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A number of important challenges are associated with the 
deployment and configuration of contemporary comput-
ing infrastructure. Given the variety of operating systems 
and their many versions—including the often-specific 
configurations required to accommodate the wide range 
of popular applications—it has become quite a conun-
drum to establish and manage such systems.

Significantly motivated by these challenges, but also 
owing to several other important opportunities it offers, 
virtualization has recently become a principal focus for 
computer systems software. It enables a single computer 
to host multiple different operating system stacks, and 
it decreases server count and reduces overall system 
complexity. EMC’s VMware is the most visible and early 
entrant in this space, but more recently XenSource, Paral-
lels, and Microsoft have introduced virtualization solu-
tions. Many of the major systems vendors, such as IBM, 
Sun, and Microsoft, have efforts under way to exploit 
virtualization. Virtualization appears to be far more than 
just another ephemeral marketplace trend. It is poised to 
deliver profound changes to the way that both enterprises 
and consumers use computer systems.  

What problems does virtualization address, and more-
over, what will you need to know and/or do differently 
to take advantage of the innovations that it delivers? In 
this article we provide an overview of system virtualiza-

tion, taking a closer look at the Xen hypervisor and its 
paravirtualization architecture. We then review several 
challenges in deploying and exploiting computer systems 
and software applications, and we look at IT infrastruc-
ture management today and show how virtualization can 
help address some of the challenges.

A POCKET HISTORY OF VIRTUALIZATION
All modern computers are sufficiently powerful to use 
virtualization to present the illusion of many smaller VMs 
(virtual machines), each running a separate operating sys-
tem instance. An operating system virtualization environ-
ment provides each virtualized operating system (or guest) 
the illusion that it has exclusive access to the underly-
ing hardware platform on which it runs. Of course, the 
virtual machine itself can offer the guest a different view 
of the hardware from what is really available, including 
CPU, memory, I/O, and restricted views of devices. 

Virtualization has a long history, starting in the main-
frame environment and arising from the need to provide 
isolation between users. The basic trend started with 
time-sharing systems (enabling multiple users to share 
a single expensive computer system), aided by innova-
tions in operating system design to support the idea of 
processes that belong to a single user. The addition of user 
and supervisor modes on most commercially relevant 
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processors meant that the operating system code could 
be protected from user programs, using a set of so-called 
“privileged” instructions reserved for the operating 
system software running in supervisor mode. Memory 
protection and, ultimately, virtual memory were invented 
so that separate address spaces could be assigned to differ-
ent processes to share the system’s physical memory and 
ensure that its use by different applications was mutually 
segregated.

These initial enhancements could all be accommo-
dated within the operating system, until the day arrived 
when different users, or different applications on the 
same physical machine, wanted to run different operating 
systems. This requirement could be satisfied only by sup-
porting multiple VMs, each capable of running its own 
operating system. The virtualization era (marked by IBM’s 
release of VM for the System/360 in 1972) had dawned. 

VIRTUALIZATION BASICS
Operating system virtualization is achieved by inserting 
a layer of system software—often called the hypervisor 
or VMM (virtual machine monitor)—between the guest 
operating system and the underlying hardware. This layer 
is responsible for allowing multiple operating system 
images (and all their running applications) to share the 
resources of a single hardware server. Each operating 
system believes that it has the resources of the entire 
machine under its control, but beneath its feet the virtu-
alization layer, or hypervisor, transparently ensures that 
resources are properly and securely partitioned between 
different operating system images and their applications. 
The hypervisor manages all hardware structures, such as 
the MMU (memory management unit), I/O devices, and 
DMA (direct memory access) controllers, and presents a 
virtualized abstraction of those resources to each guest 
operating system.  

EMULATED VIRTUALIZATION
The most direct method of achieving virtualization is to 
provide a complete emulation of the underlying hardware 
platform’s architecture in software, particularly involving 
the processor’s instruction set architecture. For the x86 
processor, the privileged instructions—used exclusively by 
the operating system (for interrupt handling, reading and 
writing to devices, and virtual memory)—form the domi-

nant class of instructions requiring emulation. By defini-
tion, a user program cannot execute these instructions. 
One technique to force emulation of these instructions 
is to execute all of the code within a virtual machine, 
including the operating system being virtualized, as user 
code. The resident VMM then handles the exception pro-
duced by the attempt to execute a privileged instruction 
and performs the desired action on behalf of the operat-
ing system. 

While some CPUs were carefully architected with oper-
ating system virtualization in mind (the IBM 360 is one 
such example), many contemporary commodity proces-
sor architectures evolved from earlier designs, which did 
not anticipate virtualization. Providing full virtualization 
of a processor in such cases is a challenging problem, 
often resulting in so-called “virtualization holes.” Virtual-
ization of the x86 processor is no exception. For example, 
certain instructions execute in both user mode and 
supervisor mode but produce different results, depend-
ing on the execution mode. A common approach to 
overcome these problems is to scan the operating system 
code and modify the offending instruction sequences, 
either to produce the intended behavior or to force a trap 
into the VMM. Unfortunately, this patching and trapping 
approach can cause significant performance penalties. 

PARAVIRTUALIZATION
An alternative way of achieving virtualization is to pre-
sent a VM abstraction that is similar but not identical to 
the underlying hardware. This approach has been called 
paravirtualization. 

In lieu of a direct software emulation of the underlying 
hardware architecture, the concept of paravirtualization is 
that a guest operating system and an underlying hypervi-
sor collaborate closely to achieve optimal performance. 
Many guest operating system instances (of different 
configurations and types) may run atop the one hypervi-
sor on a given hardware platform. This offers improved 
performance, although it does require modifications 
to the guest operating system. It is important to note, 
however, that it does not require any change to the ABI 
(application binary interface) offered by the guest system; 
hence, no modifications are required to the guest operat-
ing system’s applications. 

In many ways this method is similar to the operating 
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system virtualization approach of VM for the IBM 360 
and 370 mainframes.1,2 Under pure virtualization, you can 
run an unmodified operating-system binary and unmodi-
fied application binaries, but the resource consumption 
management and performance isolation is problem-
atic—one guest operating system and/or its apps could 
consume all physical memory and/or cause thrashing, for 
example. The paravirtualization approach requires some 
work to port each guest operating system, but rigorous 
allocation of hardware resources can then be done by the 
hypervisor, ensuring proper performance isolation and 
guarantees.

The use of paravirtualization and the complementary 
innovation of processor architecture extensions to sup-
port it (particularly those recently introduced in both the 
Intel and AMD processors, which eliminate the need to 
“trap and emulate”) now permit high-performance virtu-
alization of the x86 architecture. 

PARAVIRTUALIZATION AND THE XEN HYPERVISOR
An example of paravirtualization as applied on the x86 
architecture is the Xen hypervisor (figure 1). Xen was ini-
tially developed by Ian Pratt and a team at the University 
of Cambridge in 2001-02, and has subsequently evolved 
into an open source project with broad involvement. 

Any hypervisor (whether it implements full hardware 
emulation or paravirtualization) must provide virtualiza-
tion for the following system facilities:
• CPUs (including multiple cores per device)
•  Memory system (memory management and physical 

memory)
• I/O devices
• Asynchronous events, such as interrupts

Let’s now briefly examine Xen’s approach to each of 
these facilities. (For further detail, we recommend the 
excellent introduction to and comprehensive treatment 
of Xen’s design and principles presented in Pratt et al.’s 
paper.3)

CPU AND MEMORY VIRTUALIZATION
In Xen’s paravirtualization, virtualization of CPU and 
memory and low-level hardware interrupts are provided 
by a low-level efficient hypervisor layer that is imple-
mented in about 50,000 lines of code. When the operat-
ing system updates hardware data structures, such as the 
page table, or initiates a DMA operation, it collaborates 
with the hypervisor by making calls into an API that is 
offered by the hypervisor. 

This, in turn, allows the hypervisor to keep track of all 
changes made by the operating system and to optimally 

decide how to manage the state of hardware data struc-
tures on context switches. The hypervisor is mapped into 
the address space of each guest operating system, mean-
ing that there is no context-switch overhead between the 
operating system and the hypervisor on a hypercall.  

Finally, by cooperatively working with the guest 
operating systems, the hypervisor gains insight into the 
intentions of the operating system and can make it aware 
that it has been virtualized. This can be a great advantage 
to the guest operating system—for example, the hypervi-
sor can tell the guest that real time has passed between its 
last run and its present run, permitting it to make smarter 
rescheduling decisions to respond appropriately to a rap-
idly changing environment.  

Xen makes a guest operating system (running on top 
of the VMM) virtualization-aware and presents it with a 
slightly modified x86 architecture, provided through the 
so-called hypercall API. This removes any difficult and 
costly-to-emulate privileged instructions and provides 
equivalent, although not identical, functionality with 
explicit calls into the hypervisor. The operating system 
must be modified to deal with this change, but in a well-
structured operating system, these changes are limited 
to its architecture-dependent modules, most typically 
a fairly small subset of the complete operating system 
implementation. Most importantly, the bulk of the oper-
ating system and the entirety of application programs 
remain unmodified.  

• small hypervisor runs directly on hardware
• guest OSes co-operate with hypervisor for 
   resource management & I/O
• device drivers outside hypervisor
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For Linux, the Xen hypercall API takes the form of a 
jump table populated at kernel load time. When the ker-
nel is running in a native implementation (i.e., not atop 
a paravirtualizing hypervisor), the jump table is popu-
lated with default native operations; when the kernel is 
running on Xen, the jump table is populated with the 
Xen hypercalls. This enables the same kernel to run in 
both native and virtualized forms, with the performance 
benefits of paravirtualization but without the need to 
recertify applications against the kernel.

Isolation between virtual machines (hence, the respec-
tive guest operating systems running within each) is a 
particularly important property that Xen provides. The 
physical resources of the hardware platform (such as 
CPU, memory, etc.) are rigidly divided between VMs to 
ensure that they each receive a guaranteed portion of the 
platform’s overall capacity for processing, memory, I/O, 
and so on. Moreover, as each guest is running on its own 
set of virtual hardware, applications in separate operat-
ing systems are protected from one another to almost 
the same degree that they would be were they installed 
on separate physical hosts. This property is particularly 
appealing in light of the inability of current operating 
systems to provide protection against spyware, worms, 
and viruses. In a system such as Xen, nontrusted applica-
tions considered to pose such risks (perhaps such as Web 
browsers) may be seconded to their own virtual machines 
and thus completely separated from both the underlying 
system software and other more trusted applications.

I/O VIRTUALIZATION
I/O virtualization in a paravirtualizing VMM such as Xen 
is achieved via a single set of drivers. The Xen hypervisor 
exposes a set of clean and simple device abstractions, and 
a set of drivers for all hardware on the physical platform 
is implemented in a special domain (VM) outside the core 
hypervisor. These drivers are offered via the hypervisor’s 
abstracted I/O interface for use within other VMs, and 
thus are used by all guest operating systems.4

In each Xen guest operating system, simple paravirtu-
alizing device drivers replace hardware-specific drivers for 
the physical platform. Paravirtualizing drivers are inde-
pendent of all physical hardware but represent each type 
of device (e.g., block I/O, Ethernet). These drivers enable 
high-performance, virtualization-safe I/O to be accom-

plished by transferring control of the I/O to the hypervi-
sor, with no additional complexity in the guest operating 
system. It is important to note that the drivers in the Xen 
architecture run outside the base hypervisor, at a lower 
level of protection than the core of the hypervisor itself. 
The hypervisor is thus protected from bugs and crashes in 
device drivers (they cannot crash the Xen VMM) and can 
use any device drivers available on the market. Also, the 
virtualized operating system image is much more portable 
across hardware, since the low levels of the driver and 
hardware management are modules that run under con-
trol of the hypervisor.

In full-virtualization (emulation) implementations, 
the platform’s physical hardware devices are emulated, 
and the unmodified binary for each guest operating 
system is run, including the native drivers it contains. In 
those circumstances it is difficult to restrict the respective 
operating system’s use of the platform’s physical hard-
ware, and one virtual machine’s runtime behaviors can 
significantly impact the performance of the others. Since 
all physical access to hardware is managed centrally in 
Xen’s approach to I/O virtualization, resource access by 
each guest can be marshaled. This provides the conse-
quential benefit of performance isolation for each of the 
guest operating systems.

Those who have experience with microkernels will 
likely find this approach to I/O virtualization familiar. 
One significant difference between Xen and historical 
work on microkernels, however, is that Xen has relaxed 
the constraint of achieving a complete and architecturally 
pure emulation of the x86 processor’s I/O architecture. 
Xen uses a generalized, shared-memory, ring-based I/O 
communication primitive that is able to achieve very 
high throughputs by batching requests. This I/O abstrac-
tion has served well in ports to other processor architec-
tures, including the IA-64 and PowerPC. It also affords an 
innovative means to add features into the I/O path, by 
plumbing in additional modules between the guest vir-
tual device and the real device driver. One example in the 
network stack is the support of full OSI layer 2 switching, 
packet filtering, and even intrusion detection.  

HARDWARE SUPPORT FOR VIRTUALIZATION
Recent innovations in hardware, particularly in CPU, 
MMU, and memory components (notably the hardware 
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virtualization support presently available in the Intel 
VT-x and AMD-V architectures, offered in both client 
and server platforms), provide some direct platform-level 
architectural support for operating system virtualization. 
This has enabled near bare-metal performance for virtual-
ized guest operating systems.

Xen provides a common HVM (hardware virtual 
machine) abstraction to hide the minor differences 
between the Intel and AMD technologies and their 
implementations. HVM offers two key features: First, for 
unmodified guest operating systems, it avoids the need to 
trap and emulate privileged instructions in the operating 
system, by enabling guests to run at their native privilege 
levels, while providing a hardware vector (called a VM 
EXIT) into the hypervisor whenever the guest executes 
a privileged instruction that would unsafely modify the 
machine state. The hypervisor begins execution with 
the full state of the guest available to it and can rapidly 
decide how best to deal with the reason for the VM EXIT. 
Today’s hardware takes about 1,000 clock cycles to save 
the state of the currently executing guest and to transi-
tion into the hypervisor, which offers good, though not 
outstanding, performance.  

A second feature of the HVM implementations is 
that they offer guest operating systems running with a 
paravirtualizing hypervisor (in particular, their device 
drivers) new instructions that call directly into the 
hypervisor. These can be used to ensure that guest I/O 
takes the fastest path into the hypervisor. Paravirtualizing 
device drivers, inserted into each guest operating system, 
can then achieve optimal I/O performance, even though 
neither Intel’s nor AMD’s virtualization extension for the 
x86 (Intel VT and AMD-V, respectively) offers particular 
performance benefits to I/O virtualization.

VIRTUALIZATION AS A SOLUTION
A number of chronic challenges are associated with 
deployment and management of computer systems and 
their applications, especially in the modern context of 
larger-scale, commercial, and/or enterprise use. Virtualiza-
tion provides an abstraction from the physical hardware, 
which breaks the constraint that only a single instance of 
an operating system may run on a single hardware plat-
form. Because it encapsulates the operating environment, 
virtualization is a surprisingly powerful abstraction. 

SERVER VIRTUALIZATION
The past decade has witnessed a revolutionary reduction 
in hardware costs, as well as a significant increase in both 
capacity and performance of many of the basic hardware 

platform constituents (processors, storage, and memory). 
Ironically, in spite of the corresponding widespread 
adoption of these now relatively inexpensive, x86-based 
servers, most enterprises have seen their IT costs and 
complexity escalate rapidly. 

While the steady march of Moore’s law has markedly 
decreased hardware’s cost of acquisition, the associated 
proliferation of this inexpensive computing has led to 
tremendous increases in complexity—with the costs of 
server configuration, management, power, and main-
tenance dwarfing the basic cost of the hardware. Each 
server in the data center costs an enterprise on average 
$10,000 per year to run when all of its costs—provision-
ing, maintenance, administration, power, real estate, 
hardware, and software—are considered. In addition, the 
artifacts of current operating-system and system-software 
architecture result in most servers today running at under 
10 percent utilization. 

Several opportunities arise directly from the rapid 
performance and capacity increase seen in the contem-
porary commodity hardware platforms. Last decade’s 
trend in commercial IT infrastructure was an expanding 
hardware universe: achieving performance and capacity 
by “horizontal” scaling of the hardware. Given the dra-
matic performance available on a single commodity box 
today, we may now be witnessing a contraction of this 
universe—still a horizontal trend, but in reverse. Whereas 
it may have required many servers to support enterprise-
wide or even department-wide computing just five years 
ago, virtualization allows many large application loads to 
be placed on one hardware platform, or a smaller number 
of platforms. This can cut both per-server capital cost and 
the overall lifetime operational costs significantly. 

The 10-percent utilization statistic reveals that server 
consolidation can achieve a tenfold savings in infrastruc-
ture cost, not simply through reduced CPU count but 
more importantly through its consequent reductions in 
switching, communication, and storage infrastructure, 
and power and management costs. Since virtualiza-
tion allows multiple operating system images (and the 
applications associated with each that constitute software 
services) to share a single hardware server, it is a basic 
enabler for server consolidation.

The virtual I/O abstraction is another important 
component of server virtualization. In the past, when 
multiple servers and/or multiple hardware interfaces per 
server were used to support scalability, physical hardware 
devices could be individually allotted to guarantee a 
certain performance, specific security properties, and/or 
other configuration aspects to individual operating-sys-
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tem and application loads. Nowadays, a single device may 
have significantly higher performance (e.g., the transition 
from Fast Ethernet to inexpensive Gigabit or even 10-
Gigabit network interface cards), and just one or a much 
smaller number of physical devices will likely be present 
on a single server or server configuration. 

In such configurations, where individual physical 
hardware devices are shared by multiple hosted VMs 
on a single server, ensuring that there is proper isola-
tion between their respective demands upon the shared 
hardware is critical. Strict allocation of the shared CPU, 
memory, and I/O resources, as well as the assurance of 
the security of both the platform and the guests, are key 
requirements that fall on the hypervisor.

Beyond its immediate application for server consoli-
dation, server virtualization offers many further benefits 
that derive from the separation of virtual machines (an 
operating system and its applications) from physical 
hardware. These benefits (several of which have yet to be 
exploited fully in application) include dynamic provi-
sioning, high availability, fault tolerance, and a “utility 
computing” paradigm in which compute resources are 
dynamically assigned to virtualized application work-
loads.  

VIRTUAL APPLIANCES
Once an operating system and its applications have been 
encapsulated into a virtual machine, the VM can be 
run on any computer with a hypervisor. The ability to 
encapsulate all states, including application and operat-
ing-system configuration, into a single, portable, instantly 
runnable package provides great flexibility. For a start, 
the application can be provisioned and the VM saved in 
a “suspended” state, which makes it instantly runnable 
without further configuration. The image of one or more 
applications that have been properly configured in a VM 
and are ready to run can be saved, and this may then be 
used as a highly portable distribution format for a soft-
ware service. 

The administrative tasks of installing and configuring 
an operating system and the necessary applications prior 
to instantiating and launching a software service on a 
platform are no longer needed. The preconfigured and 
saved VM image is simply loaded and launched. VMware 
led the industry with its appliance concept, which aims 

to use packaged VMs as a new software distribution 
technique. VMware offers more than 200 prepackaged 
appliances from its Web site.   

Within the enterprise, the packaged VM offers 
additional benefits: Software delivered by an engineer-
ing group can be packaged with the operating system it 
requires and can be staged for testing and production as a 
VM. Easily and instantly provisioned onto testing equip-
ment, the application and the operating system against 
which it is certified can be quickly tested in a cost-effi-
cient environment before being made available as a pack-
aged VM, ready for deployment into production.   

A key problem in the data center is the ability to get 
new applications quickly into production. New applica-
tions typically take 60 to 90 days to qualify. To make it 
from testing into the data center, IT staff must acquire 
a new machine, provision it with an operating system, 
install the application, configure and test the setup for 
the service in question, and only then, once satisfied, rack 
the resulting server in the data center.  

This packaging approach provides an avenue to a 
solution. Once new software has been packaged as an 
appliance, it can be deployed and run instantly on any 
existing server in the data center that has sufficient capac-
ity to run it. Any final testing or qualification can still 
be done before the service is made available for produc-
tion use if required, but the lead times to acquire, install, 
and/or customize new hardware at its point of use are 
removed.

LIVE RELOCATION
Virtual appliances accelerate software provisioning and 
portability. Live relocation—the ability to move a running 
VM dynamically from one server to another, without 
stopping it—offers another benefit: When coupled with 
load-balancing and server resource optimization soft-
ware, this provides a powerful tool for enabling a “utility 
computing” paradigm. When a VM is short of resources, 
it can be relocated dynamically to another machine with 
more resources. When capacities are stretched, additional 
copies of an existing VM can be cloned rapidly and 
deployed to other available hardware resources to increase 
overall service capacity. Instantaneous load consider-
ations are a notorious challenge in the IT administrative 
world. Grid engines, as applied on distributed virtualized 
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servers, where spare resources are held in reserve, can 
be used to spawn many instances of a given application 
dynamically to meet increased load or demand. 

CLIENT SECURITY AND MOBILITY
On the client, virtualization offers various opportuni-
ties for enhanced security, manageability, greater worker 
mobility, and increased robustness of client devices. 
Virtualization of clients is also made possible through the 
hosting of multiple client operating system instances on a 
modern server-class system. Offering each client environ-
ment as a virtualized system instance located on a server 
in the data center provides the user with a modern-day 
equivalent of the thin client. Mobility of users is a direct 
result of their ability to access their virtualized workload 
remotely from any client endpoint. Sun’s Sun Ray system 
is an example of one such implementation.  

Increased security of data, applications and their 
context of use, and reduced overall cost of administration 
for client systems are important aspects of this technol-
ogy. Enhanced reliability and security can be achieved, 
for example, by embedding function-specific, hidden 
VMs on a user’s PC, where the VM has been designed to 
monitor traffic, implement “embedded IT” policies, or the 
like. The packaging of applications and operating-system 
images into portable appliances also provides a power-
ful metaphor for portability of application state: Simply 
copying a suspended VM to a memory stick allows the 
user to carry running applications to any virtualization-
ready device. VMware’s free Player application is a thin, 
client-side virtualization “player” that has the ability to 
execute a packaged VM. Examples include prepackaged 
secure Web browsers that can be discarded after per-ses-
sion use (to obtain greater security) and secured, user-spe-
cific or enterprise-specific applications.

CONCLUSION
The use of virtualization portends many further oppor-
tunities for security and manageability on the client. The 
examples presented here only begin to illustrate the ways 
in which virtualization can be applied. Virtualization rep-
resents a basic change in the architecture of both systems 
software and the data center. It offers some important 
opportunities for cost savings and efficiency in comput-
ing infrastructure, and for centralized administration and 
management of that infrastructure for both servers and 
clients. We expect it to change the development, test-
ing, and delivery of software fundamentally, with some 
immediate application in the commercial and enterprise 
context. Q 
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