing
Keystone code that fetches a user’s projects from
the database, and provides another baseline measure-
ment to compare against. Set User Domain (Keystone
server) measures the time taken to check and mod-
ify the user’s domain if necessary, then forward the
request on to the core Keystone code, so that it can
subsequently process the unscoped token and project
ID or domain ID, create a scoped token for the user,
and retrieve the user’s authorised services and end-
points from the service catalog. In the J Meter case
it is the time taken to submit an unscoped token and
domain or project ID from the client and obtain a
scoped token and authorised services in response. So
the difference between these two sets of measurements
is the network overhead.

In the centralised tests, we measure the time taken
for the user’s initial request for an unscoped token
(by passing in a username and password) to be pro-
cessed and the token returned. The existing centralised
Keystone code does not return the list of projects,
so the client has to immediately make a second call
to Keystone to get the list of projects. This seems
to be an inefficient way of working, so in the fed-
erated implementation we have combined the two
processes together by automatically returning the list
of projects along with the unscoped token, in order
to save the client from having to make a second
call.

Analysing the results we can see that Discovery
is very fast (2 ms) and is independent of the federa-
tion protocol being used, as expected. The overhead of
the other pipeline components and the network (4 ms)
is double that of the Discovery module. Get IdP
Request on the other hand is also fast (6–9 ms) but
is dependent upon the particular federation protocol
in use. SAML takes approximately 50 % longer than
Keystone proprietary since it has to create and sign an
XML message. The latter merely has to tell the client
the location of the remote Keystone IdP, since Key-
stone clients already know how to make authentication
requests to Keystone servers. The pipeline and net-
work overhead remain at 4 ms. Validate Response is
also protocol dependent, but takes significantly longer
than getting the IdP request (8 times and 5 times
for SAML and Keystone respectively). It takes over
twice as long to validate a signed SAML XML mes-
sage as a signed X.509 Keystone proprietary token,

even though both are validating digital signatures.
This could be due to several reasons. Firstly SAML
messages are encoded in XML whereas Keystone’s
are in native JSON, so parsing could take longer.
Secondly the SAML message contains many more
attributes than the Keystone token so there is signifi-
cantly more Attribute Issuing Policy checking to do.
Finally the code we used for Keystone response val-
idation is already part of the OpenStack code base,
so has been quality assured by the OpenStack com-
munity, whereas the SAML code was written by
ourselves and has not yet had such scrutiny. User Pro-
visioning is fundamentally different in the two cases,
since the Keystone proprietary IdP always returns the
same User ID, hence the user entry in the federated
Keystone server only needs to have its validity time
updated, whereas SAML returns a random ID each
time (for privacy reasons) hence a new user entry has
to be created for each test. If one compares the J Meter
columns for SAML and Keystone proprietary one will
see that the increase in SAML (555 ms to 972 ms) is
mostly accounted for by the user provisioning over-
head. Map Attributes performed different attribute
mappings for each protocol. There were three map-
pings for the Keystone user, but only two for the
SAML user. Update User Attributes only had to do a
comparison for Keystone proprietary users, and found
that the stored attributes were equal to the current set,
as the same user ID is used in each test. Consequently
no database update was needed. SAML users, in com-
parison, had different user IDs in each test, so the code
had to do a database update as none of the attributes
were stored in the user’s entry. Get Unscoped Token
has identical results for both federation protocols as
expected. The anomalous result is for the centralised
Keystone server, which performs much faster than
both of the federated cases, even though the same code
is being executed (200 ms vs 338 ms). We experi-
mented with many different performance tests to try
to account for the difference. We modified the validity
time of centralised users from NULL to a date longer
than the token expiry time and to one shorter than
the token expiry; we modified the username of a cen-
tralised user to be the same number of characters as the
generated usernames for federation; and we modified
the username and userID to be the same for the cen-
tralised user. But none of these made any difference
to the performance gap. However, when we used a 28
character password in the centralised tests, instead of
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the original 9 character one, the performance deteri-
orated to be identical to that of the federated tests.
We tracked down this poor performance behaviour to
the authenticate function, which is existing Keystone
core code which authenticates the user prior to issuing
the unscoped token (keystone.auth.plugins.password
called from keystone.auth.controllers). It seems hard
to believe that simply increasing a password by 19
characters would induce a performance penalty of
over 100 ms, but our experiments proved this to be
the case. We have reported this to the Keystone devel-
opers. Get Projects had two projects to retrieve for
SAML but only one project for Keystone, so this
explains the higher figure. In the centralised case,
even though only one project was being retrieved,
a new client request has to be received and pro-
cessed in addition to actually getting the project from
the database, whereas in the federated case this is
done automatically as part of returning an unscoped
token. Set User Domain checks if the user’s cho-
sen project or domain matches the domain stored in
Keystone’s database entry for the user. When a user
is auto-provisioned, she is initially put in the default
domain. But she may choose another domain, or a
project that is not associated with the default domain,
in which case her entry will need to be updated. The
authorised user/project/role assignments are held in a
metadata table, one row for each role the user has in
a project, whilst the authorised user/domain assign-
ments are held in another metadata table. Finally the
project/domain associations are held in the projects
table. Since the SAML tests assert two different
projects for the user, whilst the Keystone tests only
assert one project, we think the different database sizes
account for the slightly longer time being taken by the
SAML tests. The large network overhead (∼50ms) is
due to submitting an unscoped token and obtaining a
scoped token and set of authorised services.

One can see from the federated results that any
component which simply reads from the backend Key-
stone SQL database, or updates a field, is relatively
fast (i.e. the majority of components) whilst those that
create a new database record are relatively slow (User
Provisioning and Get Unscoped Token which creates
a token and stores it). We were pleased that Vali-
date Response for SAML and Keystone proprietary,
which cryptographically checks the digital signature
of the (XML) response message, were comparatively
fast compared to the database updates, given the fact

that cryptographic operations are usually regarded as
being notoriously slow.

Since User Provisioning is the most time consum-
ing of all the federated processes, we wanted to deter-
mine how each of its subcomponents performed so we
measured the time taken for each internal component
to execute. Table 2 shows the results for this.

We engineered these tests as follows. We modified
a set of the original 500 SAML performance tests to
ensure that each test had a user with a different unique
ID and an assertion validity time of 24 hours, so that a
new user entry was created in each test that would not
expire. This gave us the execution time for creating a
new user. We then modified the assertion validity time
to 2 secs, and paused 1.5 secs between each test, so
that each user entry that was created in the previous
test had expired when the next test was run. We then
measured the execution time for the code that checked
for and removed expired users. We ignored the first
measurement since there was no user to remove in the
first test. This gave us the second set of results in the
table. The final result in the table was measured by
re-running the Keystone proprietary tests, because in
these tests the same user ID is used each time, and we
set the validity time to 24 hours. We simply measured
the time taken by the code to update the validity time
of the user’s entry. We excluded the first test from the
results as the user entry was not updated.

We conclude that the addition of federated access
to Keystone performs reasonably well, given the fact
that authentication is being performed remotely, and
users are automatically provisioned in the system. The
actual performance is highly dependent upon the fed-
eration protocol that is used, the length of the user
password that is stored, and whether the same user
is given the same unique ID or not each time she
authenticates. Compared to the existing centralised
authentication mechanism, the current design of feder-
ated authentication may take between 2.75 and 5 times
as long.

Table 2 Time (ms) for each component of user provisioning

Sub Component Mean ± Std. Dev. (ms)

Creating a new user 331.9 ± 11.2

Removing one expired user 1.60 ± 0.50

Updating an existing user 6.95 ± 2.60
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9 Limitations and Conclusion

There are a number of limitations in both the current
design and the implementation as described below.

9.1 Design Limitations

Most existing federated identity management systems
which use usernames and passwords for authenti-
cation (i.e. the vast majority) are open to phishing
attacks. In this attack, a user is tricked into contacting
a malicious cloud service provider, for example, by the
offer of a free or very low cost service. When the user
contacts the service, he is redirected to a fake iden-
tity provider which displays a web page that appears
to be that of his real identity provider. Consequently
the user unwittingly enters his username and pass-
word, and therefore has been successfully phished.
The solution to this is either for the IdP to use a zero-
knowledge proof authentication mechanism, such as
public key cryptography, so that if the user is phished,
the attacker gains zero knowledge, or to use a protocol
sequence that does not involve the client being redi-
rected to the IdP by the service provider. One such
protocol sequence is the IdP initiated sequence, typi-
cally used by portals, where the user contacts the IdP
first, rather than the SP. However, the disadvantage of
this method is that the IdP must have a list of SPs that
the user is allowed to contact, so that it can redirect the
user there. This is why this solution is typically used
by portals. An alternative is to make use of an intelli-
gent client that knows how to contact the user’s IdPs
directly, without being redirected there by the service
provider. We would like to implement and experiment
with this intelligent client in a future project.

The current design suffers a significant perfor-
mance penalty by automatically provisioning tempo-
rary users and automatically deleting them once they
have expired. Over one third of the time spent on fed-
erated login is consumed in this part of the code. If
we were to create permanent users rather than tempo-
rary users, then we could remove this login overhead
(except for the very first time the user logs into
Keystone). The downside of this is twofold. Firstly,
Keystone’s user database would grow over time and
would not be cleaned without administrator interven-
tion. However, a housekeeping tool could be created
to periodically purge all old entries of users who had
not logged in for longer than a certain period of time.

Secondly, this does not solve the problem for federa-
tion protocols like SAML that allow for random IDs
to be issued for users instead of persistent ones. How-
ever, the SAML protocol does allow the SP to require
the SAML IdP to issue a persistent ID, and the Key-
stone SAML module could be configured to mandate
this option.

The current design has no way of controlling the
level of authentication trust that Keystone has in an
IdP. We could easily add this by enhancing the ser-
vice catalog to hold the maximum Level of Assurance
(LoA) that the Keystone administrator has in each IdP.
Then when the authentication statement is received
from an IdP, the implementation could check that the
asserted LoA is less than or equal to the stored LoA,
and if not, either downgrade or reject the assertion.
Once the LoA starts to be implemented and regulary
sent by IdPs, then this enhancement will be quite easy
to add to Keystone.

The current Attribute Issuing Policy (identification
trust) only controls the attribute types and not the types
and values that an IdP is trusted to issue. We currently
do not have sufficient practical experience to know
if this might be a problem in the future or not. But
we envisage that if an attribute whose values confer a
range of privileges from low to very high (such as a
role with values from porter to CEO), and this is issued
by a set of IdPs of different LoAs, then one might wish
to not accept high value identity attributes from low
assurance IdPs. A future extension could be to limit
the set of identity attribute values that an IdP is trusted
to issue.

9.2 Implementation Limitations

The current implementation supports the SAML Web
Browser SSO profile which causes the existing com-
mand line clients to launch a web browser for the
authentication phase with the IdP. Consequently the
user experience is neither pure command line nor
pure browser based. There are two problems with
this. Firstly some clients may be applications which
require a pure command line or programmable inter-
face. Secondly some users may prefer a complete
browser based experience. Both of these are possi-
ble with the current design. The former requires the
protocol dependent module, client and IdP to support
the SAML Enhanced Client and Proxy (ECP) Profile
[52], so that direct communications between the client
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and IdP and SP are used rather than browser redi-
rects. The reason we did not implement ECP in the
current project, is that currently, many IdP’s do not
support it. The latter requires a three tier architecture,
with an intermediate web server that acts as the client
to Keystone and acts as the SP to the user’s browser.
We would like to build this web server in a future
project.

The current design supports attribute aggregation,
although there are no standard federation protocols
that support this yet. Once attribute aggregation is sup-
ported, it will be interesting to plug in such a protocol
in order to validate the attribute aggregation design.

9.3 Conclusion

In this paper we have described how OpenStack
currently performs authentication and authorisation
using internally stored information, and how we have
extended its functionality to provide federated identity
management. We have presented a user case to support
the need for federated access. The existing limitations
of the current design and implementation have also
been described. We expect these will be addressed in
due course as user demand for more fine grained and
complex authorisation functionality increases.
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