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ABSTRACT 

Xen* is an open source virtual machine monitor (VMM) 

developed at the University of Cambridge to support 

operating systems (OSs) that have been modified to run 

on top of the monitor. Intel has extended the Xen VMM 

to use Intel
®
 Virtualization Technology

∆
 (VT) to support 

unmodified guest OSs also. This was done for IA-32 

Intel
®
 Architecture processors as well as Itanium

®
 

architecture processors. 

In this paper we describe the changes that have been 

made to Xen to enable this support. We also highlight 

the optimizations that have been made to date to deliver 

good virtualized performance. 

INTRODUCTION  

Xen is an open source virtual machine monitor (VMM) 

that allows the hardware resources of a machine to be 

virtualized and dynamically shared between OSs running 

on top of it [1]. Each virtual machine (VM) is called a 

Domain, in Xen terminology. Xen provides isolated 

execution for each domain, preventing failures or 

malicious activities in one domain from impacting 

another domain. The Xen hypervisor and Domain0 

(Dom0) are a required part of any Xen-based server. 

Multiple user domains, called DomainU in Xen 

terminology, can be created to run guest OSs.  

Unlike the full virtualization solutions offered by the 

IBM VM/370
*
, or VMware’s ESX

*
 and Microsoft’s 

Virtual PC product
*
, Xen began life as a VMM for guest 

OSs that have been modified to run on the Xen 

hypervisor. User applications within these OSs run as is, 

i.e., unmodified. This technique is called 

“paravirtualization,” and it delivers near native 

performance for the guest OS, only if the guest OSs 

source code can be modified.  

Xen versions 1.0 and 2.0 use paravirtualization 

techniques to support 32-bit platforms and Linux
*
 guests. 

They use the standard IA-32 protection and 

segmentation architecture for system resource 

virtualization. The hypervisor runs in the highest 

privilege level ring 0 and has full access to all memory 

on the system. Guest OSs use privilege levels 1, 2, and 3 

as they see fit. Segmentation is used to prevent the guest 

OS from accessing the Xen address space. 

Xen 3.0 is the first open-source VMM that uses Intel 

Virtualization Technology (VT) to support unmodified 

guest OSs as well as paravirtualized guest OSs. Xen 3.0 

also added support for 64-bit platforms and 64-bit guests 

[9]. Page-level protection is used to protect the 64-bit 

hypervisor from the guest. 

In this paper, we begin with a brief overview of Intel VT 

and then we explain how we extended Xen to take 

advantage of VT. We highlight key virtualization issues 

for IA-32, Intel
®
 EM64T

Φ
, and Itanium processors and 

explain how they are addressed in Xen 3.0. Finally, we 

highlight some of the changes that have been made to the 

hypervisor and the device models to improve 

performance.  

INTEL
®
 VIRTUALIZATION 

TECHNOLOGY 

Intel VT is a collection of processor technologies that 

enables robust execution of unmodified guest OSs on 

Intel VT-enhanced VMMs [2]. VT-x
 

defines the 
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extensions to the IA-32 Intel Architecture [3]. VT-i 

defines the extensions to the Intel Itanium architecture 

[4]. 

VT-x augments IA-32 with two new forms of CPU 

operation: virtual machine extensions (VMX) root 

operations and VMX non-root operations. The transition 

from VMX root operation to VMX non-root operation is 

called a VM entry. The transition from a VMX non-root 

operation to VMX root operation is called a VM exit. 

A virtual-machine control structure (VMCS) is defined 

to manage VM entries and exits, and it controls the 

behavior of instructions in a non-root operation. The 

VMCS is logically divided into sections, two of which 

are the guest-state area and the host-state area. These 

areas contain fields corresponding to different 

components of processor state. VM entries load 

processor state from the guest-state area. VM exits save 

processor state to the guest-state area and then load 

processor state from the host-state area.  

The VMM runs in root operation while the guests run in 

VMX non-root operation. Both forms of operation 

support all four privilege levels (i.e., rings 0, 1, 2, and 

3). The VM-execution control fields in the VMCS allow 

the VMM to control the behavior of some instructions in 

VMX non-root operation and the events that will cause 

VM exits. Instructions like CPUID, MOV from CR3, 

RDMSR, and WRMSR will trigger VM exits 

unconditionally to allow the VMM to control the 

behavior of the guest. 

VT-i expands the Itanium processor family (IPF) to 

enable robust execution of VMs. A new processor status 

register bit (PSR.vm) has been added to define a new 

operating mode for the processor. The VMM runs with 

this bit cleared while the guest OS runs with it set. 

Privileged instructions, including non-privileged 

instructions like thash, ttag and mov cupid that may 

reveal the true operating state of the processor, trigger 

virtualization faults when operating in this mode. 

The PSR.vm bit also controls the number of virtual-

address bits that are available to software. When a VMM 

is running with PSR.vm = 0, all implemented virtual-

address bits are available. When the guest OS is running 

with PSR.vm = 1, the uppermost implemented virtual-

address bit is made unavailable to the guest. Instruction 

or data fetches with any of these address bits set will 

trigger unimplemented data/instruction address faults or 

unimplemented instruction address traps. This provides 

the VMM a dedicated address space that guest software 

cannot access. 

VT-i also defines the processor abstraction layer (PAL) 

interfaces that can be used by the VMM to create and 

manage VMs. A Virtual Processor Descriptor (VPD) is 

defined to represent the resources of a virtual processor. 

PAL procedures are defined to allow the VMM to 

configure logical processors for virtualization operations 

and to suspend or resume virtual processors. PAL run-

time services are defined to support performance-critical 

VMM operations.  

EXTENDING XEN* WITH INTEL VT 

Xen 3.0 architecture (Figure 1) has a small hypervisor 

kernel that deals with virtualizing the CPU, memory, and 

critical I/O resources, such as the interrupt controller. 

Dom0 is a paravirtualized Linux that has privileged 

access to all I/O devices in the platform and is an 

integral part of any Xen-based system. Xen 3.0 also 

includes a control panel that controls the sharing of the 

processor, memory, network, and block devices. Access 

to the control interface is limited to Dom0. Multiple user 

domains, called DomainU (DomU) can be created to run 

paravirtualized guest OSs. Dom0 and DomU OSs use 

hypercalls to request services from the Xen hypervisor. 

When Intel VT is used, fully virtualized domains can be 

created to run unmodified guest OSs. These fully 

virtualized domains are given the special name of HVMs 

(hardware-based virtual machines). Xen presents to each 

HVM guest a virtualized platform that resembles a 

classic PC/server platform with a keyboard, mouse, 

graphics display, disk, floppy, CD-ROM, etc. This 

virtualized platform support is provided by the Virtual 

I/O Devices module. 

In the following sections we describe the extensions to 

each of these Xen components. 
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Figure 1: Xen 3.0 architecture 

Control Panel 

We have extended the control panel to support creating, 

controlling, and destroying HVM domains. The user can 

specify configuration parameters such as the guest 

memory map and size, the virtualized disk location, 

network configuration, etc. 

The control panel loads the guest firmware into the 

HVM domain and creates the device model thread 

(explained later) that will run in Dom0 to service 

input/output (I/O) requests from the HVM guest. The 

control panel also configures the virtual devices seen by 

the HVM guest, such as the interrupt binding and the 

PCI configuration. 

The HVM guest is then started, and control is passed to 

the first instruction in the guest firmware. The HVM 

guest executes at native speed until it encounters an 

event that requires special handling by Xen. 

Guest Firmware 

The guest firmware (BIOS) provides the boot services 

and run-time services required by the OS in the HVM. 

This guest firmware does not see any real physical 

devices. It operates on the virtual devices provided by 

the device models. 

For VT-x, we are re-using the open source Bochs BIOS 

[5]. We extended the Bochs BIOS by adding Multi-

Processor Specification (MPS) tables [6], Advanced 

Configuration and Power Interface (ACPI) tables [7], 

including the Multiple APIC Description Table 

(MADT). The BIOS and the early OS loader expect to 

run in real mode. To create the environment needed by 

these codes, we use VMXAssist to configure the VT-x 

guest to execute in virtual-8086 mode. Instructions that 

cannot be executed in this mode are intercepted and 

emulated with a software emulator. 

For VT-i, we developed a guest firmware using the 

Intel
®
 Platform Innovation Framework for Extensible 

Firmware Interface (EFI). This guest firmware provides 

all EFI boot services required by IPF guest OSs. It is 

compatible with the Developer’s Interface Guide for 64-

bit Intel
®
 Architecture-based Servers (DIG64) and 

provides the System Abstraction Layer (SAL), ACPI 2.0, 

and EFI 1.10 tables required by IPF guest OSs. 

Processor Virtualization 

The Virtual CPU module in Xen provides the abstraction 

of a processor to the HVM guest. It manages the virtual 

processor(s) and associated virtualization events when 

the guest OS is executing. It saves the physical processor 

state when the guest gives up a physical CPU, and 

restores the guest state when it is rescheduled to run on a 

physical processor. 

For the IA-32 architecture, a VMCS structure is created 

for each CPU in a HVM domain (Figure 2). The 

execution control of the CPU in VMX mode is 

configured as follows: 

• Instructions such as CPUID, MOV from/to CR3, 

MOV to CR0/CR4, RDMSR, WRMSR, HLT, 
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INVLPG, MOV from CR8, MOV DR, and MWAIT 

are intercepted as VM exits. 

• Exceptions/faults, such as page fault, are intercepted 

as VM exits, and virtualized exceptions/faults are 

injected on VM entry to guests. 

• External interrupts unrelated to guests are 

intercepted as VM exits, and virtualized interrupts 

are injected on VM entry to the guests. 

• Read shadows are created for the guest CR0, CR4, 

and time stamp counter (TSC). Read accesses to 

such registers will not cause VM exit, but will return 

the shadow values. 

 

 

Figure 2: VMCS 

For the Itanium architecture, a Virtual Processor Block 

(VPD) structure is created for each CPU in a HVM 

domain. The VPD has similar functionality as the VMCS 

in the IA-32 architecture. The virtualization control of 

the CPU is configured as follows: 

• Instructions such as MOV from/to RR, MOV 

from/to CR, ITC/PTC, ITR/PTR, MOV from/to 

PKR, MOV from/to IBR/DBR are intercepted as 

virtualization faults. 

• Instructions such as COVER, BSW are optimized to 

execute without virtualization faults. 

• Exceptions/faults are intercepted by the VMM, and 

virtualized exceptions/faults are injected to the guest 

on a VM resume. 

• External interrupts are intercepted by the VMM, and 

virtualized external interrupts are injected to the 

guest using the virtual external interrupt 

optimization. 

• Read shadows are created for the guest interruption 

control registers, PSR, CPUID. Read accesses to 

such registers will not cause virtualization fault, but 

will return the shadow values. 

• Write shadows are created for the guest interruption 

control registers. Write accesses to such registers 

will not cause virtualization fault, but will write to 

the shadow values. 

An interesting question when designing Xen concerns 

the processor features that are exposed to HVM guests. 

Some VMMs present only a generic, minimally featured 

processor to the guest. This allows the guest to migrate 

easily to arbitrary platforms, but precludes the guest 

from using new instructions or processor features that 

may exist in the processor. For Xen, we are exporting 

most CPUID bits to the guest. We clearly need to clear 

the VMX bit [Leaf 1, ECX:5], or else the guest may 

bring up another level of virtualization. Other bits to be 

cleared include machine check architecture (MCA), 

because MCA issues are handled by the hypervisor. 

Today’s OSs also use model-specific registers to detect 

the microcode version on the processor and to decide 

whether they need to perform a microcode update. For 

Xen, we decided to fake the update request, i.e., bump 

the microcode version number without changing the 

microcode itself.  

Memory Virtualization 

The virtual Memory Management Unit (MMU) module 

in the Xen hypervisor presents the abstraction of a 

hardware MMU to the HVM domain. HVM guests see 

guest physical addresses (GPAs), and this module 

translates GPAs to the appropriate machine physical 

addresses (MPAs). 

IA-32 Memory Virtualization 

The virtual MMU module supports all page table 

formats that can be used by the guest OS. 

• For IA-32 

a. it supports 2-level page tables with 4 KB 

page size for 32-bit guests. 

• For IA-32 Physical Address Extension (PAE) 

a. it supports 2-level page tables with 4 KB 

page sizes for 32-bit guests. 

b. it supports 3-level page tables with 4 KB 

and 2 MB page sizes for 32-bit PAE 

guests. 

• For Intel EM64T 

a. it supports 2-level page tables with 4 KB 

page size for 32-bit guests. 
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b. it supports 3-level page tables with 4 KB 

and 2 MB page sizes for 32-bit PAE 

guests. 

c. it supports 4-level page tables with 4 KB 

and 2 MB page sizes for 64-bit guests. 

For the IA-32 architecture, this module maintains a 

shadow page table for the guest (Figure 3). This is the 

actual page table used by the processor during VMX 

operation, containing page table entries (PTEs) with 

machine page-frame numbers. Every time the guest 

modifies its page mapping, either by changing the 

content of a translation, creating a new translation, or 

removing an existing translation, the virtual MMU 

module will capture the modification and adjust the 

shadow page tables accordingly. Since Xen already has 

shadow page table code for paravirtualized guests, we 

extended the code to support fully virtualization guests. 

The resultant code handles paravirtualized and 

unmodified guests in a unified fashion.  

 

Figure 3: Shadow page table 

From a performance point of view, the shadow page 

table code is the most critical for overall performance. 

The most rudimentary implementation includes the 

construction of shadow page tables from scratch every 

time the guest updates CR3 to request a TLB flush. This, 

however, will incur significant overhead. If we can tell 

which guest page table entries have been modified, we 

just need to clean up the affected shadow entries, 

allowing the existing shadow page tables to be reused.  

The following algorithm is used to optimize shadow 

page table management: 

• When allocating a shadow page upon page fault 

from the guest, write protect the corresponding 

guest page table page. This allows you to detect any 

attempt to modify the guest page table. For this to 

work, you need to find all translations that map the 

guest page table page. There are several 

optimizations for this as discussed below. 

• Upon page fault against a guest page table page, 

save a “snapshot” of the page and give write 

permission to the page. The page is then added to an 

“out of sync” list with the information on such an 

attempt (i.e., which address, etc.). Now the guest 

can continue to update the page. 

• When the guest executes an operation that results in 

the flush TLB operation, reflect all the entries on the 

“out of sync list” to the shadow page table. By 

comparing the snapshot and the current page in the 

guest page table, you can update the shadow page 

table efficiently by checking if the page frame 

numbers in the guest page tables are valid (i.e., 

contained in the domain). 

Itanium Processor Architecture Memory 

Virtualization 

 

Figure 4: IPF TLB virtualization 

The Itanium processor architecture defines Translation 

Register (TR) entries that can be used to statically map a 

range of virtual addresses to physical addresses. 

Translation Cache (TC) entries  are used for dynamic 

mappings. Address translation entries can reside in either 

the TLB or in a Virtual Hash Page Table (VHPT). On a 

TLB miss, a hardware engine will walk the VHPT to 

extract the translation entry for the referenced address 

and insert the translation into the TLB. 

Figure 4 illustrates the TLB virtualization logic in Xen. 

We extended the Xen hypervisor to capture all TLB 
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insertions and deletions initiated by a guest OS. This 

information is used to maintain the address translation 

for the guest. Two new data structures are added to Xen: 

• The Machine VHPT is a per virtual CPU data 

structure. It is maintained by the hypervisor and 

tracks the translations for guest TR and TC entries 

mapping normal memory. It is walked by the 

hardware VHPT walker on a TLB miss. 

The Itanium processor architecture defines two 

formats for the VHPT. The short-format VHPT is 

meant to be used by an OS to implement linear page 

tables. The long-form VHPT has a larger foot print 

but supports protection keys and collision chains. 

We have extended the Xen hypervisor to use the 

long-form VHPT. 

• The guest software TLB structure is used to track 

guest TRs and TCs mapping memory mapped I/O 

addresses or less than preferred page table entries. 

Access to these addresses must be intercepted and 

forwarded to the device model. 

Region Identifier (RID) is an important component of 

the Itanium architecture virtual memory management 

system. It is used to uniquely identify a region of virtual 

address. Per Itanium architecture specifications, RID 

should have at least 18 bits and at most 24 bits. The 

exact number of RID bits implemented by a processor 

can be found by using the PAL_VM_SUMMARY call. 

An address lookup will require matching the RID as well 

as the virtual address. 

Each IPF guest OS thinks it has unique ownership of the 

RIDs. If you allow two VT-i domains to run on the same 

processor with the same RID, you need to flush the 

machine TLB whenever a domain is switched out. This 

will have a significant negative impact on system 

performance. 

The solution we used for Xen is to partition the RIDs 

between the domains. Specifically, we reserved several 

high-order bits from the RID as the guest identifier. The 

machine RID used for the guest is then a concatenation 

of the guest ID and the RID managed by the guest itself. 

Machine_rid=guest_rid + (guest_id << 18) 

As an illustration, if we have a CPU that support a 24-bit 

RID, the guest firmware inside the VT-i guest will report 

only 18-bit RID to the guest. The actual 24-bit RID 

installed into the machine will have the guest identifier 

in the upper 6-bit.  

We also need two more RIDs per domain for guest 

physical mode emulation. The guest physical mode 

accesses are emulated by using a virtual address with 

special RIDs. This restricts the total number of IPF 

guests to 63. 

This is a reasonable solution when the number of 

concurrent guests is limited and the guests are not 

running millions of processes concurrently. A more 

elaborate scheme is needed if this assumption is not true. 

Device Virtualization 

Figure 5 illustrates the device virtualization logic in Xen. 

The Virtual I/O devices (device models) in Dom0 

provide the abstraction of a PC platform to the HVM 

domain. Each HVM domain sees an abstraction of a PC 

platform with a keyboard, mouse, real-time clock, 8259 

programmable interrupt controller, 8254 programmable 

interval timer, CMOS, IDE disk, floppy, CDROM, and 

VGA/graphics. 

To reduce the development effort, we reuse the device 

emulation module from the open source QEMU project 

[8]. Our basic design is to run an instance of the device 

models in Dom0 per HVM domain. Performance critical 

models like the Programmable Interrupt Timer (PIT) and 

the Programmable Interrupt Controller (PIC), are moved 

into the hypervisor.  

 

 

Figure 5: I/O Device virtualization 

The primary function of the device model is to wait for 

an I/O event from the HVM guest and dispatch it to the 

appropriate device emulation model. Once the device 

emulation model completes the I/O request, it will 

respond back with the result. A shared memory between 

the device model and the Xen hypervisor is used for 

communication of I/O request and response. 

The device model utilizes Xen’s event channel 

mechanism and waits for events coming from the HVM 

domain via an event channel, with appropriate timeouts 

to support the internal timer mechanisms within these 

emulators.  
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I/O Port Accesses 

We set up the I/O bitmap to intercept I/O port accesses 

by the guest. At each such VM exit, we collect exit 

qualification information such as port number, access 

size, direction, string or not, REP prefixed or not, etc. 

This information is packaged as an I/O request packet 

and sent to the device model in Dom0. 

Following is an example of an I/O request handling from 

a HVM guest: 

1. VM exit due to an I/O access. 

2. Decode the instruction. 

3. Make an I/O request packet (ioreq_t) describing the 

event. 

4. Send the event to the device model in Dom0. 

5. Wait for response for the I/O port and MMIO 

operation from the device model. 

6. Unblock the HVM domain. 

7. VMRESUME back to the guest OS. 

Although this design significantly reduced our 

development efforts, almost all I/O operations require 

domain switches to Dom0 to run the device model, 

resulting in high CPU overhead and I/O latencies. To 

give HVM domains better I/O performance, we also 

ported Xen’s Virtual Block Device (VBD) and Virtual 

Network Interface (VNIF) to HVM domains. 

Memory-Mapped I/O Handling 

Most devices require memory-mapped I/O to access the 

device registers. Critical interrupt controllers, such as 

I/O APIC, also require memory-mapped I/O access. We 

intercept these MMIO accesses as page faults.  

On each VM exit due to page fault, you need to do the 

following: 

• Check the PTE to see if the guest page-frame 

belongs to the MMIO range.  

• If so, decode the instruction and send an I/O request 

packet to the device model in Dom0. 

• Otherwise, hand the event to the shadow page code 

for handling. 

The Itanium processor family supports memory-mapped 

I/O only. It implements the above logic in the page fault 

handler. 

Interrupts Handling 

The real local APICs and I/O APICs are owned and 

controlled by the Xen hypervisor. All external interrupts 

will cause VM exits. Interrupts owned by the hypervisor 

(e.g., the local APIC timer) are handled inside the 

hypervisor. Otherwise the handler in Dom0 is used if the 

interrupt is not used by the hypervisor. This way the 

HVM domain does not handle real external interrupts.  

The HVM guests only see virtualized external interrupts. 

The device models can trigger a virtual external interrupt 

by sending an event to the interrupt controller (PIC or 

APIC) device model. The interrupt controller device 

model then injects a virtual external interrupt to the 

HVM guest on the next VM entry.  

Virtual Device Drivers 

The VBD and VNIF are based on a split driver pair 

where the front-end driver runs inside a guest domain 

while the backend driver runs inside Dom0 or an I/O 

VM. To port these drivers to HVM domains, we have to 

solve two major challenges: 

1. Define a way to allow the hypervisor to access data 

inside the guest, based on a guest virtual address. 

We solved this problem by defining a 

copy_from_guest() hypercall that will walk the 

guest’s page table and map the resulting physical 

pages into the hypervisor address space. 

2. Define a way to signal Xen events to the virtual 

drivers. This must be done in a way that is 

consistent with the guest OSs device driver 

infrastructure. 

We solved this problem by implementing the driver 

as a fake PCI device driver with its own interrupt 

vector. This vector is communicated to the 

hypervisor via a hypercall. Subsequently, the 

hypervisor will use this vector to signal an event to 

the virtual device driver. 

The send performance of the VNIF ported this way 

approximates that of the VNIF running in 

paravirtualized DomU. The receive throughput is lower. 

We are continuing our investigation. 

PERFORMANCE TUNING VT-X GUESTS 

In this section we describe the performance tuning 

exercise done to date for VT-x guests. The classic 

approach is to run a synthetic workload inside an HVM 

domain and compare the performance against the same 

workload running inside an identically configured 

paravirtualized domain. But to understand why the 

domain operates the way it does, we have to extend tools 

like Xentrace and Xenoprof to support HVM domains 

also.  

Xentrace is a tool that can be used to trace events in the 

hypervisor. It can be used to count the occurrence of key 
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events and their handling time. We extended this tool to 

trace VT-x specific information such as VM exits, 

recording the exit cause and the handling time. 

Xenoprof is a port of OProfile to the Xen environment. 

It is a tool that uses hardware performance counters to 

track clock cycle count, instruction retirements, TLB 

misses, and cache misses. Each time a counter fires, 

Xenoprof samples the program counter, thus allowing a 

profile to be built for the program hotspots. The original 

Xenoprof supports paravirtualized guests only. We 

extended this tool to support HVM domains. 

A typical tuning experiment proceeds as follows: 

1. Run a workload and use Xentrace to track the VM 

exit events occurring during the run. 

2. Run a workload and use Xenoprof to profile the 

hotspots in the hypervisor. 

We observed the bulk of the exits is caused by I/O 

instruction or shadow page table operations. I/O 

instructions have the longest handling time, requiring a 

context switch to Dom0. At one stage of our tuning 

experiment, 40% of the hypervisor time was spent in the 

shadow code. 

Based on the above findings, we focused on tuning the 

I/O handler code and improving the shadow page 

handling.  

• From the Xentrace result, we observed that the 

majority of the guest I/O accesses are to the PIC 

ports. This is because the guest timer handler needs 

regular access to PIC ports. By moving the PIC 

model to the hypervisor, we dramatically reduced 

the PIC handling time. Kernel build performance 

improved 14% and the CPU2k benchmark improved 

by 7%. 

• The original QEMU IDE model handles IDE DMA 

operations in a synchronous fashion. When a guest 

starts an IDE DMA operation, the QEMU model 

will wait for the host to complete the DMA request. 

We added a new thread to handle DMA operations 

in an asynchronous fashion. This change increased 

guest kernel build performance by 8%. 

• The original QEMU NIC model is implemented 

using a polling loop. We changed the code to an 

event driven design that will wait on the packet file 

descriptors. This change improved SCP 

performance by 10–40 times. 

• The original QEMU VGA model emulated a 

graphics card. When the guest updates the screen, 

each video memory write causes a VM exit, and 

pixel data have to be forwarded to a VGA model in 

Dom0. To speed up graphics performance, we 

implemented a shared memory area between the 

QEMU model and the HVM guest. Guest video 

memory write will no longer cause a VM exit. The 

VGA model will update the screen periodically 

using data in the shared memory area. This 

improved XWindow performance dramatically by 

5–1000 times. 
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Figure 6: Performance comparison of paravirtualized vs. VT-x domain 

BENCHMARK PERFORMANCE 

Figure 6 compares the system performance results 

reported by various benchmarks when running in an 

identically configured paravirtualized domain and a VT-

x domain. The performance of the same benchmark in a 

native environment is used as a reference. The data are 

collected on an Intel
®
 S3E2340 platform, with 

2.3 GHz/800 MHz FSB dual-core Intel
®
 Xeon

®
 

processor, 4 GB of DDR2 533 MHz memory, a 160 GB 

Seagate SATA disk and an Intel
®
 E100 Ethernet 

controller. RHEL4U1 is used as the OS in Dom0, DomU, 

and VT-x domains. Dom0 is configured with two virtual 

CPUs and 512 MB of memory. DomU and the VT-x 

domains are configured with a single virtual CPU with 

512 M of memory and a 20 GB physical partition as its 

virtual disk. 

CURRENT STATUS 

As of this writing, Xen is under active development by 

Intel and various partners in the community. Readers 

interested in the latest status should consult the xen-

devel* or xen-user* mailing list. Novell and RedHat are 

incorporating Xen into their upcoming releases. Virtual 

Iron and XenSource are developing products that will 

leverage Xen and Intel Virtualization Technology.  
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∆
 Intel

®
 Virtualization Technology requires a computer 

system with an enabled Intel
®
 processor, BIOS, virtual 

machine monitor (VMM) and, for some uses, certain 

platform software enabled for it.  Functionality, 

performance or other benefits will vary depending on 

hardware and software configurations and may require a 

BIOS update.  Software applications may not be 

compatible with all operating systems.  Please check 

with your application vendor.  

f
 Intel

®
 EM64T requires a computer system with a 

processor, chipset, BIOS, operating system, device 

drivers and applications enabled for Intel EM64T. 

Processor will not operate (including 32-bit operation) 

without an Intel EM64T-enabled BIOS. Performance 

will vary depending on your hardware and software 

configurations. See www.intel.com/info/em64t for more 

information including details on which processors 

support Intel EM64T or consult with your system vendor 

for more information. 
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