
34 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

A number of important challenges are associated with the
deployment and configuration of contemporary comput-
ing infrastructure. Given the variety of operating systems
and their many versions—including the often-specific
configurations required to accommodate the wide range
of popular applications—it has become quite a conun-
drum to establish and manage such systems.

Significantly motivated by these challenges, but also
owing to several other important opportunities it offers,
virtualization has recently become a principal focus for
computer systems software. It enables a single computer
to host multiple different operating system stacks, and
it decreases server count and reduces overall system
complexity. EMC’s VMware is the most visible and early
entrant in this space, but more recently XenSource, Paral-
lels, and Microsoft have introduced virtualization solu-
tions. Many of the major systems vendors, such as IBM,
Sun, and Microsoft, have efforts under way to exploit
virtualization. Virtualization appears to be far more than
just another ephemeral marketplace trend. It is poised to
deliver profound changes to the way that both enterprises
and consumers use computer systems.

What problems does virtualization address, and more-
over, what will you need to know and/or do differently
to take advantage of the innovations that it delivers? In
this article we provide an overview of system virtualiza-

tion, taking a closer look at the Xen hypervisor and its
paravirtualization architecture. We then review several
challenges in deploying and exploiting computer systems
and software applications, and we look at IT infrastruc-
ture management today and show how virtualization can
help address some of the challenges.

A POCKET HISTORY OF VIRTUALIZATION
All modern computers are sufficiently powerful to use
virtualization to present the illusion of many smaller VMs
(virtual machines), each running a separate operating sys-
tem instance. An operating system virtualization environ-
ment provides each virtualized operating system (or guest)
the illusion that it has exclusive access to the underly-
ing hardware platform on which it runs. Of course, the
virtual machine itself can offer the guest a different view
of the hardware from what is really available, including
CPU, memory, I/O, and restricted views of devices.

Virtualization has a long history, starting in the main-
frame environment and arising from the need to provide
isolation between users. The basic trend started with
time-sharing systems (enabling multiple users to share
a single expensive computer system), aided by innova-
tions in operating system design to support the idea of
processes that belong to a single user. The addition of user
and supervisor modes on most commercially relevant

 The
Virtualization

 Reality

SIMON CROSBY, XENSOURCE and DAVID BROWN, SUN MICROSYSTEMS

Computer
ArchitectureFO

CU
S

ACM QUEUE December/January 2006-2007 35 more queue: www.acmqueue.com

Are

hypervisors

the new

foundation

for

system

software?

36 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

processors meant that the operating system code could
be protected from user programs, using a set of so-called
“privileged” instructions reserved for the operating
system software running in supervisor mode. Memory
protection and, ultimately, virtual memory were invented
so that separate address spaces could be assigned to differ-
ent processes to share the system’s physical memory and
ensure that its use by different applications was mutually
segregated.

These initial enhancements could all be accommo-
dated within the operating system, until the day arrived
when different users, or different applications on the
same physical machine, wanted to run different operating
systems. This requirement could be satisfied only by sup-
porting multiple VMs, each capable of running its own
operating system. The virtualization era (marked by IBM’s
release of VM for the System/360 in 1972) had dawned.

VIRTUALIZATION BASICS
Operating system virtualization is achieved by inserting
a layer of system software—often called the hypervisor
or VMM (virtual machine monitor)—between the guest
operating system and the underlying hardware. This layer
is responsible for allowing multiple operating system
images (and all their running applications) to share the
resources of a single hardware server. Each operating
system believes that it has the resources of the entire
machine under its control, but beneath its feet the virtu-
alization layer, or hypervisor, transparently ensures that
resources are properly and securely partitioned between
different operating system images and their applications.
The hypervisor manages all hardware structures, such as
the MMU (memory management unit), I/O devices, and
DMA (direct memory access) controllers, and presents a
virtualized abstraction of those resources to each guest
operating system.

EMULATED VIRTUALIZATION
The most direct method of achieving virtualization is to
provide a complete emulation of the underlying hardware
platform’s architecture in software, particularly involving
the processor’s instruction set architecture. For the x86
processor, the privileged instructions—used exclusively by
the operating system (for interrupt handling, reading and
writing to devices, and virtual memory)—form the domi-

nant class of instructions requiring emulation. By defini-
tion, a user program cannot execute these instructions.
One technique to force emulation of these instructions
is to execute all of the code within a virtual machine,
including the operating system being virtualized, as user
code. The resident VMM then handles the exception pro-
duced by the attempt to execute a privileged instruction
and performs the desired action on behalf of the operat-
ing system.

While some CPUs were carefully architected with oper-
ating system virtualization in mind (the IBM 360 is one
such example), many contemporary commodity proces-
sor architectures evolved from earlier designs, which did
not anticipate virtualization. Providing full virtualization
of a processor in such cases is a challenging problem,
often resulting in so-called “virtualization holes.” Virtual-
ization of the x86 processor is no exception. For example,
certain instructions execute in both user mode and
supervisor mode but produce different results, depend-
ing on the execution mode. A common approach to
overcome these problems is to scan the operating system
code and modify the offending instruction sequences,
either to produce the intended behavior or to force a trap
into the VMM. Unfortunately, this patching and trapping
approach can cause significant performance penalties.

PARAVIRTUALIZATION
An alternative way of achieving virtualization is to pre-
sent a VM abstraction that is similar but not identical to
the underlying hardware. This approach has been called
paravirtualization.

In lieu of a direct software emulation of the underlying
hardware architecture, the concept of paravirtualization is
that a guest operating system and an underlying hypervi-
sor collaborate closely to achieve optimal performance.
Many guest operating system instances (of different
configurations and types) may run atop the one hypervi-
sor on a given hardware platform. This offers improved
performance, although it does require modifications
to the guest operating system. It is important to note,
however, that it does not require any change to the ABI
(application binary interface) offered by the guest system;
hence, no modifications are required to the guest operat-
ing system’s applications.

In many ways this method is similar to the operating

The Virtualization Reality

Computer
ArchitectureFO

CU
S

ACM QUEUE December/January 2006-2007 37 more queue: www.acmqueue.com

system virtualization approach of VM for the IBM 360
and 370 mainframes.1,2 Under pure virtualization, you can
run an unmodified operating-system binary and unmodi-
fied application binaries, but the resource consumption
management and performance isolation is problem-
atic—one guest operating system and/or its apps could
consume all physical memory and/or cause thrashing, for
example. The paravirtualization approach requires some
work to port each guest operating system, but rigorous
allocation of hardware resources can then be done by the
hypervisor, ensuring proper performance isolation and
guarantees.

The use of paravirtualization and the complementary
innovation of processor architecture extensions to sup-
port it (particularly those recently introduced in both the
Intel and AMD processors, which eliminate the need to
“trap and emulate”) now permit high-performance virtu-
alization of the x86 architecture.

PARAVIRTUALIZATION AND THE XEN HYPERVISOR
An example of paravirtualization as applied on the x86
architecture is the Xen hypervisor (figure 1). Xen was ini-
tially developed by Ian Pratt and a team at the University
of Cambridge in 2001-02, and has subsequently evolved
into an open source project with broad involvement.

Any hypervisor (whether it implements full hardware
emulation or paravirtualization) must provide virtualiza-
tion for the following system facilities:
• CPUs (including multiple cores per device)
• Memory system (memory management and physical

memory)
• I/O devices
• Asynchronous events, such as interrupts

Let’s now briefly examine Xen’s approach to each of
these facilities. (For further detail, we recommend the
excellent introduction to and comprehensive treatment
of Xen’s design and principles presented in Pratt et al.’s
paper.3)

CPU AND MEMORY VIRTUALIZATION
In Xen’s paravirtualization, virtualization of CPU and
memory and low-level hardware interrupts are provided
by a low-level efficient hypervisor layer that is imple-
mented in about 50,000 lines of code. When the operat-
ing system updates hardware data structures, such as the
page table, or initiates a DMA operation, it collaborates
with the hypervisor by making calls into an API that is
offered by the hypervisor.

This, in turn, allows the hypervisor to keep track of all
changes made by the operating system and to optimally

decide how to manage the state of hardware data struc-
tures on context switches. The hypervisor is mapped into
the address space of each guest operating system, mean-
ing that there is no context-switch overhead between the
operating system and the hypervisor on a hypercall.

Finally, by cooperatively working with the guest
operating systems, the hypervisor gains insight into the
intentions of the operating system and can make it aware
that it has been virtualized. This can be a great advantage
to the guest operating system—for example, the hypervi-
sor can tell the guest that real time has passed between its
last run and its present run, permitting it to make smarter
rescheduling decisions to respond appropriately to a rap-
idly changing environment.

Xen makes a guest operating system (running on top
of the VMM) virtualization-aware and presents it with a
slightly modified x86 architecture, provided through the
so-called hypercall API. This removes any difficult and
costly-to-emulate privileged instructions and provides
equivalent, although not identical, functionality with
explicit calls into the hypervisor. The operating system
must be modified to deal with this change, but in a well-
structured operating system, these changes are limited
to its architecture-dependent modules, most typically
a fairly small subset of the complete operating system
implementation. Most importantly, the bulk of the oper-
ating system and the entirety of application programs
remain unmodified.

• small hypervisor runs directly on hardware
• guest OSes co-operate with hypervisor for
 resource management & I/O
• device drivers outside hypervisor

Paravirtualization–Xen Hypervisor

mgt
code

mgt
API

user
apps

device
drivers

domain 0/
root partition

hardware

hypercall APIXe
n

user
apps

Linux Windows

FIG 1

38 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

For Linux, the Xen hypercall API takes the form of a
jump table populated at kernel load time. When the ker-
nel is running in a native implementation (i.e., not atop
a paravirtualizing hypervisor), the jump table is popu-
lated with default native operations; when the kernel is
running on Xen, the jump table is populated with the
Xen hypercalls. This enables the same kernel to run in
both native and virtualized forms, with the performance
benefits of paravirtualization but without the need to
recertify applications against the kernel.

Isolation between virtual machines (hence, the respec-
tive guest operating systems running within each) is a
particularly important property that Xen provides. The
physical resources of the hardware platform (such as
CPU, memory, etc.) are rigidly divided between VMs to
ensure that they each receive a guaranteed portion of the
platform’s overall capacity for processing, memory, I/O,
and so on. Moreover, as each guest is running on its own
set of virtual hardware, applications in separate operat-
ing systems are protected from one another to almost
the same degree that they would be were they installed
on separate physical hosts. This property is particularly
appealing in light of the inability of current operating
systems to provide protection against spyware, worms,
and viruses. In a system such as Xen, nontrusted applica-
tions considered to pose such risks (perhaps such as Web
browsers) may be seconded to their own virtual machines
and thus completely separated from both the underlying
system software and other more trusted applications.

I/O VIRTUALIZATION
I/O virtualization in a paravirtualizing VMM such as Xen
is achieved via a single set of drivers. The Xen hypervisor
exposes a set of clean and simple device abstractions, and
a set of drivers for all hardware on the physical platform
is implemented in a special domain (VM) outside the core
hypervisor. These drivers are offered via the hypervisor’s
abstracted I/O interface for use within other VMs, and
thus are used by all guest operating systems.4

In each Xen guest operating system, simple paravirtu-
alizing device drivers replace hardware-specific drivers for
the physical platform. Paravirtualizing drivers are inde-
pendent of all physical hardware but represent each type
of device (e.g., block I/O, Ethernet). These drivers enable
high-performance, virtualization-safe I/O to be accom-

plished by transferring control of the I/O to the hypervi-
sor, with no additional complexity in the guest operating
system. It is important to note that the drivers in the Xen
architecture run outside the base hypervisor, at a lower
level of protection than the core of the hypervisor itself.
The hypervisor is thus protected from bugs and crashes in
device drivers (they cannot crash the Xen VMM) and can
use any device drivers available on the market. Also, the
virtualized operating system image is much more portable
across hardware, since the low levels of the driver and
hardware management are modules that run under con-
trol of the hypervisor.

In full-virtualization (emulation) implementations,
the platform’s physical hardware devices are emulated,
and the unmodified binary for each guest operating
system is run, including the native drivers it contains. In
those circumstances it is difficult to restrict the respective
operating system’s use of the platform’s physical hard-
ware, and one virtual machine’s runtime behaviors can
significantly impact the performance of the others. Since
all physical access to hardware is managed centrally in
Xen’s approach to I/O virtualization, resource access by
each guest can be marshaled. This provides the conse-
quential benefit of performance isolation for each of the
guest operating systems.

Those who have experience with microkernels will
likely find this approach to I/O virtualization familiar.
One significant difference between Xen and historical
work on microkernels, however, is that Xen has relaxed
the constraint of achieving a complete and architecturally
pure emulation of the x86 processor’s I/O architecture.
Xen uses a generalized, shared-memory, ring-based I/O
communication primitive that is able to achieve very
high throughputs by batching requests. This I/O abstrac-
tion has served well in ports to other processor architec-
tures, including the IA-64 and PowerPC. It also affords an
innovative means to add features into the I/O path, by
plumbing in additional modules between the guest vir-
tual device and the real device driver. One example in the
network stack is the support of full OSI layer 2 switching,
packet filtering, and even intrusion detection.

HARDWARE SUPPORT FOR VIRTUALIZATION
Recent innovations in hardware, particularly in CPU,
MMU, and memory components (notably the hardware

The Virtualization Reality

Computer
ArchitectureFO

CU
S

ACM QUEUE December/January 2006-2007 39 more queue: www.acmqueue.com

virtualization support presently available in the Intel
VT-x and AMD-V architectures, offered in both client
and server platforms), provide some direct platform-level
architectural support for operating system virtualization.
This has enabled near bare-metal performance for virtual-
ized guest operating systems.

Xen provides a common HVM (hardware virtual
machine) abstraction to hide the minor differences
between the Intel and AMD technologies and their
implementations. HVM offers two key features: First, for
unmodified guest operating systems, it avoids the need to
trap and emulate privileged instructions in the operating
system, by enabling guests to run at their native privilege
levels, while providing a hardware vector (called a VM
EXIT) into the hypervisor whenever the guest executes
a privileged instruction that would unsafely modify the
machine state. The hypervisor begins execution with
the full state of the guest available to it and can rapidly
decide how best to deal with the reason for the VM EXIT.
Today’s hardware takes about 1,000 clock cycles to save
the state of the currently executing guest and to transi-
tion into the hypervisor, which offers good, though not
outstanding, performance.

A second feature of the HVM implementations is
that they offer guest operating systems running with a
paravirtualizing hypervisor (in particular, their device
drivers) new instructions that call directly into the
hypervisor. These can be used to ensure that guest I/O
takes the fastest path into the hypervisor. Paravirtualizing
device drivers, inserted into each guest operating system,
can then achieve optimal I/O performance, even though
neither Intel’s nor AMD’s virtualization extension for the
x86 (Intel VT and AMD-V, respectively) offers particular
performance benefits to I/O virtualization.

VIRTUALIZATION AS A SOLUTION
A number of chronic challenges are associated with
deployment and management of computer systems and
their applications, especially in the modern context of
larger-scale, commercial, and/or enterprise use. Virtualiza-
tion provides an abstraction from the physical hardware,
which breaks the constraint that only a single instance of
an operating system may run on a single hardware plat-
form. Because it encapsulates the operating environment,
virtualization is a surprisingly powerful abstraction.

SERVER VIRTUALIZATION
The past decade has witnessed a revolutionary reduction
in hardware costs, as well as a significant increase in both
capacity and performance of many of the basic hardware

platform constituents (processors, storage, and memory).
Ironically, in spite of the corresponding widespread
adoption of these now relatively inexpensive, x86-based
servers, most enterprises have seen their IT costs and
complexity escalate rapidly.

While the steady march of Moore’s law has markedly
decreased hardware’s cost of acquisition, the associated
proliferation of this inexpensive computing has led to
tremendous increases in complexity—with the costs of
server configuration, management, power, and main-
tenance dwarfing the basic cost of the hardware. Each
server in the data center costs an enterprise on average
$10,000 per year to run when all of its costs—provision-
ing, maintenance, administration, power, real estate,
hardware, and software—are considered. In addition, the
artifacts of current operating-system and system-software
architecture result in most servers today running at under
10 percent utilization.

Several opportunities arise directly from the rapid
performance and capacity increase seen in the contem-
porary commodity hardware platforms. Last decade’s
trend in commercial IT infrastructure was an expanding
hardware universe: achieving performance and capacity
by “horizontal” scaling of the hardware. Given the dra-
matic performance available on a single commodity box
today, we may now be witnessing a contraction of this
universe—still a horizontal trend, but in reverse. Whereas
it may have required many servers to support enterprise-
wide or even department-wide computing just five years
ago, virtualization allows many large application loads to
be placed on one hardware platform, or a smaller number
of platforms. This can cut both per-server capital cost and
the overall lifetime operational costs significantly.

The 10-percent utilization statistic reveals that server
consolidation can achieve a tenfold savings in infrastruc-
ture cost, not simply through reduced CPU count but
more importantly through its consequent reductions in
switching, communication, and storage infrastructure,
and power and management costs. Since virtualiza-
tion allows multiple operating system images (and the
applications associated with each that constitute software
services) to share a single hardware server, it is a basic
enabler for server consolidation.

The virtual I/O abstraction is another important
component of server virtualization. In the past, when
multiple servers and/or multiple hardware interfaces per
server were used to support scalability, physical hardware
devices could be individually allotted to guarantee a
certain performance, specific security properties, and/or
other configuration aspects to individual operating-sys-

40 December/January 2006-2007 ACM QUEUE rants: feedback@acmqueue.com

tem and application loads. Nowadays, a single device may
have significantly higher performance (e.g., the transition
from Fast Ethernet to inexpensive Gigabit or even 10-
Gigabit network interface cards), and just one or a much
smaller number of physical devices will likely be present
on a single server or server configuration.

In such configurations, where individual physical
hardware devices are shared by multiple hosted VMs
on a single server, ensuring that there is proper isola-
tion between their respective demands upon the shared
hardware is critical. Strict allocation of the shared CPU,
memory, and I/O resources, as well as the assurance of
the security of both the platform and the guests, are key
requirements that fall on the hypervisor.

Beyond its immediate application for server consoli-
dation, server virtualization offers many further benefits
that derive from the separation of virtual machines (an
operating system and its applications) from physical
hardware. These benefits (several of which have yet to be
exploited fully in application) include dynamic provi-
sioning, high availability, fault tolerance, and a “utility
computing” paradigm in which compute resources are
dynamically assigned to virtualized application work-
loads.

VIRTUAL APPLIANCES
Once an operating system and its applications have been
encapsulated into a virtual machine, the VM can be
run on any computer with a hypervisor. The ability to
encapsulate all states, including application and operat-
ing-system configuration, into a single, portable, instantly
runnable package provides great flexibility. For a start,
the application can be provisioned and the VM saved in
a “suspended” state, which makes it instantly runnable
without further configuration. The image of one or more
applications that have been properly configured in a VM
and are ready to run can be saved, and this may then be
used as a highly portable distribution format for a soft-
ware service.

The administrative tasks of installing and configuring
an operating system and the necessary applications prior
to instantiating and launching a software service on a
platform are no longer needed. The preconfigured and
saved VM image is simply loaded and launched. VMware
led the industry with its appliance concept, which aims

to use packaged VMs as a new software distribution
technique. VMware offers more than 200 prepackaged
appliances from its Web site.

Within the enterprise, the packaged VM offers
additional benefits: Software delivered by an engineer-
ing group can be packaged with the operating system it
requires and can be staged for testing and production as a
VM. Easily and instantly provisioned onto testing equip-
ment, the application and the operating system against
which it is certified can be quickly tested in a cost-effi-
cient environment before being made available as a pack-
aged VM, ready for deployment into production.

A key problem in the data center is the ability to get
new applications quickly into production. New applica-
tions typically take 60 to 90 days to qualify. To make it
from testing into the data center, IT staff must acquire
a new machine, provision it with an operating system,
install the application, configure and test the setup for
the service in question, and only then, once satisfied, rack
the resulting server in the data center.

This packaging approach provides an avenue to a
solution. Once new software has been packaged as an
appliance, it can be deployed and run instantly on any
existing server in the data center that has sufficient capac-
ity to run it. Any final testing or qualification can still
be done before the service is made available for produc-
tion use if required, but the lead times to acquire, install,
and/or customize new hardware at its point of use are
removed.

LIVE RELOCATION
Virtual appliances accelerate software provisioning and
portability. Live relocation—the ability to move a running
VM dynamically from one server to another, without
stopping it—offers another benefit: When coupled with
load-balancing and server resource optimization soft-
ware, this provides a powerful tool for enabling a “utility
computing” paradigm. When a VM is short of resources,
it can be relocated dynamically to another machine with
more resources. When capacities are stretched, additional
copies of an existing VM can be cloned rapidly and
deployed to other available hardware resources to increase
overall service capacity. Instantaneous load consider-
ations are a notorious challenge in the IT administrative
world. Grid engines, as applied on distributed virtualized

The Virtualization Reality

Computer
ArchitectureFO

CU
S

ACM QUEUE December/January 2006-2007 41 more queue: www.acmqueue.com

servers, where spare resources are held in reserve, can
be used to spawn many instances of a given application
dynamically to meet increased load or demand.

CLIENT SECURITY AND MOBILITY
On the client, virtualization offers various opportuni-
ties for enhanced security, manageability, greater worker
mobility, and increased robustness of client devices.
Virtualization of clients is also made possible through the
hosting of multiple client operating system instances on a
modern server-class system. Offering each client environ-
ment as a virtualized system instance located on a server
in the data center provides the user with a modern-day
equivalent of the thin client. Mobility of users is a direct
result of their ability to access their virtualized workload
remotely from any client endpoint. Sun’s Sun Ray system
is an example of one such implementation.

Increased security of data, applications and their
context of use, and reduced overall cost of administration
for client systems are important aspects of this technol-
ogy. Enhanced reliability and security can be achieved,
for example, by embedding function-specific, hidden
VMs on a user’s PC, where the VM has been designed to
monitor traffic, implement “embedded IT” policies, or the
like. The packaging of applications and operating-system
images into portable appliances also provides a power-
ful metaphor for portability of application state: Simply
copying a suspended VM to a memory stick allows the
user to carry running applications to any virtualization-
ready device. VMware’s free Player application is a thin,
client-side virtualization “player” that has the ability to
execute a packaged VM. Examples include prepackaged
secure Web browsers that can be discarded after per-ses-
sion use (to obtain greater security) and secured, user-spe-
cific or enterprise-specific applications.

CONCLUSION
The use of virtualization portends many further oppor-
tunities for security and manageability on the client. The
examples presented here only begin to illustrate the ways
in which virtualization can be applied. Virtualization rep-
resents a basic change in the architecture of both systems
software and the data center. It offers some important
opportunities for cost savings and efficiency in comput-
ing infrastructure, and for centralized administration and
management of that infrastructure for both servers and
clients. We expect it to change the development, test-
ing, and delivery of software fundamentally, with some
immediate application in the commercial and enterprise
context. Q

ACKNOWLEDGMENTS
We are particularly indebted to the team at the University
of Cambridge, including Paul Barham, Boris Dragovic,
Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Derek
McAuley, Rolf Neugebauer, Ian Pratt, Andrew Warfield,
and Matt Williamson, who have developed and evolved
the Xen system. This article reports on their work.

REFERENCES
1. Gum, P. H. 1983. System/370 extended architecture:

Facilities for virtual machines. IBM Journal of Research
and Development 27(6): 530-544.

2. Seawright, L., MacKinnon, R. 1979. VM/370—a study
of multiplicity and usefulness. IBM Systems Journal
18(1): 4-17.

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., Warfield, A. 2003. Xen
and the art of virtualization. In Proceedings of the 19th
ACM SOSP (October): 164-177.

4. Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield,
A., Williamson, M. 2004. Safe hardware access with the
Xen virtual machine monitor. Cambridge, UK: Univer-
sity of Cambridge Computer Laboratory; www.cl.cam.
ac.uk/research/srg/netos/papers/2004-oasis-ngio.pdf.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

SIMON CROSBY is CTO of XenSource where he is respon-
sible for XenEnterprise R&D, technology leadership, and
product management, and maintaining a close affiliation
with the Xen project run by Ian Pratt, the founder of Xen-
Source. Crosby was a principal engineer at Intel where he led
research in distributed autonomic computing and platform
security and trust. Before Intel, Simon founded CPlane Inc.,
a network optimization software vendor. He was a tenured
faculty member at the University of Cambridge, where he
led research on network performance and control, and multi-
media operating systems.
DAVID BROWN is a member of the Solaris Engineer-
ing group at Sun Microsystems. He led the Solaris ABI
compatibility program and more recently has worked on
several projects to support Sun’s AMD x64- and Intel-based
platforms. Earlier he was a founder of Silicon Graphics
and the Workstation Systems Engineering group at Digital
Equipment Corporation. He introduced and described the
unified memory architecture approach for high-performance
graphics hardware in his Ph.D. dissertation at the University
of Cambridge.
© 2006 ACM 1542-7730/06/1200 $5.00

