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Far from fading out of
the picture, operating
systems continue to

meet the challenges of
new hardware develop-
ments. Their success
lies in abstraction
levels that hide

nonessential details
from the user.

Operating systems of 1955 were
control programs a few thou-

sand bytes long that scheduled jobs,
drove peripheral devices, and billed
users. Operating systems of 1984 are
much larger both in size and respon-
sibility. The largest ones, such as
Honeywell's Multics or IBM's MVS,
are tens of millions of bytes long. In-
termediate ones, such as Unix from
AT&T Bell Laboratories or VMS
from Digital Equipment Corporation,
are several hundreds of thousands of
bytes long. Even the smallest, most
pared-down systems for personal
computers are tens of thousands of
bytes long.
The intellectual value of operating

system research was recognized in the
early 1970's. Virtually every cur-
riculum in computer science and en-
gineering now includes a course on
operating systems, and texts are nu-
merous. The continuing debates-
over the set of concepts that should be
taught and over the proper mix be-
tween concepts and implementation
projects-are signs of the field's vi-
tality.

Since 1975, personal computers for
home and business have grown into a
multibillion-dollar industry. Ad-
vanced graphics workstations and
microcomputers have been proliferat-

ing. Local networks, such as Ethernet,
ring nets, and wideband nets, and net-
work protocols, such as X.25, PUP,
and TCP/IP, allow large systems to be
constructed from many small ones.
The available hardware has grown
rapidly in power and sophistication.

In view of these rapid hardware ad-
vances, we feel compelled to ask
whether hardware will eventually ob-
viate software control programs. Is
the intellectual core recorded in
operating system texts outmoded? Are
operating systems an outmoded tech-
nology? On the contrary-we believe
that the power and complexity of the
new hardware intensifies the need for
operating systems, that the intellectual
core contains the concepts needed for
today's computer systems, and that
operating systems are and will remain
essential.

What is an operating system?

Before we can explain our view on
the future utility of operating systems,
we need to agree on what they are. The
oldest definition, which says an
operating system is "a control pro-
gram for allocating resources among
competing tasks," describes only a
small portion of a modem operating
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sy.stem's responsibilities, and is hence
inadequate.
Among the great problems faced by

operating system designers is how to
manage the comnplexity of operations
at manr levels of detail, from hard-
wsare opeirations that take one billionth
of a second to softw are operations
that take tenas of seconds. An early
stratagemi w as infortination hiding
confining the details of managing a
class of "objects" within a module
that has a good interface with its users.
With information hiding, designers
can protect themselves from extensive
reprogramming if the hardware or
some part of the software changes: the
change affects only the small portion
of the software interfacing directly
with that system component. This
principle has been extended from
isolated subsystems to an entire
operating system. The basic idea is to
create a hierarchy of abstraction levels
so that at any level we can ignore the
details of what is going on at all lower
levels. At the highest level are system
users, who, ideally, are insulated from
everything except what they want to
acconmplish. Thus, a better definition
of an operating system is "a set of
softsvare extensions of primitive hard-
wvare, culminating in a virtual machine
that serves as a high-level program-
ming environment."

Operating systems of this type can
support diverse environments: pro-
gramming, text processing, real-time
processing, office automation, data-
base, and hobbyist.

Current systems

Most operatiing systems for large
mainframes are direct descendants of
third-generation systems, such as
Honeywell Multics, IBM MVS, VM/
370, and CDC Scope. These systems
introduced important concepts such as
timesharing, multiprogramming, vir-
tual memory, sequential processes
cooperating via semaphores, hierar-
chical file systems, and device-in-
dependent I /O.

Duritng the 1960's, many projects
x crc established to construct time-

sharing systems and test the many new
operating system concepts. These in-
cluded MIT's Compatible Timeshar-
ing System, the University of Man-
chester Atlas, the University of Cam-
bridge Multiple Access System, IBM
TSS/ 360, and RCA Spectra/70. The
most ambitious project of all was
Multics (short for Multiplexed Infor-
mation and Computing Service) for
the General Electric 645 (later re-

Of great concern to OS designers
is how to manage complex
operations at many levels of

detail.

namled Honeywell 6180) processor. 3

Multics simultaneously tested new
concepts of processes, interprocess
comiimunication, segmented virtual
memory, page replacemeint, linking
new segments to a computation on de-
imiand, automatic mtiltiprogrammed
load control, access control and pro-
tection, hierarchical file system, device
independence, I/0 redirection, and a
high-lesel language shell.
Another important concept of

third-generation systems was the vir-
tual machine, a simulated copy of the
hiost. Virtual machines were first
tested around 1966 on the M44/44X
project at the IBM T. J. Watson
Research Center. In the early 1970's
sirtual machines were used in IBM's
CP-67 system, a timesharing system
that assigned each user's process to its
own virtual copy of the IBM 360/67
machine. This system, which has been
moxed to the IBM 370 machine, is
now called VM/370.4,' Because each
sirtuLal machine can run a different
copy of the operating system, VM/370
is effective for developing new operat-
ing systeim.s within the current oper-
ating systemn. However, because vir-
tial machines are well isolated, com-
municatioin among them is expensive
and awkward.

Perhaps the most influential current
operating system is Unix, a complete
reengineering of Multics, originally
for the DEC PDP computers. Al-
thotugh an order of magnitude smaller

than Multics, Unix retains most of its
predecessor's useful characteristics,
such as processes, hierarchical file
system, device independence, I/0 re-
direction, and a high-level language
shell. Unix dispensed with virtual
memory and the detailed protection
system and introduced the pipe. It of-
fered a large library of utility pro-
grams that were well integrated with
the command language. Most of Unix
is written in a high-level language (C),
allowing it to be transported to a wide
variety of processors, from main-
frames to personal computers. 6,7

In systems with multiple Unix ma-
chines connected by a high-speed local
network, it is desirable to hide the
locations of files, users, and devices
from those who do not wish to deal
with those details. Locus, a distributed
version of Unix, satisfies this need
through a directory hierarchy that
spans the entire network.8 MOS,
another distributed Unix, also uses a
global directory hierarchy as well as
automatically migrating processes
among machines to balance loads. 9

In recent years, a large family of
operating systems has been developed
for personal computers, including
MS-DOS, PC-DOS, Apple-DOS,
CP/M, Coherent, and Xenix. All
these systems have limited function,
being designed for 8- and 16-bit micro-
processor chips with small memories.
In many respects, the growth pattern
of personal computers is repeating
that of mainframes in the early 1960's

for example, multiprocess oper-
ating systems for microcomputers
have appeared only recently in the
form of pared-down, Unix-like sys-
tems such as Coherent and Xenix. Be-
cause only large firms can sell enough
machines to make their operating
systems viable, there is strong pressure
for standard operating systems. The
emerging standards are PC-DOS, CP/
M, and Unix.

Research on operating systems con-
tinues. Numerous experimental sys-
tems are exploring new concepts of
system structure and distributed com-
putation. The operating system for the
Cambridge CAP machine exploits the
hardware's microcode support for
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capability addressing to implement a
large number of processes in separate-
ly protected domains. Data abstrac-
tion is easy to implement on this
machine. 10

Star OS, an operating system for
the Cm* machine, supports the "task
force," a group of concurrent pro-
cesses cooperating in a computation.
Star OS also uses capabilities to con-
trol access to objects. Another oper-
ating system for the Cm* machine,
called Medusa, is composed of several
"utilities," each of which implements
a particular abstraction such as a file
system. Each utility can include
several parallel processes running on
separate processors. There is no cen-
tral control. II

Grapevine, a distributed database
and message delivery system used
widely within the Xerox Corporation,
contains special nameservers that can
find the locations of users, groups,
and other services when given their
symbolic names. Because Grapevine
has no central control, it can survive
the failures of the nameserver ma-
chines. 12 It does not provide all the
services available in a high-level pro-
gramming environment, however, so
it is not considered a true operating
system.
The V kernel is an experimental

system aiming for efficient, uniform
interfaces between system compo-
nents. A complete copy of the kernel
runs on each machine of the network
and hides the locations of files,
devices, and users. V is a descendant
of Thoth, an earlier system worked on
by the author of V. 13,14
The Provably Secure Operating

System, a level-structured system, has
high-level code that has demonstrated
success in the context of a rigorous,
hierarchical design methodology de-
veloped at SRI International. '5 Al-
though it was intended for secure
computing, PSOS explored many
principles that can help any operating
system toward the goal of provable
correctness.

These examples clearly illustrate
that the new technology, far from
diverting interest from operating
systems, has created new control

problems for OS designers to solve. In
other words, the need for operating
systems is stronger than ever.

A model operating system

Overview. In the hierarchical struc-
ture of a model operating system,
functions are separated according to
their characteristic time scales and
their levels of abstraction. Table 1
shows an organization spanning 15
levels. It is not a model of any par-

ticular operating system but rather in-
corporates ideas from several systems,
including facilities for distributed pro-
cessing.
Each level is the manager of a set of

objects, either hardware or software,
the nature of which varies greatly
from level to level. Each level also
deflnes operations that can be carried
out on those objects, obeying two
general rules:

* Hierarchy. Each level adds new
operations to the machine and
hides selected operations at lower

Table 1. An operating system design hierarchy.

LEVEL NAME

15 Shell

14 Directories

13 User Processes

OBJECTS

User programming
environment scalar data,
array data

Directories

User Process

12 Stream I/O Streams

1 1 Devices External devices and
peripherals such as
printer, display, keyboard

10 File System Files

9 Communications Pipes

8 Capabilities Capabilities

7 Virtual Memory

6 Local Secondary
Store

Segments

Blocks of data. device
channels

5 Primitive Pro- Primitive process.
cesses semaphores, ready list

4 Interrupts

3 Procedures

2 Instruction Set

EXAMPLE OPERATIONS

Statements in shell
language

Create, destroy, attach, detach,
search, list

Fork, quit, kill, suspend, resume

Open, close, read, write

Create, destroy, open, close,
read, write

Create, destroy. open, close,
read, write

Create, destroy, open, close,
read, write

Create. validate, attenuate

Read, write, fetch

Read, write, allocate, free

Suspend, resume,
wait, signal

Fault-handler programs Invoke, mask, unmask, retry

Procedure segments, Call Mark stack. call,
stack, display return

Evaluation stack, micro-
program interpreter

1 Electronic Circuits Registers. gates, buses.
etc.

Load, store, un_op,
bin op, branch, array ref,
etc.

Clear, transfer, complement,
activate, etc.
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levels. The operations visible at a
giveen level form the instruction
set of an abstract machine.
Hence, a program written at a
c_isvc level can invoke visible
operations of lower levels but no
opei-ations of higher levels.
Inl/orniai(ition hiditng. The details
of how an object is represented or
xi here it is stored are hidden
w ithin the level responsible for
that type. Hence, io part oh anl
object cani be chainged except by
applyingc an authiorized operation

The principle of data abstractioin
emlbodied in the levels mnodel traces
back to Dennis and Van Horn's 1966
paper-, wvhich emphasized a simple
interface between users and the
kerinel. "I The first instance of a work-
ing operating system with a kernel
spannin, several levels was reported
bN Dijkstra in 1968. The idea has
been extenided to geinerate families of
oper ating systems for related
imachines'5 and to increase the por-
tabilitv ot anl operating system
kernel. 'lTe PSOS is the first com-

plete level-structured system reported
anid tormally pioved correct in open
liter altlore

Single-machine levels: 1-8. l evels
I iYoUch 8 in Table I are called sin-
olem-achine lev els because their
operations are well understood firom
pirimitiv e machines Land require little
imiocil'ication t'or- advanced operating
AN stems.
The lowe t levels include the haid-

\arc ot the sstcmll. L evel 1 is the elec-
tirollicc oi-Ct1itr' where objects are
IdCcisters, cates, memory cells, anid
tthe like, andicl operations are clcarilgL
rIcisiters, r eadilne2 ImeCImlOrF cells, and
tihe likc. ItCVel 2 adds the piocessor 's
illStl-LlctiOnl Set, which carn deal with
somcwhhat Imore absti act entitis Such

sS anl nc aloLation stack aInd an array of
meimicor V locations. level 3 adds the
concept of a pr ocedoure and the
OCperatioils ot call and ret urni. L evel 4
ifit todcLies inter r opts arnd a mecha-
ii oior ir1voking special procedures
I-!lc't1the iprOCe OI - rCCcix'(.IteIs inter-

I'll pt Ioa't11

The first four levels correspond
roughly to the basic machine as it is
received from the manufacturer, al-
though there is some interaction with
the operating system. For example,
interrupts are generated by hardware,
but the interrupt-handler routines are
part of the operating system.

Level 5 adds primitive processes,
which are simply single programs in

The principle of data abstraction
embodied in the levels model

dates back to 1966.

the course of execution. The informa-
tion required to specify a primitive
process is its stateword, a data struc-
tore that can hold the values of the
recisters in the processor. This level
provides a context switch operation,
v fhich transfers the processor's atten-
tion from one process to another by
saxing the stateword of the first and
loading the stateword of the second.
This level contains a scheduler that
selects, from a "ready list" of avail-
able processes, the next process to run
after the current process is switched
off the processor. This level also pro-
sides semaphores, the special vari-
ables used to cause oine process to
stop and wait until another process
has signalled the completion of a
task. Another characteristic of this
level is that hardware is easy to imple-
nment. 1' Primitive processes are anal-
ooous to the system processes in
PSOS and the lightweight processes
irr V octs.

Level 6 handles access to the sec-
ondary-storage devices of a particular
machine. The programs at this level
are responsible for operations such as
positioning the head of a disk drive
anid transferring a block of data. Soft-
ware at a higher level determines the
address of the data on the disk and
places a request for it in the device's
queue of pending work; the requesting
pFrocess then waits at a semaphore un-
til the transfer has been comiipleted.

Leel 7 is a standard virtual mem-
ors, a scher1ie that gives the program-

mer the illusion of having a main
memory space large enough to hold
the program and all its data even if the
available main memory is much
smaller. Software at this level han-
dles the interrupts generated by the
hardware when a block of data is ad-
dressed that is not in the main mem-
ory; this software locates the missing
block in the secondary store, frees
space for it in the main store, and re-
quests level 6 to read in the missing
block.

Level 8 implements capabilities that
are unique internal addresses for soft-
ware objects definable at higher levels.
At this level, capabilities are read but
not altered. A validate operation
enables the progammer of higher level
procedures to verify that actual pa-
rameters are capabilities of the ex-
pected types.
Through level 8, the operating

system deals exclusively with the
resources of a single machine. At the
next level, however, the operating
system begins to encompass a larger
world including peripheral devices
such as terminals and printers and
other computers attached to the net-
work. In this world, pipes, files,
devices, user processes, and directories
can be shared among all the machines.

Multimachine levels: 9-14. Every
object in the system has two names: its
external name, a string of characters
having some meaning to users, and its
internal namne, a binary code used by
the system to locate the object. The
user controls mapping from external
to internal names by means of direc-
tories. The operating system controls
mapping from internal names to phys-
ical locations and can move objects
among several machines without af-
fecting any user's ability to use those
objects. This principle, called delayed
binding, was important in third-gener-
ation operating systems and is even
more important today. I

To hide the locations of all sharable
objects, both external and internal
names must be global, that is be inter-
pretable on any machine. Unique ex-
ternal names can be constructed as
path names in the directory hierarchy
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(defined at level 14), while unique in-
ternal names are provided by capabil-
ities (level 8). If the local network
communication system (level 9) is effi-
cient, software at the higher levels can
obtain access to a remote object with
little penalty.

Level 9 is explicitly concerned with
communication between processes,
which can be arranged through a
single mechanism called a pipe. A pipe
is a one-way channel: a stream of data
flows in one end and out the other. A
request to read items is delayed until
they are actually in the pipe. A pipe
can connect two processes on the same
machine or on different machines
equally well. A set of pipes linking
levels in all the machines can serve as a
broadcast facility, which is useful for
finding resources anywhere in the net-
work.21 Pipes are implemented in
Unix6 and have been copied in recent
systems such as i Max22 and Xinu.23

Level 10 provides for long-term
storage of named files. While level 6
deals with disk storage in terms of
tracks and sectors-the physical units
of the hardware-level 10 deals with
more abstract entities of variable
length. Indeed, a file may be scattered
over many noncontiguous tracks and
sectors. To be examined or updated, a
file's contents must be copied between
virtual memory and the secondary
storage system. If a file is kept on a
different machine, level 10 software
can create a pipe to level 10 on the
file's home machine.

Level 11 provides access to external
input and output devices such as
printers, plotters, and the keyboards
and display screens of terminals.
There is a standard interface with all
these devices, and a pipe can again be
used to gain access to a device attached
to another machine.

Level 12 provides a means of at-
taching user processes interchangeably
to pipes, files, or 1/0 devices. The idea
is to make each fundamental opera-
tion of levels 9, 10, and 11 (OPEN,
CLOSE, READ, and WRiTE) look
the same so that the author of a pro-
gram need not be concerned with the
differences in these objects. This
strategy has two steps. First, the infor-

mation contained in pipes, files, and
devices is regarded simply as streams
of bytes; requests for reading or
writing move segments of data be-
tween streams and a user process. Sec-
ond, a user process is programmed to
request all input and output via ports,
attached by the OPEN operation at
runtime to specific pipes, files, or
devices.

The level structure is designed to
enable software verification,

installation, and testing.

Level 13 implements user processes,
which are virtual machines executing
programs. It is important to distin-
guish the user process from the prim-
itive process of level 5. All informa-
tion required to define a primitive pro-
cess can be expressed in the stateword
that records the contents of the
registers in the processor. A user pro-
cess includes not only a primitive pro-
cess, but also a virtual memory con-
taining the program and its work-
space, a list of arguments supplied as
parameters when the process was
started, a list of objects with which the
process can communicate, and certain
other information about the context in
which the process operates. A user
process is much more powerful than a
primitive process.

Level 14 manages a hierarchy of
directories that catalogs the hardware
and software objects to which access
must be controlled throughout the
network: pipes, files, devices, user
processes, and the directories them-
selves. The central concept of a direc-
tory is a table that matches external
names of objects with capabilities con-
taining their internal names. A hierar-
chy arises because a directory can in-
clude among its entries the names of
subordinate directories. Level 14 en-
sures that subhierarchies encached at
each machine are consistent with one
another.
The directory level is responsible

only for recording the associations
between the external names and
capabilities; other levels manage the

objects themselves. Thus, when a
directory of devices is searched for the
string "laser," the result returned is
merely a capability for the laser
printer. The capability must be passed
to a program at level 11, which
handles the actual transmission to that
printer.

Level 15 is the shell, so called
because it is the level that separates the
user from the rest of the operating
system. The shell interprets a high-
level command language through
which the user gives instructions to the
system. Incorporating a listener pro-
gram that responds to a terminal's
keyboard, it parses each line of input
to identify program names and pa-
rameters, creates and invokes a user
process for each program, and con-
nects it as needed to pipes, files, and
devices.

General comments on structure.
The level structure is a hierarchy of
functional specifications designed to
impose a high degree of modularity
and enable incremental software veri-
fication, installation, and testing.

In a functional hierarchy, a pro-
gram at one level may directly call any
visible operation of a lower level. No
information flows through any inter-
mediate level. The level structure can
be completely enforced by a compiler,
which can insert procedure calls or ex-
pand functions in-line. 18 A recent ex-
ample of its use is Xinu, an operating
system for a distributed system based
on LSI 11/02 machines.23

It is important to distinguish the
level structure discussed here from the
layer structure of the International
Standards Organization model of
long-haul network protocols.24 In the
ISO model, information is passed
down through all layers on the sending
machine and back up through all
layers on the receiving machine. Since
each layer adds overhead to a data
transmission, whether or not that
overhead is required, models for long-
haul network protocol structure may
not be efficient in a local network. 8
A significant advantage of func-

tional levels over information-trans-
ferring layers is efficiency: a program
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that does not use a given function will
experience no overhead from that
function's presence in the system. For
example, procedure calls will validate
capabilities only when they are ex-
pected. Common objects (such as
pipes, files, devices, directories, and
user processes) are implemented by
their own levels rather than as new
"types" within a general type-exten-
sion scheme. 25
Each level should be able to locate

local objects by their internal names

without having to rely on a central
mapping mechanism-a strategy that
enhances not only reliability in a
distributed network, but also efficien-
cy because central mechanisms are
prone to be bottlenecks.

Operating system designers ought
to take reasonable steps to verify that
each level of the operating system
meets its specifications. This goal also
serves efficiency as well as reliability,
since runtime checks can be omitted
from system code except for condi-

Figure 1. The storage structure for representing objects consists of a chain
starting with a capability, through a local map under the control of the
object's level, through a descriptor block, to the object itself. Changing the
object's location requires no change in any capability. The level generates in-
dex numbers locally when it creates objects. In this example, the process
holds two T capabilities; one object is in a segment in virtual memory and the
other is in a block of secondary storage.

tions that cannot easily be verified a
priori. System procedures must check
at runtime only for the presence of ex-
pected capabilities as parameters
because the calling programs may be
unverified; other aspects of parameter
checking can be performed by a com-
piler.

Distributed capabilities: level 8. The
external names of sharable objects are
character strings of arbitrary length
that have meaning to users. Because
these strings are difficult to manip-
ulate efficiently, the operating system
provides internal names for quick ac-
cess to objects. One purpose of level 8
is to provide a standard way of repre-
senting and interpreting internal
names for objects.
To prevent a process from applying

invalid operations to an object with a
known internal name, the operating
system can attach a type code and an
access code to an internal name. The
combination of codes (type, access, in-
ternal name) is called a capability. All
processes are prevented from altering
capabilities. The system assumes that
because a process holds a capability
for an object it is authorized to use
that object. Processes are thus respon-
sible for controlling the capabilities
they hold.
The simplest way to protect capabil-

ities from alteration is to tag the
memory words containing them with a
special bit and to permit only one in-
struction, "create-capability," to set
that bit. 10,26 The IBM System 38 is a
recent example of an efficient system
using tags to distinguish capabilities
from other objects in memory.27 Ca-
pabilities were first proposed as an ef-
ficient method of implementing an ob-
ject-oriented operating system 16 and
have continued to be used primarily
for this reason'22,25,27

All existing implementations of
capabilities are based on a central
mechanism for mapping the internal
name to an object. These mappings
are direct extensions of virtual mem-
ory addressing schemes. 2,26 Unfor-
tunately, a central mapping scheme
cannot be used with a distributed
system because the component ma-
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chines may fail. Consequently, the
responsibility for mapping must be
distributed by allowing each pro-
cedure of levels 9 through 14 on each
machine to read and interpret locally
the fields of validated parameter
capabilities.
The storage structure and mapping

scheme for capabilities are illustrated
in Figure 1. The name field of capa-
bility type T consists of a code M for
the machine on which the capability
was created and index number I. The
machine number is needed because
some capabilities (those for open
pipes, files, and devices) can be used
only on the issuing machine. The ac-
cess code specifies which Toperations
can be applied to the object. Index
number I is used by the level in charge
of Tobjects on machine Mto address
a descriptor block for the given object.
The descriptor block records control
information about an object, time and
date created and last updated, and
current size and attributes of the ob-
ject. The location of the descriptor
block denotes the location of the ob-
ject-moving the descriptor block
from one machine to another effec-
tively moves the object.

Procedures implementing opera-
tions at levels 9 through 15 must con-
form to certain standards that ensure
the proper use of capabilities. One is
an agreement on the codes for the ob-
ject types, eight of which are listed in
Table 2. We use the notation T_cap to
denote a T capability, for example,
file_cap.
The remaining standards concern

the creation of capabilities pointing to
new objects and the application of
specific operations to those objects.
Suppose level L (L > 8) is the manager
of Tobjects. This level contains a pro-
cedure to create new objects of type T
and one or more procedures to apply
given functions to T objects. The
CREATE operation must use a call of
the form

T_cap: = CREATE_T(initial-value)

This procedure performs all the steps
required to set up the storage for a
new object of type T: it obtains space
in secondary storage for the object

and stores in it the given initial value,
sets up a descriptor block, finds an
unused index and sets up the entry in
the local map, and finally creates
a capability of type T (denoted
"T_cap").

Creating a capability is a critical
operation. Level 8 implements a
special operation for this purpose:

T_cap: = CREATE_CAP(I)
where I is the local index number
chosen by level L. When used inside
the CREATE_T operation on ma-
chine M, CREATE-CAP constructs a
capability (T, A, M, I), sets to 1 the
capability bit of the memory word
containing it, and returns the result.
The code for M comes from a register
in the processor. The code for A is the
one denoting maximum access. The
code for T comes from a field in the
program status word, a processor
register that also contains the program
counter of the current procedure. The
compilers must be set up to generate
PSW = T only for the CREATE_T
procedure and PSW = null for all
other procedures. CREATE-CAP
fails if executed when PSW = null.
The procedures for applying opera-

tions to a given object have the generic
form
APPLY_OP(T_cap, parameters)

which means that OP (parameters)

must be applied to the object denoted
by T_cap. The compiler can validate
that the first actual parameter on any
call to APPLY_OP is indeed of type T
by using another operation of level 8,
called VALIDATE, which checks that
this parameter is a capability whose
type code is T and whose access code
enables operation OP. VALIDATE
can also be used to verify the presence
of other capabilities among the other
parameters.
A procedure may reduce the access

rights of a capability it passes to
another procedure by using the level 8
operation ATTENUATE. (Table 3
summarizes the operations imple-
mented at level 8.)

Table 2: Capability
their abbreviations.

type marks and

TYPE
LEVEL MARK ABBREVIATION

14 Directory dir

13 User process up

11 Device dev
Open device op dev

10 File file
Open file op file

9 Pipe pipe
Open pipe op pipe

Table 3. Specification of capability operations (level 8).

FORM OF CALL

T cap.= CREATE CAP (I )

VALIDATE (p. n. (Ti, al ), ., (Tn, an))

cap : = ATTENUATE (cap, mask)

EFFECT

If the type-mark in the current PSW is
non-null, create a new capability with
type field set to that mark, access code
maximum, machine field the local
machine identifier. and index 1.

Verify the capability at the caller's vir-
tual address p. For at least one
i=1, ., n the following must be
true: the capability contains Ti in its
type field and permits access ai. If Ti
denotes op pipe. op file, or op dev,
the machine field must match the iden-
tifier of the local machine. (Fails if these
conditions are not met.)
Returns a copy of the given capability
with the access field replaced by the
bitwise AND of mask and the access
field from cap.

October 1984 179



Communications: level 9. The com-
munications level provides a single
mechanism, the pipe, for moving in-
formation from a writer process to a
reader process on the same or dif-
ferent machines. The most important
property of the pipe is that a reader
must stop and wait until a writer has
put enough data into the pipe to fill
the request. Level 9 gives the higher
levels the ability to move objects
among the nodes of the network.
The external interface presented by

the comunications level consists of the
commands in Table 4. When two
communicating processes are on the
same machine, a pipe between them
can be stored in shared memory and
the READ_PIPE and WRITE PIPE

operations are implemented in the
same way as SEND and RECEIVE
operations for message queues.28
When the two processes are on dif-

ferent machines, the communications
level must implement the network pro-
tocols required to move information
reliably between machines (Figure 2).
These protocols are much simpler
than long-haul protocols because con-
gestion and routing control are not
needed, packets cannot be received out
of order, fewer error types are possible,
and errors are less common. 8
The READ and WRITE operations

become ambiguous unless both a
reader process and a writer process are
connected to a pipe. Should a writer
be blocked from entering information

Table 4. Specification of communication level interface (level 9).

FORM OF CALL

pipe cap CREATE PIPE ()

DESTROY PIPE (pipe cap)

op pipe cap I= OPEN PIPE (pipe cap, rw)

READ PIPE
WRITE PIPE
CLOSE PIPE

op pipe cap BROADCAST (msg)

EFFECT

Creates a new empty pipe and returns a
capability for it. (If the caller is a user
process! it can store this capability in a
directory entry and make the pipe
available throughout the system.)
Destroys the given pipe (undoes a
create-pipe operation).
Opens the pipe named by the pipe
capability by allocating storage and set-
ting up a descriptor block. Initially, the
pipe is empty. If rw =write (rw can be
read or write) the open-pipe capability
has its write permission set and can be
used only by the process at the input
end of the pipe. If rw =read, the open-
pipe capability has its read permission
set and can be used only by the process
at the output end of the pipe. Does not
return until both reader and writer have
requested connections. (Fails if the
pipe is already open for writing when
rw write or for reading when
rw = read ) If both sender and receiver
are on the same machine, the open-
pipe descriptor block will indicate that
shared memory can be used for the
pipe" otherwise a network protocol
must be used.

These have the same effects as the
READ, WRITE. and CLOSE operations
(described later in the section on
stream 1/0).
Broadcasts a message to all type
managers in the network that manage
objects of the same type as the calling
local type manager. Returns an open
pipe capability for reading responses.

until the reader opens its end? What
happens if either the reader or writer
breaks its connection? Questions like
these are dealt with by a connection
protocol. A simple connection pro-
tocol, called rendezvous on open and
close, has the following properties:

* The open-for-reading and the
open-for-writing requests may be
called at different times, but both
returns are simultaneous.

* The CLOSE operation, executed
by the reader, shuts both ends of
the pipe; when executed by the
writer, the operation is deferred
until the reader empties the pipe.

A pipe capability can be stored in a
file or a message and passed to an-
other machine over an existing open
pipe or by broadcast. A pipe capabili-
ty can also be listed in a directory mak-
ing the pipe a global object. In this
case, it is like a FIFO file in System-5
Unix. 29
The communications level also con-

tains a broadcast operation to permit
levels 10, 11, and 12 to request map-
ping information from their counter-
parts on other machines. For example,
if the file level on one machine cannot
locally open the file named by a given
capability, it can broadcast that capa-
bility to the file levels of other ma-
chines; the machine actually holding
the file responds with enough infor-
mation to allow the broadcaster to
complete its pending OPEN opera-
tion.

Files: level 10. Level 10 implements
a long-term store for files, named
strings of bits of known, but arbitrary
length that are potentially accessible
from all machines in the network.
Table 5 summarizes file operations.
To establish a connection with a

file, a process must present a file
capability to the OPEN-FILE opera-
tion, which will find the file in second-
ary storage and allocate buffers for
transmissions between the file and the
caller. The transmissions themselves
are requested by READ-FILE and
WRITE-FILE operations. Each
READ operation copies a segment of
information from the file to the
caller's virtual memory and advances
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a read pointer by the length of the seg-
ment. Each WRITE operation ap-
pends a segment from the caller's vir-
tual memory to the end of the file.

In a multimachine system, the file
level must deal with the problem of
nonlocal files. When a process on one
machine requests to open a file stored
on another machine, there are two
feasible alternatives:

* Remote Open: Open a pair of
pipes to level 10 on the file's home
machine; READ and WRITE re-
quests are relayed via the forward
pipe for remote execution; results
are passed back over the reverse
pipe. An example is the Berkeley
Cocanet system. 30

* File Migration: Move the file
from its current machine to the
machine on which the file is being
opened; thereafter all READ and
WRITE operations are local. An
example is the Purdue Stork file
system. 31

The open-connection descriptor
block for a file, which is addressed by
an open-file capability, indicates
whether READ and WRITE opera-
tions can be performed locally or must
interact with a surrogate process on
another machine. In the latter case,
the required open-pipe capability is
implanted in the descriptor block by
the open-file command.

Figure 3 illustrates the types of
capabilities generated and used during
a typical file-editing session.
One important improvement to the

basic file system is to allow multiple
readers and writers by building into
READ and WRITE operations a solu-
tion to the "readers and writers" syn-
chronization problem. 32 Another is to
use a version control system to auto-
matically retain different revisions of a
file; the file system can then provide
access to the older versions when
needed. 33

Devices: level 11. The devices level
implements a common interface to a
wide range of external I/O devices, in-
cluding terminal displays and key-
boards, printers, plotters, time-of-day

Figure 2. A network protocol must be used when two processes connected
by a pipe are on different machines. The WRITE requests of the sender ap-
pend segments to a stream awaiting transmission. The sender process
transmits the stream as a sequence of packets, which are converted back
into a stream and placed in the receiving buffer. Each READ request of the
receiver waits until the requested amount of data is in the buffer, then
returns it.

Table 5. Specification of the files level interface (level 10).

FORM OF CALL

file-cap := CREATE-FILE (

DESTROY-FILE (file-cap)

op_file_cap := OPEN-FILE (file-cap, rw)

READ-FILE
WRITE FILE
CLOSE-FILE

REWIND (op_iile_cap)
ERASE (op_file_cap)

EFFECT

Creates a new empty file and returns a
capability for it. (If the caller is a user
process, it can store this capability in a
directory entry and make the file
available throughout the system.)
Destroys the given file (undoes a
create-file operation).
Opens the file named by the file
capability by allocating storage for buf-
fers and setting up a descriptor block.
The value of rw (read, write, or both) is
put in the access field of the open-file
capability. The read pointer is set to
zero and the write pointer to the file's
length. (Fails if the file is already open.)
These have the same effects as the
READ, WRITE, and CLOSE operations
(described later in the section on
stream 1/0).
Resets read pointer to zero.
Sets file length and write pointer to
zero; releases secondary storage
blocks occupied by the file.
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Figure 3. The steps of an editing session generate and use various
capabilities. (1) Convert external name string to capability cl by a directory-
search command. (2) Open file for reading and writing by command c2: =
OPEN-FILE (c1, rw). (3) Copy file into buffer by the command READ-FILE
(c2, b, all). (4) Edit contents of buffer.(5) Replace olderversion of file bypairof
commands "ERASE (c2); WRITE-FILE (c2, b, 1)," where I is the length of buf-
fer. (6) Close file by command CLOSE-FILE (c2).

Table 6. Specification of devices level interface (level 11).

FORM OF CALL

dev-cap :=
CREATE_DEV (type, address)

DESTROY_DEV (dev_cap)

opEdev cap:= r
OPEN-DEV (dev-cap, rw)

READ_DEV
WRITE_DEV
CLOSE_DEV

EFFECT

Returns a capability for a device of the given type at the
given address. The access code of the returned
capability will not include "W" if the device is read-
only or " R" if the device is write-only.
Detaches the given device from the system (undoes a
create-device operation).
Opens the device named by the device capability by
allocating storage for buffers and setting up a descriptor
block. The value in the access field of the open-device
capability is the logical AND of rw and the access code
of the device capability. (Fails if the device is already
open.)
These have the same effects as the READ, WRITE, and
CLOSE operations (described in the section on stream
1/0).

clock, and optical readers. The inter-
face attempts to hide differences in
devices by making input devices ap-
pear as sources of data streams and
output devices as sinks. Obviously, the
differences cannot be completely hid-
den-cursor-positioning commands
must be embedded in the data stream
sent to a graphics display, for ex-
ample-but a surprising degree of
uniformity is possible.

Corresponding to each device is a
device driver program that translates
commands at the interface into in-
structions for operating that device. A
considerable amount of effort may be
required to construct a reliable, robust
device driver. When a new device is at-
tached to the system, its physical ad-
dress is stored in a special file acces-
sible to device drivers.

Table 6 summarizes the interface
for external devices.

Stream 1/0: level 12. An important
principle adopted in the hypothetical
operating system described here is 1/0
independence. At levels 9, 10, and 11,
the same fundamental operations
(namely OPEN, CLOSE, READ, and
WRITE) are defined for pipes, files,
and devices. Although writing a block
of data to a disk calls for a sequence of
events quite different from that
needed to supply the same data to the
laser printer or to the input of another
program, the author of a program
does not need to be concerned with
those differences. All READ and
WRITE statements in a program can
refer to I/O ports, which are attached
to particular files, pipes, or devices on-
ly when the program is executed.

This strategy, an instance of de-
layed binding, can greatly increase the
versatility of a program. A library
program (such as the pattern-finding
"grep" program in Unix) can take its
input from a file or directly from a ter-
minal and can send its output to
another file, to a terminal, or to a
printer. Without delayed binding,
each program would have to be writ-
ten to handle each possible combina-
tion of source and destination.
A common model of data must be

used for pipes, files, and devices. The
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Abstraction levels in practical operating systems

The level structure of the hypothetical operating system
described in this article reflects the "uses-relation": All the
functions that a given level of software uses must be on the
same or lower levels. The resulting hierarchy of functions
aids in understanding the software, verifying it, limiting the
effects of modifications to it, and incrementally testing it.
The first operating system explicitly incorporating levels
was Dijkstra's T.H.E. operating system, built around 1968.

Levels can be a powerful descriptive tool even for
operating systems with code not strictly structured by
levels. The following paragraphs illustrate this with sample
functions in existing operating systems of levels 8 through
15 (listed in Table 1 in the article).

Level 8: Capabilities. The idea of a hardware-recogniz-
able, unique virtual address, or capability, proposed by Den-
nis and Van Horn in 1966, was implemented with special
hardware in the Plessey System 250 in 1972, the Carnegie-
Mellon Hydra in 1975 and Star OS in 1979, the Cambridge
CAP system in 1980, and the Intel Max system for the 432
microcomputer in 1981. It was implemented with
microcode extensions in IBM's System 38 in 1980.

Although most other operating systems are not
capability-based, they implement many ideas of capability
addressing in the levels that interact with user programs.
For example, a system call for opening a file usually returns
a pointer to a file descriptor block; the pointer may be
passed to routines for reading and writing the file. The
routine for writing, for instance, checks whether the pointer
passed to it is indeed for a file opened for writing. In a

capability-based system, this check would be performed
automatically by hardware.

Level 9: Pipes. Advances in communications research
have spawned a large number of networks that provide
reliable, low-cost, high-speed computer communication
over a wide variety of carriers. Sample networks in use to-
day are long-haul networks, such as DARPA's Arpanet and
GTE's Telenet, and local networks such as Digital Equip-
ment Corporation's Decnet, IBM's SNA, and Xerox's
Ethernet.

Networks and communication channels are relatively re-

cent additions to operating systems. They have usually
been added as utility programs outside the kernel, resulting
in a set of loosely coupled machines and the network's be-
ing visible. When the network functions are integrated into

the kernel, they can be made to look like interprocess
pipes, and the network becomes invisible.

Level 10: Files. All operating systems offer files for long-
term storage. In addition to the simple sequential file

organization presented here, most commercial systems
provide record-oriented files.

Level 11: Devices. A wide variety of IIO devices is
available. Most operating systems are equipped with a set

of interface programs, called "drivers," for standard
devices like keyboards, displays, printers, and tape drives.
Most systems allow programmers of special subsystems
to add drivers for the more esoteric devices such as TV
cameras or robot arms.

Level 12: Stream l/O. If all standard devices and programs

transmit data in the form of byte streams, considerable flex-
ibility can be achieved in forming interconnections among
programs. These ideas were first tested in Multics in 1968
and are an important aspect of the Unix operating system
(1974).

Level 13: User processes. Most modern operating
systems allow users to construct commands composed of
several programs. The operating system implements such
commands by spawning a process for each component
program, even for single-user machines such as personal
computers. A process is a simulated virtual machine con-

taining an executable program.

Level 14: Directories. Directories were used as catalogs
of files in the MIT Compatible Time Sharing System around
1963 with one directory per user. In 1965, CTSS was

modified to permit subdirectories. Many later systems also
used hierarchical directories-for example, Multics in
1968, Unix in 1972, and VMS in 1978. In Unix, directories can
contain entries not only for other directories and files, but
for devices and pipes. In capability-based systems, such as
the Cambridge CAP, directories can contain entries for any
object. In Locus, the Unix directory structure is made to
span all the machines in the network, which makes files ad-
dressable in the same way on every machine and provides
"location transparency," which means that a file's location
cannot be determined from its name.

Many commercial and hobby systems today have the
primitive, one-level directory structure type used in CTSS.

Level 15: Shell. The shell is the interactive command in-

terpreter program that listens to the user's terminal. The
term "shell" was first used in Multics, but the idea of
treating commands as statements in a very high level pro-
gramming language goes back to the early timesharing
systems like the Manchester Atlas in 1959. The command
interpreters of most batch-processing systems implement
primitive "job control languages" that are often difficult to
use.
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simplest possibility is the stream
model in which these objects are
media for holding streams of bits.
Corresponding to each of these ob-
jects is a pair of pointers, r for reading
and w for wvriting; r counts the number
of bytes read thus far and w counts
those written thus far. Each READ re-
quest begins at position r and ad-
vances r bv the number of bytes read.
Similarly, each WRITE request begins
at position w and advances w by the
number of bytes written.
The blocks of data moved by

READ or WRITE requests are called
segments; seg(x,n) denotes a con-
tiguous sequence of n bvtes beginning
at position x- in a given data stream.
The exact interpretation of a READ
(or WRITE) request depends on
whether the segment comes from a
pipe, file, or uevice. For example, a
READ request can be applied only at
the output end of a pipe, and the
reader must wait until the writer has
supplied enough data to fill the re-
quest. An output-only device, such as
a laser printer, cannot be read and an
input-only device, such as a terminal
keyboard, cannot be written.

The OPEN operation of level 12
returns an op T_cap, corresponding
to a given T_cap for T, a pipe, file, or
device. The op_T_cap represents an
active connection through which data
may be passed efficiently to and from
the object. The request segment in
READ and WRIl E operations moves
across such a connection. The CLOSE
operation breaks the connection.

Because the stream model has
already been incorporated into the
pipes, files, and devices levels, the only
ne", mechanism involves a method of
switching from a level 12 operation to
its counterpart in the level for the type
of object connected to a port. For ex-
ample, OPEN (T_cap,rw) means

CASE T OF
pipe: RETURN
OPEN-PIPE (T_cap, rw);
file: RETURN
OPENJFILE(T-cap, rw);
dev: RETURN
OPEN_DEV (T_cap, rw);
ELSE: error;

END CASE

Table 7 summarizes the interpreta-
tion of OPEN, CLOSE, READ, and

WRITE operations for the three kinds
of I/0 objects.
The stream model is not used in

every operating system. For example,
in Multics, because segments are ex-
plicit components of virtual memory,
a separate concept of file is not needed
because segments are retained in-
definitely until deleted by their own-
ers.3 In Multics, the four operations
of Table 7 are implicit. The first time a
process refers to a segment, a "miss-
ing-binding" interrupt causes the
operating system to load and bind that
segment to the process. The process
can thereafter read or write the seg-
ment using the ordinary virtual-
addressing mechanism. Certain seg-
ments of the address space are per-
manently bound to devices, so reading
or writing those segments is equivalent
to reading or writing the device. The
concept of pipe is missing, but the in-
terprocess communication mechanism
allows a data stream to be transmitted
from one process to another.

User processes: level 13. A user pro-
cess is a virtual machine containing a
program in execution. It consists of a

Table 7. Semantics of l/O operations on objects (level 12).

FORM OF CALL

op T cap -

OPEN (T cap. rw)

READ (op T cap, a. n)

WRITE(op T cap. a. n)

CLOSE(op T cap)

PIPE

Verify that T cap refers to an
unopened pipe. Use OPEN PIPE
(T cap, rw) to initialize an open-
pipe descriptor block in which
r=w =0 return the op pipe
cap.

Wait until r+n <w. Invoke
READ PIPE (o pipe cap, a,n)
to copy seg (r,n) to seg (a,n) and
advance r to r +n. If n =all,
return immediately with what-
ever is in the pipe. seg (r.w -r)
Invoke WRITE PIPE(op pipe
cap. a. n) to copy seg (a,n) to

seg (w,n) and advance w to
w+n. (May awaken waiting
reader).

If pipe contains a waiting reader,
return to that reader the
remaining segment in the pipe.
Invoke CLOSE PIPE (op
pipe cap) to deallocate the
open-pipe descriptor block.

FILE

Verify that T cap refers to an
unopened file. Use OPEN FILE
(T cap, rw) to initialize an open-
file descriptor block in which
r0= and w= (file length);
return the op file cap.

Set m =min[I- r,n]. Invoke
READ FILE (op file cap,
a,m)to copy seg (r,m) to seg
(a,m). If n=all, return immed-
iately with whatever is in the file,
seg (r.w-r).
Invoke WRITE FILE(op file
cap,a. n) as for pipe, plus

advance to + n.

Invoke CLOSE FILE (op
file cap) to deallocate the open-
file descriptor block.

DEVICE

Verify that T cap refers to an
unopened device. Use OPEN DEV
(T cap, rw) to initialize an open-
device descriptor block in which
r0= or w =0, according to whether
the device is input or output" return
the op dev cap.
Invoke READ DEV (op dev cap.
a, m) as for file. If n =all, return im-
mediately with whatever input is
available, seg (r,w-r). (No effect
for output device.)

Invoke WRITE DEV(op. dev_cap,
a, n) as for pipe. (No effect for input
device.)

Invoke CLOSE DEV(op dev cap)
to deallocate the open-device
descriptor block.
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primitive process, a virtual mefnory, a
list of arguments passed as param-
eters, a list of ports, and a context.
Each port represents a capability for
an open pipe, file, or device. Context,
a set of variables characterizing the en-
vironment in which the process oper-
ates, includes the current working
directory, the command directory, a
link to the parent process, a linked list
of spawned processes, and a signal
variable that counts the number -of
spawned processes with an incomplete
execution. Figure 4 illustrates the for-
mat of a user-process descriptor
block.
A new user process is created by a

FORK operation. The creator is called
the "parent" and the new process a
"child." A parent can exercise control
over its children by resuming, sus-
pending, or killing them. A parent can
stop and wait for its children to com-
plete their tasks by a join operation,
and a child can signal its completion
by an exit operation (Table 8).
The OPEN operation that appears

in Table 8 hides the level 12 OPEN
from higher levels and allows level 13
to store copies of all open-object
capabilities in the PORTS table.
When a process terminates, level 13
can assure that all open objects are
closed by invoking the level 12
CLOSE operation for each entry in
the PORTS table.

Directories: level 14. Level 14 is
responsible for managing a hierarchy
of directories containing capabilities
for sharable objects. In our hypothet-
ical system, these capabilities are
pipes, files, devices, directories, and
user processes; capabilities for open
pipes, files, and devices are not
sharable and cannot appear in direc-
tories. A hierarchy arises because a
directory can contain capabilities for
subordinate directories.
A directory is a table that matches

an external name, stored as a string of
characters, with an access code and a
capability. In a tree of directories (Fig-
ure 5), the concatenated sequence of
external names from the root to a
given object serves as a unique, sys-
temwide external name for that ob-

Figure 4. A user process is a virtual machine created to execute a given pro-
gram. It contains a primitive process, a virtual memory holding the given pro-
gram, a list of arguments supplied at the time of call, a list of ports, and a set
of context variables. By convention, PORTS[O] is the default input and
PORTS[1] is the default output; these two ports are bound to pipes, files, or
devices when the process is created. The process can open other ports as
well after it begins execution.

Table 8. Specification of user-process operations (level 13).

FORM OF CALL

up cap:=
(FORK(file cap,
params, in, out)

JOIN (A)
KILL (up-cap)

EXIT

SUSPEND (up-cap)

RESUME (up-cap)

op_T_cap :=
OPEN(T_cap, rw)

EFFECT

Allocates a user process descriptor block. Creates a suspended
primitive process and stores its index in a new user-process capabili-
ty. Creates a virtual memory and loads the executable file denoted by
file_cap. Copies the parameters into the ARGS list. Verifies that in
and out are capabilities for pipes, files, or devices; if so, opens in for
reading and puts the open-capability in PORTS [0], and opens out for
writing and puts the open-capability in PORTS [1].
Waits until caller's context-variable signal is A, then returns.
Terminates the designated user process, but only if it is a child of the
caller. This entails destroying the primitive process and virtual
memory, closing open pipes, files, or devices connected to ports,
releasing the storage held by the descriptor block, and removing the
deleted process from the list of the caller's children.
Terminates the caller process and adds i to the signal variable of the
parent process.
Puts the primitive process contained within the user process
"up-cap'' into the suspended state, but only if the caller is the
parent of process "up-cap."
Puts the primitive process contained within the user process
''up-cap" into the ready state, but only it the caller is the parent of
process ''up-cap."
Invokes the OPEN command in level 12, stores a copy of the result in
the next available position in the PORTS table, and returns the result
to the caller (T is pipe, file, or device).
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ject. A directory system of this kind
has been implemented on the Cam-
bridge CAP machine. '0
The principal operation of level 14

is a search command that locates and
returns the capability corresponding

to a given external name. Thus, the
directory level is merely a mechanism
for mapping external names to inter-
nal ones. Only one type of capability
can be mapped to an object at this
level: a directory capability. All other

Figure 5. A directory hierarchy can be depicted as an inverted tree whose top-
most node is called "root." Some directories are permanently reserved for
specific purposes. For example, the dev directory lists all the external
devices of the system. The lib directory lists the library of all executable pro-
grams maintained by the system's administration. A user directory contains
a subdirectory for each authorized user; that subdirectory is the root of a sub-
tree belonging to that user. In Unix, the unique external name of an object is
formed by concatenating the external names along the path from the root,
separated by an "I" and omitting root. Thus, the laser printer's external name
is "Idevllaser."

Table 9: Specification of a directory manager interface (level 14).

FORM OF CALL

dir_cap := CREATE_DIR (access)

DESTROY_DIR (dir_cap)

ATTACH
(obj_cap, dir_cap, name, access)

DETACH (dir_cap, name)

obj[cap := SEARCH
(dir_cap, name)

seg := LIST (dir_cap)

EFFECT

Allocates an empty directory. Returns a capability
with its permission bits set to the given access code.
(This directory is not attached to the directory tree.)
Destroys (removes) the given directory. (Fails it the
directory is not empty.)
Makes an entry called name in the given directory
(dir_cap); stores in it the given object-capability
(obj_cap) and the given access code. If obj_cap
denotes a directory, sets its parent entry from the
self entry of the directory dir_cap. Notifies the
directory stable store of the change. (Fails if the
name already exists in the directory dir_cap, if the
directory dir_cap is not attached, or if obj_cap
denotes an already attached directory.)
Removes the entry of the given name from the given
directory. Notifies the directory stable store of the
change. (Fails if the name does not exist in the given
directory or if the given directory is not empty.)
Finds the entry of the given name in the given direc-
tory and returns a copy of the associated capability.
Sets the access field in the returned capability to the
minimum privilege enabled by the access fields of
the directory entry and of the capability. (Fails if the
name does not exist in the given directory.)
In a segment of the caller's virtual memory, returns
a copy of the contents of the directory. (A user-level
program can interrogate the other levels for other in-
formation about the objects listed in the directory,
such as the date of last change.

capabilities must be presented to their
respective levels for interpretation. In-
formation about object attributes,
such as ownership or time of last use,
is not kept in directories but rather in
the object descriptor blocks within the
object manager levels.
The requirement for systemwide

unique names implies that the direc-
tory level must also ensure that por-
tions of the directory hierarchy resi-
dent on each machine are consistent.
The methods for replication in a
distributed database system are agood
way to guarantee this consistency. 34
To control the number of update mes-
sages in a large system, the full direc-
tory database may be kept on only a
small subset of machines (for exam-
ple, two or three) implementing a
stable store. A workstation or other
local system can store copies of the
views of the directory database being
accessed after the accessing user logs
in. Operations that modify an entry in
a directory must send updates to the
stable-store machines, which relay
them to affected workstations.

Specifications of the directory
level's principal operations are given
in Table 9. These operations allow
higher level programs to create objects
and store capabilities for them in
directories. The table is not a complete
specification of a directory manager,
however; for example, it contains no
command to change the name and ac-
cess fields of a directory entry.
The ATTACH operation is used to

create a new entry in a directory. The
access field of the capability returned
by a search operation will be the con-
junction of the entry's access code
and the access field already in the
capability.
When a directory needs to be at-

tached to another directory, the AT-
TACH operation must also define the
parent of the newly attached direc-
tory. The operation fails if a parent is
already defined (Figure 6). The DE-
TACH operation only removes entries
from directories but has no effect on
the object to which a capability points.
To destroy an object, the DESTROY
operation of the appropriate level
must be used. To minimize inadver-
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tent deletions, the operation to destroy
a directory fails if applied to a
nonempty directory.
The ATTACH and DETACH op-

erations must notify the stable store
so that changes become effective
throughout the system. By maintain-
ing two conditions, this process can be
made simple: (1) an empty directory
must first be attached to the global
directory tree before entries are made
in it, and (2) a directory must be empty
before being detached. A more com-
plicated notification mechanism will
be needed if a process is allowed to
construct a directory subtree before its
root is attached to the global directory
tree.

Shell: level 15. Most system users
spend a great deal of time executing
existing programs, not writing new
ones. When a user logs in, the oper-
ating system creates a user process
containing a copy of the shell program
with its default input connected to the
user's keyboard and its default output
connected to the user's display. The
shell is the program that listens to the
user's terminal and interprets the in-
put as commands to invoke existing
programs in specified combinations
and with specified inputs.
The shell scans each complete line

of input to pick out the names of pro-
grams to be invoked and the values of
arguments to be passed to them. For
each program called in this way, the
shell creates a user process. The user
processes are connected according to
the data flow specified in the com-
mand line.

Operations of substantial complex-
ity can be programmed in the com-
mand language of the Unix shell. For
example, the operations that format
and then print a file named "text" can
be set in motion by the command line:

tbl < text eqn lptroff > output

The first program is tbl, which scans
the data on its input stream and
replaces descriptions of tables of in-
formation with the necessary format-
ting commands. The " < " symbol in-
dicates that tbl is to take its input from
the file text. The output of tbl is

directed by a pipe (the " " symbol) to
the input of eqn, which replaces
descriptions of equations with the
necessary formatting commands. The
output of eqn is then piped to lptroff,
which generates the commands for the
laser printer. Finally, > indicates that
the output of lptroff is to be placed in
a file named output. If " > output" is
replaced with " laser," the data is in-
stead sent directly to the laser printer.

After the components of a com-
mand line are identified, the shell ob-
tains capabilities for them by a series
of commands:

cl: = SEARCH(CD, "tbl");
c2: = SEARCH(WD, "text");
c3: = CREATE_PIPEO;
c4: = SEARCH(CD, "eqn");
c5: = CREATE_PIPEO;
c6: = SEARCH(CD, "lptroff");

c7: = CREATE_FILEO;
ATTACH(c7, WD, "output", all);

The variable CD holds a capability for
a commands directory and WD holds
a capability for the current working
directory. Both CD and WD are part
of the shell's context (Figure 4).
The shell then creates and resumes

user processes that execute the three
components of the pipeline and awaits
their completion:

RESUME (FORK (cl, -, c2, c3));
RESUME (FORK (c4, -, c3, c5));
RESUME (FORK (c6, -, c5, c7));
JOIN (3);

After the JOIN returns, the shell can
kill these processes and acknowledge
completion of the entire command to
the user through a "prompt" char-
acter.

Figure 6. A directory is a table matching an external name string with an ac-
cess code and a capability. Every directory contains a capability pointing to
its immediate parent and a capability pointing to itself; the self capability
can be used to fill in the parent entry in a new subordinate directory. Because
directories are at a higher level than files, the file system can be used to store
directories. A directory containing only the self and parent entries is con-
sidered empty.
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If the specificatioin "< text" is
omitted, the shell connects tbl to the
deefault input, which is the same as its
own, namely the terminal keyboard.
In this case, the second search com-
miiaind is oumitted and the first fork
opei-ationi is
FORK (cI, -, PORTS[O], c3)

Simnilarly, it ''> output' is omitted,
the shell connects lptroff to the default
output, the shell's PORTS[l].

11 anl claborate command line is to
be performiied ofteni, typing it can be-
come tedious. Unix encourages users
to store complicated commands in ex-
ccutable files called shell-sc ripts that
become simipler commands. A file
named Ip might be created with the
contents

tbl < SI eqn lptroff >S2
where the n1aimies of inlput and output
files have beenl replaced by variables
$1 aind $2. W"hen the command Ip is
inivoked, the variables $1 and $2 are
replaced by the arguments following

the command. For example, typing
Ip text output

would substitute text for S1 and out-
put for $2 and so would have exactly
the same effect as the original com-
mand line.

System initialization

One small but essential piece of an
operating system has not been dis-
cussed the method of starting up the
system. The start-up procedure, called
a bootstrap sequence, begins with a
verv short program copied into the
low end of main memory from a per-
manent ROM. This program loads a
longer program from the disk, which
then takes control and loads the
operating system itself. Finally, the
operating system creates a special
login process connected to each ter-
minal of the system.
When a user correctly types an iden-

tifier and a password, the login pro-

cess will create a shell process con-
nected to the same terminal. When the
user types a logout command, the shell
process will exit and the login process
will resume.

e have used the levels model to
describe the functions of con-

temporary multimachine operating
systems and how it is possible to
systematically hide the physical loca-
tions of all sharable objects, yet be
able to locate them quickly when given
a name in the directory hierarchy.
The directory function can be

generalized from its traditional role by
storing capabilities, rather than file
identifiers, in directory entries. No
user machine has to have a full, local
copy of the directory structure; it
needs only to encache the view with
which it is currently working. The full
structure is maintained by a small
group of machines implementing a
stable store.
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The model can deal with heteroge-
neous systems consisting of general-
purpose user machines, such as work-
stations, and special-purpose ma-
chines, such as stable stores, file
servers, and supercomputers. Only the
user machines need a full operating
system; the special-purpose machines
require only a simple operating system
capable of managing local tasks and
communicating on the network.

The levels model is based on the
same principle found in nature to or-
ganize many scales of space and time.
At each level of abstraction are well-
defined rules of interaction for the ob-
jects visible at that level; the rules can
be understood without detailed
knowledge of the smaller elements
making up those objects. The many
parts of an operating system cannot be
fully understood without keeping this
principle in mind.
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