
Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 193

Extending Xen* with Intel® Virtualization Technology

Yaozu Dong, Core Software Division, Intel Corporation

Shaofan Li, Core Software Division, Intel Corporation

Asit Mallick, Core Software Division, Intel Corporation

Jun Nakajima, Core Software Division, Intel Corporation

Kun Tian, Core Software Division, Intel Corporation

Xuefei Xu, Core Software Division, Intel Corporation

Fred Yang, Core Software Division, Intel Corporation

Wilfred Yu, Core Software Division, Intel Corporation

Index words: Xen, Virtualization, Hypervisor, Intel
®
 VT, virtual machine monitor

ABSTRACT

Xen* is an open source virtual machine monitor (VMM)

developed at the University of Cambridge to support

operating systems (OSs) that have been modified to run

on top of the monitor. Intel has extended the Xen VMM

to use Intel
®
 Virtualization Technology

∆
 (VT) to support

unmodified guest OSs also. This was done for IA-32

Intel
®
 Architecture processors as well as Itanium

®

architecture processors.

In this paper we describe the changes that have been

made to Xen to enable this support. We also highlight

the optimizations that have been made to date to deliver

good virtualized performance.

INTRODUCTION

Xen is an open source virtual machine monitor (VMM)

that allows the hardware resources of a machine to be

virtualized and dynamically shared between OSs running

on top of it [1]. Each virtual machine (VM) is called a

Domain, in Xen terminology. Xen provides isolated

execution for each domain, preventing failures or

malicious activities in one domain from impacting

another domain. The Xen hypervisor and Domain0

(Dom0) are a required part of any Xen-based server.

Multiple user domains, called DomainU in Xen

terminology, can be created to run guest OSs.

Unlike the full virtualization solutions offered by the

IBM VM/370
*
, or VMware’s ESX

*
 and Microsoft’s

Virtual PC product
*
, Xen began life as a VMM for guest

OSs that have been modified to run on the Xen

hypervisor. User applications within these OSs run as is,

i.e., unmodified. This technique is called

“paravirtualization,” and it delivers near native

performance for the guest OS, only if the guest OSs

source code can be modified.

Xen versions 1.0 and 2.0 use paravirtualization

techniques to support 32-bit platforms and Linux
*
 guests.

They use the standard IA-32 protection and

segmentation architecture for system resource

virtualization. The hypervisor runs in the highest

privilege level ring 0 and has full access to all memory

on the system. Guest OSs use privilege levels 1, 2, and 3

as they see fit. Segmentation is used to prevent the guest

OS from accessing the Xen address space.

Xen 3.0 is the first open-source VMM that uses Intel

Virtualization Technology (VT) to support unmodified

guest OSs as well as paravirtualized guest OSs. Xen 3.0

also added support for 64-bit platforms and 64-bit guests

[9]. Page-level protection is used to protect the 64-bit

hypervisor from the guest.

In this paper, we begin with a brief overview of Intel VT

and then we explain how we extended Xen to take

advantage of VT. We highlight key virtualization issues

for IA-32, Intel
®
 EM64T

Φ
, and Itanium processors and

explain how they are addressed in Xen 3.0. Finally, we

highlight some of the changes that have been made to the

hypervisor and the device models to improve

performance.

INTEL
®
 VIRTUALIZATION

TECHNOLOGY

Intel VT is a collection of processor technologies that

enables robust execution of unmodified guest OSs on

Intel VT-enhanced VMMs [2]. VT-x

defines the

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 194

extensions to the IA-32 Intel Architecture [3]. VT-i

defines the extensions to the Intel Itanium architecture

[4].

VT-x augments IA-32 with two new forms of CPU

operation: virtual machine extensions (VMX) root

operations and VMX non-root operations. The transition

from VMX root operation to VMX non-root operation is

called a VM entry. The transition from a VMX non-root

operation to VMX root operation is called a VM exit.

A virtual-machine control structure (VMCS) is defined

to manage VM entries and exits, and it controls the

behavior of instructions in a non-root operation. The

VMCS is logically divided into sections, two of which

are the guest-state area and the host-state area. These

areas contain fields corresponding to different

components of processor state. VM entries load

processor state from the guest-state area. VM exits save

processor state to the guest-state area and then load

processor state from the host-state area.

The VMM runs in root operation while the guests run in

VMX non-root operation. Both forms of operation

support all four privilege levels (i.e., rings 0, 1, 2, and

3). The VM-execution control fields in the VMCS allow

the VMM to control the behavior of some instructions in

VMX non-root operation and the events that will cause

VM exits. Instructions like CPUID, MOV from CR3,

RDMSR, and WRMSR will trigger VM exits

unconditionally to allow the VMM to control the

behavior of the guest.

VT-i expands the Itanium processor family (IPF) to

enable robust execution of VMs. A new processor status

register bit (PSR.vm) has been added to define a new

operating mode for the processor. The VMM runs with

this bit cleared while the guest OS runs with it set.

Privileged instructions, including non-privileged

instructions like thash, ttag and mov cupid that may

reveal the true operating state of the processor, trigger

virtualization faults when operating in this mode.

The PSR.vm bit also controls the number of virtual-

address bits that are available to software. When a VMM

is running with PSR.vm = 0, all implemented virtual-

address bits are available. When the guest OS is running

with PSR.vm = 1, the uppermost implemented virtual-

address bit is made unavailable to the guest. Instruction

or data fetches with any of these address bits set will

trigger unimplemented data/instruction address faults or

unimplemented instruction address traps. This provides

the VMM a dedicated address space that guest software

cannot access.

VT-i also defines the processor abstraction layer (PAL)

interfaces that can be used by the VMM to create and

manage VMs. A Virtual Processor Descriptor (VPD) is

defined to represent the resources of a virtual processor.

PAL procedures are defined to allow the VMM to

configure logical processors for virtualization operations

and to suspend or resume virtual processors. PAL run-

time services are defined to support performance-critical

VMM operations.

EXTENDING XEN* WITH INTEL VT

Xen 3.0 architecture (Figure 1) has a small hypervisor

kernel that deals with virtualizing the CPU, memory, and

critical I/O resources, such as the interrupt controller.

Dom0 is a paravirtualized Linux that has privileged

access to all I/O devices in the platform and is an

integral part of any Xen-based system. Xen 3.0 also

includes a control panel that controls the sharing of the

processor, memory, network, and block devices. Access

to the control interface is limited to Dom0. Multiple user

domains, called DomainU (DomU) can be created to run

paravirtualized guest OSs. Dom0 and DomU OSs use

hypercalls to request services from the Xen hypervisor.

When Intel VT is used, fully virtualized domains can be

created to run unmodified guest OSs. These fully

virtualized domains are given the special name of HVMs

(hardware-based virtual machines). Xen presents to each

HVM guest a virtualized platform that resembles a

classic PC/server platform with a keyboard, mouse,

graphics display, disk, floppy, CD-ROM, etc. This

virtualized platform support is provided by the Virtual

I/O Devices module.

In the following sections we describe the extensions to

each of these Xen components.

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 195

Figure 1: Xen 3.0 architecture

Control Panel

We have extended the control panel to support creating,

controlling, and destroying HVM domains. The user can

specify configuration parameters such as the guest

memory map and size, the virtualized disk location,

network configuration, etc.

The control panel loads the guest firmware into the

HVM domain and creates the device model thread

(explained later) that will run in Dom0 to service

input/output (I/O) requests from the HVM guest. The

control panel also configures the virtual devices seen by

the HVM guest, such as the interrupt binding and the

PCI configuration.

The HVM guest is then started, and control is passed to

the first instruction in the guest firmware. The HVM

guest executes at native speed until it encounters an

event that requires special handling by Xen.

Guest Firmware

The guest firmware (BIOS) provides the boot services

and run-time services required by the OS in the HVM.

This guest firmware does not see any real physical

devices. It operates on the virtual devices provided by

the device models.

For VT-x, we are re-using the open source Bochs BIOS

[5]. We extended the Bochs BIOS by adding Multi-

Processor Specification (MPS) tables [6], Advanced

Configuration and Power Interface (ACPI) tables [7],

including the Multiple APIC Description Table

(MADT). The BIOS and the early OS loader expect to

run in real mode. To create the environment needed by

these codes, we use VMXAssist to configure the VT-x

guest to execute in virtual-8086 mode. Instructions that

cannot be executed in this mode are intercepted and

emulated with a software emulator.

For VT-i, we developed a guest firmware using the

Intel
®
 Platform Innovation Framework for Extensible

Firmware Interface (EFI). This guest firmware provides

all EFI boot services required by IPF guest OSs. It is

compatible with the Developer’s Interface Guide for 64-

bit Intel
®
 Architecture-based Servers (DIG64) and

provides the System Abstraction Layer (SAL), ACPI 2.0,

and EFI 1.10 tables required by IPF guest OSs.

Processor Virtualization

The Virtual CPU module in Xen provides the abstraction

of a processor to the HVM guest. It manages the virtual

processor(s) and associated virtualization events when

the guest OS is executing. It saves the physical processor

state when the guest gives up a physical CPU, and

restores the guest state when it is rescheduled to run on a

physical processor.

For the IA-32 architecture, a VMCS structure is created

for each CPU in a HVM domain (Figure 2). The

execution control of the CPU in VMX mode is

configured as follows:

• Instructions such as CPUID, MOV from/to CR3,

MOV to CR0/CR4, RDMSR, WRMSR, HLT,

Xen Hypervisor

N

a
tiv

e
D

ev
ice

D
riv

ers

B
a

ck
en

d

V
irtu

a
l

d
riv

er

App

F
ro

n
t en

d

 V

irtu
a

l

 D
riv

ers

App

HVM (Hardware Virtual Machine)

Domain

Unmodified OS

Virtual Platform

Guest BIOS

F
E

 V
irtu

a
l

D
riv

ers

App App

V
irtu

a
l I/O

D
ev

ices

C
o

n
tro

l

P
a

n
el

Platform with Hardware-Based Virtualization (e.g. Intel® Virtualization Technology on IA-32, EM64T, IPF, aka IA-64)

Xenlinux Xenlinux

Virtual MMU

Virtual I/O Devices

Local IO APIC, PIT

Virtual CPU

Domain0: Para-Virtualization

Domain

App

VM Exit/Entry Hypercall/Event

DomainU: Para-Virtualization

Domain

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 196

INVLPG, MOV from CR8, MOV DR, and MWAIT

are intercepted as VM exits.

• Exceptions/faults, such as page fault, are intercepted

as VM exits, and virtualized exceptions/faults are

injected on VM entry to guests.

• External interrupts unrelated to guests are

intercepted as VM exits, and virtualized interrupts

are injected on VM entry to the guests.

• Read shadows are created for the guest CR0, CR4,

and time stamp counter (TSC). Read accesses to

such registers will not cause VM exit, but will return

the shadow values.

Figure 2: VMCS

For the Itanium architecture, a Virtual Processor Block

(VPD) structure is created for each CPU in a HVM

domain. The VPD has similar functionality as the VMCS

in the IA-32 architecture. The virtualization control of

the CPU is configured as follows:

• Instructions such as MOV from/to RR, MOV

from/to CR, ITC/PTC, ITR/PTR, MOV from/to

PKR, MOV from/to IBR/DBR are intercepted as

virtualization faults.

• Instructions such as COVER, BSW are optimized to

execute without virtualization faults.

• Exceptions/faults are intercepted by the VMM, and

virtualized exceptions/faults are injected to the guest

on a VM resume.

• External interrupts are intercepted by the VMM, and

virtualized external interrupts are injected to the

guest using the virtual external interrupt

optimization.

• Read shadows are created for the guest interruption

control registers, PSR, CPUID. Read accesses to

such registers will not cause virtualization fault, but

will return the shadow values.

• Write shadows are created for the guest interruption

control registers. Write accesses to such registers

will not cause virtualization fault, but will write to

the shadow values.

An interesting question when designing Xen concerns

the processor features that are exposed to HVM guests.

Some VMMs present only a generic, minimally featured

processor to the guest. This allows the guest to migrate

easily to arbitrary platforms, but precludes the guest

from using new instructions or processor features that

may exist in the processor. For Xen, we are exporting

most CPUID bits to the guest. We clearly need to clear

the VMX bit [Leaf 1, ECX:5], or else the guest may

bring up another level of virtualization. Other bits to be

cleared include machine check architecture (MCA),

because MCA issues are handled by the hypervisor.

Today’s OSs also use model-specific registers to detect

the microcode version on the processor and to decide

whether they need to perform a microcode update. For

Xen, we decided to fake the update request, i.e., bump

the microcode version number without changing the

microcode itself.

Memory Virtualization

The virtual Memory Management Unit (MMU) module

in the Xen hypervisor presents the abstraction of a

hardware MMU to the HVM domain. HVM guests see

guest physical addresses (GPAs), and this module

translates GPAs to the appropriate machine physical

addresses (MPAs).

IA-32 Memory Virtualization

The virtual MMU module supports all page table

formats that can be used by the guest OS.

• For IA-32

a. it supports 2-level page tables with 4 KB

page size for 32-bit guests.

• For IA-32 Physical Address Extension (PAE)

a. it supports 2-level page tables with 4 KB

page sizes for 32-bit guests.

b. it supports 3-level page tables with 4 KB

and 2 MB page sizes for 32-bit PAE

guests.

• For Intel EM64T

a. it supports 2-level page tables with 4 KB

page size for 32-bit guests.

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 197

b. it supports 3-level page tables with 4 KB

and 2 MB page sizes for 32-bit PAE

guests.

c. it supports 4-level page tables with 4 KB

and 2 MB page sizes for 64-bit guests.

For the IA-32 architecture, this module maintains a

shadow page table for the guest (Figure 3). This is the

actual page table used by the processor during VMX

operation, containing page table entries (PTEs) with

machine page-frame numbers. Every time the guest

modifies its page mapping, either by changing the

content of a translation, creating a new translation, or

removing an existing translation, the virtual MMU

module will capture the modification and adjust the

shadow page tables accordingly. Since Xen already has

shadow page table code for paravirtualized guests, we

extended the code to support fully virtualization guests.

The resultant code handles paravirtualized and

unmodified guests in a unified fashion.

Figure 3: Shadow page table

From a performance point of view, the shadow page

table code is the most critical for overall performance.

The most rudimentary implementation includes the

construction of shadow page tables from scratch every

time the guest updates CR3 to request a TLB flush. This,

however, will incur significant overhead. If we can tell

which guest page table entries have been modified, we

just need to clean up the affected shadow entries,

allowing the existing shadow page tables to be reused.

The following algorithm is used to optimize shadow

page table management:

• When allocating a shadow page upon page fault

from the guest, write protect the corresponding

guest page table page. This allows you to detect any

attempt to modify the guest page table. For this to

work, you need to find all translations that map the

guest page table page. There are several

optimizations for this as discussed below.

• Upon page fault against a guest page table page,

save a “snapshot” of the page and give write

permission to the page. The page is then added to an

“out of sync” list with the information on such an

attempt (i.e., which address, etc.). Now the guest

can continue to update the page.

• When the guest executes an operation that results in

the flush TLB operation, reflect all the entries on the

“out of sync list” to the shadow page table. By

comparing the snapshot and the current page in the

guest page table, you can update the shadow page

table efficiently by checking if the page frame

numbers in the guest page tables are valid (i.e.,

contained in the domain).

Itanium Processor Architecture Memory

Virtualization

Figure 4: IPF TLB virtualization

The Itanium processor architecture defines Translation

Register (TR) entries that can be used to statically map a

range of virtual addresses to physical addresses.

Translation Cache (TC) entries are used for dynamic

mappings. Address translation entries can reside in either

the TLB or in a Virtual Hash Page Table (VHPT). On a

TLB miss, a hardware engine will walk the VHPT to

extract the translation entry for the referenced address

and insert the translation into the TLB.

Figure 4 illustrates the TLB virtualization logic in Xen.

We extended the Xen hypervisor to capture all TLB

PDE.gfn

PTE:gfn

PDE:mfn

Guest View

Xen Hypervisor

Guest Page Table

Shadow Page Table

Page Directory

Page Table

Page Directory

Page Table

CR3

Virtual

gfn: Guest Page Frame Number

mfn: Machine Page Frame Number

CR3 Hardware

PTE:mfn

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 198

insertions and deletions initiated by a guest OS. This

information is used to maintain the address translation

for the guest. Two new data structures are added to Xen:

• The Machine VHPT is a per virtual CPU data

structure. It is maintained by the hypervisor and

tracks the translations for guest TR and TC entries

mapping normal memory. It is walked by the

hardware VHPT walker on a TLB miss.

The Itanium processor architecture defines two

formats for the VHPT. The short-format VHPT is

meant to be used by an OS to implement linear page

tables. The long-form VHPT has a larger foot print

but supports protection keys and collision chains.

We have extended the Xen hypervisor to use the

long-form VHPT.

• The guest software TLB structure is used to track

guest TRs and TCs mapping memory mapped I/O

addresses or less than preferred page table entries.

Access to these addresses must be intercepted and

forwarded to the device model.

Region Identifier (RID) is an important component of

the Itanium architecture virtual memory management

system. It is used to uniquely identify a region of virtual

address. Per Itanium architecture specifications, RID

should have at least 18 bits and at most 24 bits. The

exact number of RID bits implemented by a processor

can be found by using the PAL_VM_SUMMARY call.

An address lookup will require matching the RID as well

as the virtual address.

Each IPF guest OS thinks it has unique ownership of the

RIDs. If you allow two VT-i domains to run on the same

processor with the same RID, you need to flush the

machine TLB whenever a domain is switched out. This

will have a significant negative impact on system

performance.

The solution we used for Xen is to partition the RIDs

between the domains. Specifically, we reserved several

high-order bits from the RID as the guest identifier. The

machine RID used for the guest is then a concatenation

of the guest ID and the RID managed by the guest itself.

Machine_rid=guest_rid + (guest_id << 18)

As an illustration, if we have a CPU that support a 24-bit

RID, the guest firmware inside the VT-i guest will report

only 18-bit RID to the guest. The actual 24-bit RID

installed into the machine will have the guest identifier

in the upper 6-bit.

We also need two more RIDs per domain for guest

physical mode emulation. The guest physical mode

accesses are emulated by using a virtual address with

special RIDs. This restricts the total number of IPF

guests to 63.

This is a reasonable solution when the number of

concurrent guests is limited and the guests are not

running millions of processes concurrently. A more

elaborate scheme is needed if this assumption is not true.

Device Virtualization

Figure 5 illustrates the device virtualization logic in Xen.

The Virtual I/O devices (device models) in Dom0

provide the abstraction of a PC platform to the HVM

domain. Each HVM domain sees an abstraction of a PC

platform with a keyboard, mouse, real-time clock, 8259

programmable interrupt controller, 8254 programmable

interval timer, CMOS, IDE disk, floppy, CDROM, and

VGA/graphics.

To reduce the development effort, we reuse the device

emulation module from the open source QEMU project

[8]. Our basic design is to run an instance of the device

models in Dom0 per HVM domain. Performance critical

models like the Programmable Interrupt Timer (PIT) and

the Programmable Interrupt Controller (PIC), are moved

into the hypervisor.

Figure 5: I/O Device virtualization

The primary function of the device model is to wait for

an I/O event from the HVM guest and dispatch it to the

appropriate device emulation model. Once the device

emulation model completes the I/O request, it will

respond back with the result. A shared memory between

the device model and the Xen hypervisor is used for

communication of I/O request and response.

The device model utilizes Xen’s event channel

mechanism and waits for events coming from the HVM

domain via an event channel, with appropriate timeouts

to support the internal timer mechanisms within these

emulators.

Hypervisor

intercept

Domain0 HVM

Unmodified

OS

Device

Module

I/O Request
Resume

I/O done

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 199

I/O Port Accesses

We set up the I/O bitmap to intercept I/O port accesses

by the guest. At each such VM exit, we collect exit

qualification information such as port number, access

size, direction, string or not, REP prefixed or not, etc.

This information is packaged as an I/O request packet

and sent to the device model in Dom0.

Following is an example of an I/O request handling from

a HVM guest:

1. VM exit due to an I/O access.

2. Decode the instruction.

3. Make an I/O request packet (ioreq_t) describing the

event.

4. Send the event to the device model in Dom0.

5. Wait for response for the I/O port and MMIO

operation from the device model.

6. Unblock the HVM domain.

7. VMRESUME back to the guest OS.

Although this design significantly reduced our

development efforts, almost all I/O operations require

domain switches to Dom0 to run the device model,

resulting in high CPU overhead and I/O latencies. To

give HVM domains better I/O performance, we also

ported Xen’s Virtual Block Device (VBD) and Virtual

Network Interface (VNIF) to HVM domains.

Memory-Mapped I/O Handling

Most devices require memory-mapped I/O to access the

device registers. Critical interrupt controllers, such as

I/O APIC, also require memory-mapped I/O access. We

intercept these MMIO accesses as page faults.

On each VM exit due to page fault, you need to do the

following:

• Check the PTE to see if the guest page-frame

belongs to the MMIO range.

• If so, decode the instruction and send an I/O request

packet to the device model in Dom0.

• Otherwise, hand the event to the shadow page code

for handling.

The Itanium processor family supports memory-mapped

I/O only. It implements the above logic in the page fault

handler.

Interrupts Handling

The real local APICs and I/O APICs are owned and

controlled by the Xen hypervisor. All external interrupts

will cause VM exits. Interrupts owned by the hypervisor

(e.g., the local APIC timer) are handled inside the

hypervisor. Otherwise the handler in Dom0 is used if the

interrupt is not used by the hypervisor. This way the

HVM domain does not handle real external interrupts.

The HVM guests only see virtualized external interrupts.

The device models can trigger a virtual external interrupt

by sending an event to the interrupt controller (PIC or

APIC) device model. The interrupt controller device

model then injects a virtual external interrupt to the

HVM guest on the next VM entry.

Virtual Device Drivers

The VBD and VNIF are based on a split driver pair

where the front-end driver runs inside a guest domain

while the backend driver runs inside Dom0 or an I/O

VM. To port these drivers to HVM domains, we have to

solve two major challenges:

1. Define a way to allow the hypervisor to access data

inside the guest, based on a guest virtual address.

We solved this problem by defining a

copy_from_guest() hypercall that will walk the

guest’s page table and map the resulting physical

pages into the hypervisor address space.

2. Define a way to signal Xen events to the virtual

drivers. This must be done in a way that is

consistent with the guest OSs device driver

infrastructure.

We solved this problem by implementing the driver

as a fake PCI device driver with its own interrupt

vector. This vector is communicated to the

hypervisor via a hypercall. Subsequently, the

hypervisor will use this vector to signal an event to

the virtual device driver.

The send performance of the VNIF ported this way

approximates that of the VNIF running in

paravirtualized DomU. The receive throughput is lower.

We are continuing our investigation.

PERFORMANCE TUNING VT-X GUESTS

In this section we describe the performance tuning

exercise done to date for VT-x guests. The classic

approach is to run a synthetic workload inside an HVM

domain and compare the performance against the same

workload running inside an identically configured

paravirtualized domain. But to understand why the

domain operates the way it does, we have to extend tools

like Xentrace and Xenoprof to support HVM domains

also.

Xentrace is a tool that can be used to trace events in the

hypervisor. It can be used to count the occurrence of key

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 200

events and their handling time. We extended this tool to

trace VT-x specific information such as VM exits,

recording the exit cause and the handling time.

Xenoprof is a port of OProfile to the Xen environment.

It is a tool that uses hardware performance counters to

track clock cycle count, instruction retirements, TLB

misses, and cache misses. Each time a counter fires,

Xenoprof samples the program counter, thus allowing a

profile to be built for the program hotspots. The original

Xenoprof supports paravirtualized guests only. We

extended this tool to support HVM domains.

A typical tuning experiment proceeds as follows:

1. Run a workload and use Xentrace to track the VM

exit events occurring during the run.

2. Run a workload and use Xenoprof to profile the

hotspots in the hypervisor.

We observed the bulk of the exits is caused by I/O

instruction or shadow page table operations. I/O

instructions have the longest handling time, requiring a

context switch to Dom0. At one stage of our tuning

experiment, 40% of the hypervisor time was spent in the

shadow code.

Based on the above findings, we focused on tuning the

I/O handler code and improving the shadow page

handling.

• From the Xentrace result, we observed that the

majority of the guest I/O accesses are to the PIC

ports. This is because the guest timer handler needs

regular access to PIC ports. By moving the PIC

model to the hypervisor, we dramatically reduced

the PIC handling time. Kernel build performance

improved 14% and the CPU2k benchmark improved

by 7%.

• The original QEMU IDE model handles IDE DMA

operations in a synchronous fashion. When a guest

starts an IDE DMA operation, the QEMU model

will wait for the host to complete the DMA request.

We added a new thread to handle DMA operations

in an asynchronous fashion. This change increased

guest kernel build performance by 8%.

• The original QEMU NIC model is implemented

using a polling loop. We changed the code to an

event driven design that will wait on the packet file

descriptors. This change improved SCP

performance by 10–40 times.

• The original QEMU VGA model emulated a

graphics card. When the guest updates the screen,

each video memory write causes a VM exit, and

pixel data have to be forwarded to a VGA model in

Dom0. To speed up graphics performance, we

implemented a shared memory area between the

QEMU model and the HVM guest. Guest video

memory write will no longer cause a VM exit. The

VGA model will update the screen periodically

using data in the shared memory area. This

improved XWindow performance dramatically by

5–1000 times.

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 201

Figure 6: Performance comparison of paravirtualized vs. VT-x domain

BENCHMARK PERFORMANCE

Figure 6 compares the system performance results

reported by various benchmarks when running in an

identically configured paravirtualized domain and a VT-

x domain. The performance of the same benchmark in a

native environment is used as a reference. The data are

collected on an Intel
®
 S3E2340 platform, with

2.3 GHz/800 MHz FSB dual-core Intel
®
 Xeon

®

processor, 4 GB of DDR2 533 MHz memory, a 160 GB

Seagate SATA disk and an Intel
®
 E100 Ethernet

controller. RHEL4U1 is used as the OS in Dom0, DomU,

and VT-x domains. Dom0 is configured with two virtual

CPUs and 512 MB of memory. DomU and the VT-x

domains are configured with a single virtual CPU with

512 M of memory and a 20 GB physical partition as its

virtual disk.

CURRENT STATUS

As of this writing, Xen is under active development by

Intel and various partners in the community. Readers

interested in the latest status should consult the xen-

devel* or xen-user* mailing list. Novell and RedHat are

incorporating Xen into their upcoming releases. Virtual

Iron and XenSource are developing products that will

leverage Xen and Intel Virtualization Technology.

ACKNOWLEDGMENTS

The work described in this paper was made possible by

many people. We thank our management for supporting

this work. We acknowledge the many past and present

members of the Xen team in the Intel
®
 Open Source

Technology Center for the many hours they spent

developing and testing this code. Felix Leung, Alberto

Munoz, and Mary Xie have provided immeasurable help

for the VT-i project. A special thanks goes to Ian Pratt

and Keir Fraser for working the full virtualization issues

with us. Leendert van Doorn is the creator of the

VMXAssist logic to execute real mode code. Their

guidance and assistance throughout the course of this

project has been invaluable.

REFERENCES

[1] Pratt, Ian; Fraser, Keir; Hand, Steve; Limpach,

Christian; Warfield, Andrew; Magenheimer, Dan;

Nakajima, Jun; Mallick, Asit; “Xen 3.0 and the Art

of Virtualization,” in Proceedings of Linux

Symposium, Volume Two, 2005.

http://lists.xensource.com/archives/html/xen-devel/
http://lists.xensource.com/archives/html/xen-devel/
http://lists.xensource.com/archives/html/xen-users/

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 202

[2] Uhlig, R.; Neiger, G.; Rodgers, D.; Santoni, A.L.;

Martins, F.C.M.; Anderson, A.V.; Bennett, S.M.;

Kagi, A.; Leung, F.H.; Smith, L.; “Intel

Virtualization Technology,” IEEE Computer

Volume 38, Issue 5, pp. 48–56, May 2005.

[3] Intel Virtualization Technology Specification for the

IA-32 Architecture, at

www.intel.com/technology/vt/, Intel Corp.

[4] Intel Virtualization Technology Specification for the

Intel Itanium Architecture, at

www.intel.com/technology/vt/, Intel Corp.

[5] Bochs IA-32 Emulator project, at

http://bochs.sourceforge.net/*

[6] MultiProcessor Specification, at

http://developer.intel.com/design/pentium/datashts/2

4201606.pdf, Intel Corp., Version 1.4, May 1997.

[7] Hewlett-Packard Corporation; Intel Corporation;

Microsoft Corporation; Phoenix Technologies Ltd.;

Toshiba Corporation; Advanced Configuration and

Power Interface Specification, Revision 3.0,

September 2, 2004.

[8] QEMU at http://fabrice.bellard.free.fr/qemu*

[9] Nakajima, Jun; Mallick, Asit; Pratt, Ian; Fraser,

Keir, “X86-64 XenLinux: Architecture,

Implementation, and Optimizations,” Ottawa Linux

Symposium, 2006.

AUTHORS’ BIOGRAPHIES

Yaozu Dong is a technical lead in the Open Source

Technology Center in Shanghai, PRC. He joined Intel in

1998 and had been involved in various embedded system

projects from PalmOS* to Windows CE* to Linux, and

several virtualization projects. He received his Bachelors

and Masters degrees in Engineering from Shanghai Jiao

Tong University, PRC. His e-mail address is eddie.dong

at intel.com.

Shaofan Li is an engineering manager in the Open

Source Technology Center in Shanghai, PRC. She joined

Intel in 1999 and had been involved in IPMI, EFI, and

several virtualization projects. She currently manages the

Xen development team of PRC in the Intel Open Source

Technology Center. Her team is focusing on enabling

Intel Virtualization Technology in Xen for both IA-32

and Itanium architectures. She received her Bachelors

and Masters degrees in Engineering from Shanghai Jiao

Tong University, PRC. Her e-mail address is susie.li at

intel.com.

Asit Mallick is a senior principal engineer leading the

system software architecture in the Intel Open Source

Technology Center. He joined Intel in 1992 and has

worked on the development and porting of numerous

operating systems to Intel architecture. Prior to joining

Intel, he worked in Wipro Infotech, India on the

development of networking software. Asit earned his

Masters degree in Engineering from the Indian Institute

of Science, India. His e-mail address is asit.k.mallick at

intel.com.

Jun Nakajima is a principal engineer leading Linux and

Xen projects at the Intel Open Source Technology

Center. He is recognized as one of the key contributors

to Xen, including Xen/XenLinux port to Intel EM64T,

the major VT-x support codes, and the architecture. He

has over 15 years of experience with operating system

internals and an extensive background in processor

architectures. Prior to joining Intel, he worked on

various projects in the industry such as AT&T/USL

Unix System V Releases (SVR) like the SVR4.2, and

Chorus microkernel based fault-tolerant distributed

SVR4. Jun earned his Bachelors of Engineering degree

from the University of Tokyo in Japan. His e-mail is

jun.nakajima at intel.com.

Kun Tian is a software engineer in the Open Source

Technology Center in Shanghai, PRC. He joined Intel in

2003 and has been involved in Linux kernel

development and virtualization-related projects. He is

currently working on adding Intel Virtualization

Technology to Xen for Itanium processor. He received

his Masters degree in Engineering from the University of

Electronic Science and Technology of China. His e-mail

is kevin.tian at intel.com.

Xuefei Xu is a software engineer in the Open Source

Technology Center in Shanghai, PRC. He joined Intel in

2003 and had been involved in several virtualization

projects. He currently is working on adding Intel

Virtualization Technology to Xen for Itanium. He

received his Masters degree in Engineering from the

Huazhong University of Science and Technology, PRC.

His e-mail is anthony.xu at intel.com.

Fred Yang is a project lead in the Intel Open Source

Technology Center in Santa Clara, California. He joined

Intel in 1989 and had been involved in a series of

operating system projects for Intel processors. He

currently leads the team that is adding Intel

Virtualization Technology to Xen for Itanium. He

received his M.S. degree in Computer Science from the

University of Texas at Arlington. His e-mail is fred.yang

at intel.com.

Wilfred Yu is an engineering manager in the Intel Open

Source Technology Center in Santa Clara, California. He

joined Intel in 1983 and had been involved in a series of

operating system projects for Intel processors. He

currently manages the team that is adding Intel

www.intel.com/technology/vt/
www.intel.com/technology/vt/
http://bochs.sourceforge.net/
http://developer.intel.com/design/pentium/datashts/24201606.pdf
http://developer.intel.com/design/pentium/datashts/24201606.pdf
http://fabrice.bellard.free.fr/qemu

Intel Technology Journal, Volume 10, Issue 3, 2006

Extending Xen* with Intel
®
 Virtualization Technology 203

Virtualization Technology to Xen. He received his

Bachelors degree in Engineering from McGill University

and his Masters of Applied Science and PhD degrees

from the University of Waterloo, Canada. His e-mail is

wilfred.yu at intel.com.

∆
 Intel

®
 Virtualization Technology requires a computer

system with an enabled Intel
®
 processor, BIOS, virtual

machine monitor (VMM) and, for some uses, certain

platform software enabled for it. Functionality,

performance or other benefits will vary depending on

hardware and software configurations and may require a

BIOS update. Software applications may not be

compatible with all operating systems. Please check

with your application vendor.

f
 Intel

®
 EM64T requires a computer system with a

processor, chipset, BIOS, operating system, device

drivers and applications enabled for Intel EM64T.

Processor will not operate (including 32-bit operation)

without an Intel EM64T-enabled BIOS. Performance

will vary depending on your hardware and software

configurations. See www.intel.com/info/em64t for more

information including details on which processors

support Intel EM64T or consult with your system vendor

for more information.

Copyright © Intel Corporation 2006. All rights reserved.

Intel, Itanium and Xeon are registered trademarks of
Intel Corporation or its subsidiaries in the United States

and other countries.

* Other names and brands may be claimed as the

property of others.

This document contains information on products in the

design phase of development. The information here is

subject to change without notice. Do not finalize a

design with this information. Contact your local Intel

sales office or your distributor to obtain the latest

specifications and before placing your product order.

INFORMATION IN THIS DOCUMENT IS

PROVIDED IN CONNECTION WITH INTEL
®

PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,

BY ESTOPPEL OR OTHERWISE, TO ANY

INTELLECTUAL PROPERTY RIGHTS IS GRANTED

BY THIS DOCUMENT. EXCEPT AS PROVIDED IN

INTEL'S TERMS AND CONDITIONS OF SALE FOR

SUCH PRODUCTS, INTEL ASSUMES NO

LIABILITY WHATSOEVER, AND INTEL

DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE

OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY,

OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL

PROPERTY RIGHT.

Intel may make changes to specifications and product

descriptions at any time, without notice.

This publication was downloaded from

http://developer.intel.com/.

Legal notices at

http://www.intel.com/sites/corporate/tradmarx.htm.

http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm
http://www.intel.com/info/em64t

