
Securing Context-Aware Applications
Using Environment Roles�

Michael J. Covington
y

, Wende Long, Srividhya Srinivasan
Anind K. Dey, Mustaque Ahamad, Gregory D. Abowd

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332 USA

ABSTRACT
In the future, a largely invisible and ubiquitous computing infras-
tructure will assist people with a variety of activities in the home
and at work. The applications that will be deployed in such systems
will create and manipulate private information and will provide ac-
cess to a variety of other resources. Securing such applications is
challenging for a number of reasons. Unlike traditional systems
where access control has been explored, access decisions may de-
pend on the context in which requests are made. We show how
the well-developed notion of roles can be used to capture security-
relevant context of the environment in which access requests are
made. By introducing environment roles, we create a uniform ac-
cess control framework that can be used to secure context-aware
applications. We also present a security architecture that supports
security policies that make use of environment roles to control ac-
cess to resources.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Unauthorized access; D.4.6 [Operating
Systems]: Security and Protection—Access controls; K.4.2 [Computers
and Society]: Social Issues—Abuse and crime involving comput-
ers; C.2.2 [Computer-Communication Networks]: Network Pro-
tocols

General Terms
Design, Security, Standardization, Theory

Keywords
Role-Based Access Control, Context-Aware Computing

�This work was supported in part by National Science Foundation
grant CCR-9988212 and the members of the Industrial Advisory
Board of the Georgia Tech Broadband Institute.
yContact Author: Michael.Covington@cc.gatech.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’01, May 3-4, 2001, Chantilly, Virginia, USA.
Copyright 2001 ACM 1-58113-350-2/01/0005 ...$5.00.

1. INTRODUCTION
As computers become pervasive in the home and community,

new applications will emerge that will make daily life easier for
people. Such applications, which will be enabled by a ubiquitous
computing and communication infrastructure, will provide unob-
trusive access to important information, resources and services.
Clearly, successful deployment of such applications will depend
on our ability to secure them. In particular, we will have to ensure
that access to information and services is granted only to autho-
rized users, without requiring them to deal with complex security
policies or burdensome access control mechanisms.

The Aware Home initiative at the Georgia Institute of Technol-
ogy is exploring several applications [12] in the home environ-
ment that have novel security needs. We have built a home with a
rich computation and communication infrastructure. Sensors in the
home can capture, process and store a variety of information about
the home’s residents and their activities. Such information could be
sensitive and the residents certainly would want to control who has
access to it. The applications could also allow users to control and
manage resources in the home from a variety of locations. Access
control will be important in environments like the Aware Home to
protect the privacy concerns of the home’s residents as well as to
prevent unauthorized access to resources in the home. The fact that
attacks on an always connected home can be mounted from any-
where and at anytime further motivates the need for secure access
to resources in the home.

Many of the applications in the Aware Home are context-aware
[15] and their behavior can be customized based on the environ-
ment in which an access request is made. For example, access to
certain appliances may only be granted when the request is made
from a certain location or at a certain time. In a smart intercom
application that is being explored in the Aware Home [14], permis-
sion to talk to a resident in another room may depend on the activ-
ity in which the resident is currently involved. Access requests can
also be triggered when the request is not explicitly made by a resi-
dent. One of the applications being explored aims to allow elderly
residents to remain in their homes, instead of moving to assisted
living facilities. If such a resident falls and injures himself, the
Aware Home could detect the emergency and respond by request-
ing medical assistance. This access request would be automatically
generated and approved based on the context of the situation. Other
environmental conditions such as temperature in the home, the time
of day, or location from which a request is made could also affect
whether an access request is granted or denied.

In this paper, we explore an access control model for secur-
ing context-aware applications. Such a model should be flexible

10

enough to support policies that make use of security-relevant en-
vironmental data to control access to resources or information ma-
nipulated by the applications. We show how a generalization of
the role-based access control (RBAC) model [19, 7] provides an
elegant means of capturing and using a user’s context in access
control. In particular, similar to subject roles of RBAC, we define
environment roles, which can be used to capture security-relevant
aspects of the environment in which an application executes. By
using the uniform notion of a role to capture both user and environ-
mental attributes, we develop an access control model that is easy
to use and understand.

We precisely define environment roles and show that they share
many properties with subject roles that have been explored in great
detail. In particular, there could be a hierarchical structure be-
tween environment roles, and their activation and revocation leads
to interesting problems. We also present an architecture based on
the Context Toolkit that has been developed at Georgia Tech [5].
This toolkit provides abstractions for assessing environmental state
which could be used to manage environment roles. This architec-
ture addresses issues such as role activation and authorization based
on environment roles. We also illustrate how context-aware appli-
cations can be secured when environment roles are used.

The remainder of this paper proceeds as follows: section 2 moti-
vates why environmental state is important in defining access con-
trol for applications in the Aware Home. Section 3 presents details
of environment roles, and is followed by a more precise descrip-
tion of an access model using such roles in section 4. The security
architecture based on environment roles is discussed in section 5.
Then, we present several applications and show how they can be
secured in section 6. We discuss the benefits of environment roles
in section 7 and compare them with related work in section 8. The
paper is concluded in section 9.

2. SECURITY CHALLENGES
IN THE AWARE HOME

The Aware Home applications alluded to in the previous section
present new and interesting security challenges. Given the sensi-
tivity of information that is generated and stored in such an envi-
ronment, as well as the many complex interactions that will take
place both within and outside of the Aware Home, security poli-
cies can potentially be quite complex. A policy can restrict access
to information or resources based on several factors, including at-
tributes about the subject, the resource or the environment. For ex-
ample, subjects can be classified as “resident” or “guest”, “adult”
or “child,” or even as “pet.” Access rights then can depend on the
subject’s classification (e.g., “resident”), as well as on his or her
identity. Access also may be restricted based on the subject’s loca-
tion, or based on environmental factors such as the temperature or
the time of day. For example, a policy might say that a repairman
has access to the refrigerator only while he is inside the home on
January 17, 2000, between 8:00 a.m. and 1:00 p.m.

While time and location are natural examples of environmental
state that could be used in access control, richer contextual informa-
tion could also impact the result of an access request. For example,
consider a smart intercom application that is configured to permit
a child in one location of the house to request an intercom connec-
tion with the mother who is in the kitchen. The request for this may
only be granted if the mother is not busy at the time (e.g., not in-
volved in another conversation or activity). Also, unlike traditional
access control models where requests are made explicitly by sub-
jects, requests in the Aware Home may be generated based solely
on the environmental conditions. For example, if the Aware Home

detects that a resident has fallen and injured himself, a request for
medical help can be generated and should be granted based on this
context of the resident.

Although we have used the Aware Home to motivate how envi-
ronmental state can be used in authorization, there are many other
real-world instances in which an access control decision depends
on the state of the environment at the time of the request. For ex-
ample, many organizations restrict access to their facilities during
nights and weekends. In the military, secure computer systems are
often restricted only to personnel in designated physical areas, such
as a highly secure computer room. In the home, parents might re-
strict their children’s access to the television, allowing the kids to
watch TV only after they have done their homework, and only until
9:00 p.m. In each of these instances, the access control policy de-
pends on information from the environment. Any security-relevant
information in the environment that can be accurately captured by
the system can be used to restrict access to system resources.

An access control language can be developed that allows envi-
ronmental state to be considered when access decisions are made.
However, this could be complex because it must address what state
is security-relevant and how it should be captured and used. This
could also impact the ease with which security policies that used
environmental state in access control can be defined and under-
stood. We take another approach which makes use of the well-
known notion of roles to capture security-relevant state. In partic-
ular, we define environment roles based on the context or state of
the environment. Although other mechanisms, some of which are
discussed in section 8, can be used to control access based on en-
vironmental conditions, we chose to use roles for this purpose and
justify our decision throughout the remainder of this document.

3. ENVIRONMENT ROLES
Traditional RBAC offers an elegant solution to the problem of

managing complex access control rule sets. The basis of RBAC is
the concept of a role. Fundamentally, a role is a grouping mecha-
nism that is used to categorize subjects based on various properties.
Such properties include job title, user functions or responsibilities.
Much of the RBAC model is based on the mathematics of set the-
ory; thus many of the constructs of the RBAC model are based on
the notion of set membership. Individual users in an RBAC system
are called subjects. Each subject has an authorized role set, which
consists of all the roles that the subject has been authorized to use.

Although RBAC is very useful for modeling access control in
a variety of applications, its roles are inherently subject-centric.
Thus, it cannot be used to capture security-relevant context from the
environment which could have an impact on access decisions. We
have proposed a generalization of the basic RBAC model that al-
lows policy designers to specify such environmental context through
a new type of role that we call the environment role [4, 16]. In this
paper, we focus on environment roles and explore how they can be
used and implemented to enable context-aware applications.

We have chosen to use the notion of a role to capture environ-
mental conditions that are relevant to access control because of
several reasons. Although environment roles differ from traditional
roles in some ways, the two types of roles do share many impor-
tant properties. Thus, by generalizing the notion of roles to capture
environmental state, we maintain uniformity and are able to use
familiar properties such as role activation, role hierarchies and role
separation to manage complex policies that depend on environmen-
tal state.

In [18], Sandhu distinguishes roles from groups by stating that
roles possess permission. We show that this can apply to environ-
ment roles as well. However, in general, our model assigns per-

11

missions to sets of roles, where a set may include both subject and
environment roles.

Environment roles share many characteristics with subject roles.
For example, user Alice must provide some authentication infor-
mation for the system to ascertain her identity which is then used
to allow her to assume one or more roles. For environment roles,
role activation is based on conditions in the environment where a
request is made. These could include time, location or other con-
textual information that is relevant to access control. The state of
the environmental conditions must be captured via sensors that are
embedded in the environment. For example, currently the Aware
Home makes use of active badges to track user locations. Clearly,
the context information must be collected securely, in a manner
similar to credential collection in user or subject role authentica-
tion.

RBAC also addresses many other issues such as role activation,
revocation, role hierarchies and separation of duty constraints. These
issues apply to environment roles as well and are discussed below.

3.1 Environment Role Activation
Environment roles generalize traditional RBAC roles by allow-

ing the concept of a role to be applied to system states. A request
in RBAC comes from a certain user or subject S who has a set
of roles associated with her. This association is achieved via a two
stage procedure. First, the security administrator in the system must
define what roles S is allowed to take on based on the responsibil-
ities and functions of S. Second, the user must provide evidence
to prove her identity. Once this occurs, the set of roles that were
defined by the security administrator are transferred to S and can
subsequently be used during access requests. This is called role
activation in RBAC.

A similar role activation problem exists for environment roles.
First, the system administrator must define environment roles. For
each role, she must define the associated environmental variables
and conditions that must hold on the values of the variables. Un-
like a user whose functions in an organization, and hence her roles,
are well understood and relatively static, it may not be clear what
environmental roles are active in the processing of an access re-
quest. In fact, there may be a very large number of environment
roles defined in the system; at access time, the system must deter-
mine which of those roles are “active.” For example, suppose an
access request is made at 3:30 p.m. on Monday, January 1, 2001,
under a CPU load of 74% and a network load of 31%. To mediate
the access request, the system must gather information about which
environment roles are currently active. There may be an environ-
ment role called “high CPU load (over 70%)”, as well as roles
for “Monday afternoons”, “weekdays” and “business hours.” All
of these roles are active at the time of the request; however, it is
likely that not all of them are relevant to the access control deci-
sion that must be made. Testing every environment role on every
access control mediation would be prohibitively expensive, so the
system should employ an efficient means of role entry testing for
environment roles. We explore such methods further in section 5.

3.2 Environment Role Revocation
Roles in RBAC can be revoked (e.g., no longer be assumed by

the subject) either when the subject’s duties no longer require the
privileges associated with the role’s functions or when the role may
conflict with some other roles that are to be activated (see “Separa-
tion of Duty” in section 3.4).

Role revocation for environment roles differs fundamentally be-
cause the conditions that lead to their activation can change dy-
namically and rapidly. Clearly, time and location of a mobile user

are two conditions that change constantly. Other context of a resi-
dent in the Aware Home (e.g., if they are busy) could also change
unpredictably. Thus, an environment role can be activated based
on some system conditions at the time of a user’s request and the
request may be granted. However, at the time of the next request
from the user, the system conditions may change and the environ-
ment role may no longer be active. In other words, an environment
role is not necessarily active for an entire session.

There are several options to consider when revoking environ-
ment roles. In one extreme case, such roles may be activated only
when a request needs to be authorized and can be implicitly revoked
after the request is processed. However, the overhead of environ-
ment role activation must be incurred on each access. A better so-
lution may be to associate a lifetime with an activated environment
role. The role will have to be reactivated after the lifetime expires.
For example, if a “business hours” role is activated at 1 p.m., it can
be given a lifetime of 4 hours (assuming business hours end at 5
p.m.). In other cases, it may not be easy to associate a lifetime with
an activated role. For example, a certain user may be expected to
be at home during certain times. If she leaves the home unexpect-
edly, the system must detect the change in location condition and
the role should be revoked, as with subject roles in RBAC, even if
its lifetime is still not expired. We explore several of these options
in the implementation section.

3.3 Role Hierarchies
One useful construct provided by RBAC is the role hierarchy.

Role hierarchies can help manage role complexity through structure
to exploit commonality not only among subjects but among roles
as well. For example, in an organization all managers may have a
certain set of core “management privileges” even though they all
work in different departments. This commonality can be exploited
through a role hierarchy that makes each department manager role
a sub-role of a generic “managers” role. Role hierarchies allow a
policy implementor to write generic access rules just once, rather
than for every role to which the rules apply. Hierarchies also can
serve as a tool for cleaner policy design, thereby eliminating some
cases in which role precedence conflicts might otherwise have oc-
curred. As a result, our model for environment roles incorporates
support for role hierarchies.

To illustrate the power that hierarchical environment roles add
to an access control mechanism, we begin by creating a subject
role hierarchy1, such as the one displayed in figure 1. This role
hierarchy presents a graphical view of the sample household that
we will consider in the following scenario. Specifically, it shows
the relationships that exist between the various users and the roles
that are present in the system. The figure shows that users Mom
and Dad can assume the Parent role. The children in the home,
Alice and Bobby, are allowed to assume the Child role. Also, all
household members can assume the Family role.

In addition, we define a simple environment role hierarchy in fig-
ure 2. This role hierarchy presents a view of some basic environ-
ment roles that could be found in a home environment. In figure 2,
we are concerned with time-related environment roles. Other envi-
ronment roles could also define such a hierarchy. For example, a
location environment could be inside or outside of a home. Inside
the home, one could have upstairs or downstairs locations.

Assume that Mom and Dad have granted the children permission
to use the smart intercom service [14] – a context-aware intercom

1In RBAC, by convention, senior roles appear at the top of the tree
and junior roles are at the bottom. If we chose that representation,
the tree shown in the figure would be inverted. Instead, we provide
the shown representation to enhance clarity in this example.

12

Family Member

Parent

Mom
�
�
�
�� L

L
L
LL
Dad

�
�
�
�� S

S
S
SS

Child

Alice
�
�
�
�� L

L
L
LL

Bobby

Figure 1: An Example Subject Role Hierarchy for the Home

Days of the Week

Weekends

Saturday
�
�
�
�� A

A
A
AA

Sunday

,
,
,
,
,, l

l
l
l
ll
Weekdays

Monday, : : :
�
�
�
�� T

T
T
TT

: : : , Friday

Figure 2: An Example Environment Role Hierarchy

application that supports audio connections between residents – on
weekdays, but only during their free time after dinner, before going
to bed. To enforce this policy, the system must be configured to
identify the various entities in the system and classify them into
the particular roles that are relevant to the access decision being
processed. In addition, the security services must be able to identify
the various environmental states (e.g, weekdays, “dinner time” and
“bed time”) that are important components of this access rule.

In this particular example, we use hierarchies for both the tra-
ditional subject roles of RBAC, as well as for environment roles.
First, the users must be classified so that a specific user identity can
be mapped to a role, such as Parent or Child. By mapping a set of
users to roles, the home administrator can specify an access control
policy for a group of users, rather than for each individual user. For
example, once a user is identified as the father in the family, the
“Family Member,” “Parent” and “Dad” subject roles can all be ac-
tivated for the user. In addition to subject roles, the system in this
example uses an environment role named weekdays. Weekdays are
defined by the system as the time from 12:01 a.m. on Monday to
11:59 p.m. on Friday. Also, since dinner usually is over by 7:00
p.m., and since the children have a bed time of 10:00 p.m., the en-
vironment role free time is defined to be from 7:00 p.m. to 10:00
p.m.

After defining all the necessary roles, the administrator needs to
establish just one rule to specify the policy. The rule in this case

is “any child can use the intercom on weekdays during free time.”
This example illustrates how environment roles can significantly
enhance an access control system, making it easy to take a fairly
complex access policy and state it cleanly and efficiently. In addi-
tion, an access control policy using environment roles offers signif-
icant flexibility over one that simply sets access control based on
resource and subject identity.

3.4 Separation of Duty
An attractive feature offered by RBAC is its ability to prevent a

user from assuming conflicting roles. This mechanism can be used
to enforce separation of duty requirements that ensure that a single
user cannot acquire too much authority. For example, a single indi-
vidual may be able to assume both “instructor” and “student” roles
at different times but not both simultaneously. Similar separation of
duty requirements are also useful for environment roles. For exam-
ple, if non-employees are not allowed access to a building outside
of working hours, the “inside-building” and “non-working-hours”
roles should not both be active at the same time.

There is an important distinction between user roles and environ-
ment roles when it comes to separation of duty. Although we may
want to prevent the activation of two environment roles at the same
time, role activation is driven by the system state. This should be
compared to user roles where the system determines what roles are
activated for the user. If the system state is such that it implies that

13

two conflicting environment roles are both active at the same time,
the system is not in a safe state. In this case, separation of duty con-
straints help the system determine when it may be in a potentially
unsafe state so it can attempt to resolve the conflict.

3.5 Example Environment Roles
An environment role can be based on any system state that the

system can accurately collect. For example, we can define a role
corresponding to each day of the week, or each month of the year.
A policy rule such as “managers may edit salary data for their em-
ployees only on the first Monday of each month” is easy to imple-
ment using environment roles. Similarly, environment roles may
be used to describe rules that relate access permissions to the loca-
tions of subjects. In the home, we can define location roles such
as “upstairs,” “downstairs,” “master bedroom,” etc. We can then
use these roles in policy rules; for example: “children may only
use the intercom while they are in the kitchen.” In many homes
and organizations, access control is dependent on the pattern of
user activity within the organization. In other words, users must be
granted access privileges only for the time periods in which they
are expected to request access to a resource. As an example of
such periodic access control, consider a part-time babysitter who
should be authorized to have access to resources within the home
only each working day during the hours that she is scheduled to
work, between 3 p.m. and 6:30 p.m.

In addition to environment roles that incorporate time and loca-
tion, we can define roles that capture any relevant environmental
state. For instance, the Smart Intercom application in the Aware
Home is capable of using sensed ambient noise levels and activity
monitors to determine whether an individual is capable of accept-
ing a call. Such environmental conditions can make access control
rules extremely flexible and capable of adjusting to demands made
by future applications.

4. ENVIRONMENT ROLE-BASED
ACCESS CONTROL MODEL

Based on the formalization of the RBAC model in [18], we present
a precise description of an access model that includes environment
roles. As discussed in the previous section, both role hierarchies
and separation of duty are meaningful in the context of environ-
ment roles, though they are omitted here in our description. Thus,
we only consider flat user and environment roles. This formaliza-
tion can be extended to hierarchies and constraints similar to the
RBAC1 and RBAC2 models of [18].

Our model has the following components:

� FromRBAC0, we keep U ,R, P and S. These capture users,
roles, permissions and sessions respectively.

� We addER and EC, whereER refers to Environment Roles
and EC captures the Environment Conditions that are used
to define such roles. To some degree, EC is analogous to
U because the credentials associated with a user allow her
to assume roles in R. Similarly, values of variables in EC
allow certain roles in ER to be activated.

We have three relations UA, PA and EA that define the asso-
ciations between subject roles, users, permission assignments and
environment roles. These relations are as follows:

� UA � U �R

This comes from RBAC and defines what roles in R a user
from U is allowed to assume.

� PA � P �R� 2ER

This captures permissions that are assigned to a user role
when a given set of environment roles is active. Thus, PA
not only associates a permission with a subject role but makes
it conditional on a set of active environment roles. Clearly,
permissions may change for a single subject role accessing
a resource if the environmental conditions vary between re-
quests.

The following functions define what user or environment roles
can be activated:

� User: S �! 2
R

In a given session S, a set of roles can be activated for a user.

� Request: EC �! 2
ER

Although some environment roles can be activated for the
duration of a session, changing conditions will require other
roles to be evaluated every time. Thus, based on the environ-
mental conditions, a set of environment roles are activated at
the time of a request.

In our system, a request that requires permission p can be granted
if (1) <p, r, e-set> 2 PA, (2) the subject role r is in the active role
set of the user making the request, and (3) the environment roles
active in the current environmental conditions EC contain the roles
in e-set.

5. IMPLEMENTING ENVIRONMENT ROLES
This section presents our architectural design and the current im-

plementation of a security infrastructure to support environment
roles in the Aware Home. As noted earlier, the system administra-
tor is responsible for defining environment roles. For each role, the
administrator must define a set of environmental variables that are
to be monitored and the conditions, EC, that must hold for activa-
tion. While the specification of environmental conditions is trivial,
the secure and accurate capture of variable values from the environ-
ment is not an easy task. For example, in traditional RBAC, a user
must provide some authentication information to prove her identity
which is then used to allow her to assume one or more roles. Simi-
larly, sensors capturing security-relevant environment context must
provide some authentication information; also, the integrity of the
information provided to the security subsystem must be guaranteed.

Below, we discuss issues concerning the collection of contextual
information from the environment and the relation of this context
to environment roles.

5.1 Collecting Environment State
To facilitate the collection of environment variables and their as-

sociated values, we make use of the Context Toolkit [5, 6]. The
Context Toolkit is a software infrastructure that provides useful ab-
stractions for collecting and organizing environmental state infor-
mation; it allows for the seamless incorporation of sensed context
into “aware” applications. The overall organization of the software
is shown in figure 3.

Context widgets represent abstractions over sensors that hide de-
tails of how sensing and interpretation of the environment occurs.
As an example, the intercom application presented in [14] provides
two types of widgets – location and speech recognition. These wid-
gets are essentially wrappers around an underlying local position-
ing system and speech recognition software; they provide interfaces
that automatically deliver information to interested components or
services in the system.

14

Context
Toolkit
Architecture

Application

Aggregators

Widget Widget

Sensor Sensor

InterpreterInterpreter

Figure 3: The Context Toolkit

Aggregators collect information for relevant entities of an appli-
cation. In the home, there could be aggregators for rooms in the
house (Room Aggregators) and residents of the household (Per-
son Aggregators). For example, the Living Room Aggregator may
know that both Dad and Bobby are in the living room. A Room Ag-
gregator can also maintain additional information about the room,
such as appliance status, ambient noise level, or even an interpreta-
tion or prediction of a high-level activity (e.g., party preparation or
medical emergency). Person Aggregators currently hold informa-
tion about a person’s whereabouts in the house and may also store
information about a current activity.

Interpreters are responsible for abstracting low-level context to
higher-level information. This has traditionally been performed by
applications, however, it has been separated to allow reuse of in-
terpreters by multiple applications. An interpreter can convert state
information to another format or meaning. For example, an inter-
preter can convert a room location into a building location (e.g.,
Room 123 maps to Building A). A more complex example is an
interpreter that takes location, identity and sound information and
determines that a meeting is underway. Context interpreters can be
as simple or as complex as the designers want.

In the Context Toolkit, every software component described above
can be shared simultaneously by multiple context-aware applica-
tions. Application components subscribe to aggregators and are
notified when interesting events take place. In the smart intercom
example, the application itself is responsible for managing sub-
scriptions and responding properly to events in the system.

5.2 Secure Acquisition
of Environment State

The Context Toolkit, as described above, was designed to sup-
port applications in a trusted research environment. As this toolkit
is deployed and used to support security-relevant services, it is crit-
ical that mechanisms be provided to secure both the internal ex-
change of information (e.g., between the components listed above)
and the external communication that takes place with applications.

We have built a “trusted” version of the Context Toolkit that will
allow us to collect environment information in a manner that is both
secure and reliable. The first stage in securing the toolkit involved
a minor redesign of the internal components and the underlying
communication mechanisms. A fundamental concern in building
a secure networked system is authentication of both local and re-
mote entities. Once obtained, authentication information provides
the foundation for controlling access and enforcing policy in the
network. Our redesign involved the distribution of authentication

information (e.g., keys and certificates) to all components in the
toolkit. Such tokens are necessary to guarantee the authenticity
and privacy of information exchanged. We also have enabled all
toolkit components to perform data encryption and to use this fea-
ture to protect the confidentiality of contextual information that is
generated within the home.

The Context Toolkit is, by design, a distributed system. It is
reasonable for us to assume that the individual components of the
toolkit are secure as stand-alone services. For example, we assume
that sensors and widgets are securely bound together in such a way
that information from a sensor (e.g., an RF transmitter) can be se-
curely transmitted to its associated widget. Also, we assume that
all software components are “secure” as individual entities on the
network; in other words, they are designed to properly implement
interfaces. Moreover, malicious parties should not be able to sub-
vert any access control mechanisms that may restrict access to the
component.

Therefore, our goal was to provide an authentication framework
for the Context Toolkit that would enable the various “principals” to
accurately identify one another and communicate with confidence.
The principals in this model include sensors, widgets, aggrega-
tors and interpreters. Authentication schemes ultimately enable
each principal to obtain or possess some information identifying
the other [3]. In the Context Toolkit, this information is difficult to
bootstrap (e.g., aggregators may be dynamically generated to han-
dle a particular component of the environment). In order to facil-
itate the free exchange of information within the toolkit, pairwise
shared secrets are not an option for us. Instead, we decided to use
public key encryption and established a certificate authority to aid
with the distribution of keys between components.

While we begin with an assumption that the individual compo-
nents of the toolkit are secure, we make no such assumption re-
garding the network over which they communicate. Interactions
between secure components in the toolkit pass through a “chain”
of intermediaries. First, the sensors must be trusted to accurately
transmit data to the widgets. Second, the widget must be trusted
to either properly execute a series of commands (e.g., a filter) or
to securely forward information to an Aggregator. In some sce-
narios, interaction with an interpreter may be required. The chain
of components and services that is constructed during a distributed
transaction must be secured so communication channels between
the involved systems can be trusted. This trust provides assurance
that the commands and responses are safe from alteration, forgery
and disclosure [8].

Rivest and Lampson [17] have devised a method of authentica-

15

tion support for distributed systems that do not contain a global hi-
erarchy. Their egalitarian model allows for each principal to make
(signed) statements and requests on the same basis as any other
principal. Essentially, this allows each principal in the system to
act as a certificate authority (CA). The policies and procedures ad-
hered to by a principal are self-determined, making the model ex-
tremely flexible and non-limiting. Although their proposal allowed
for some principals to act as “special roots”, they did not require
or rely upon the presence of a global name space. This work has
since been incorporated into the Simple Public Key Infrastructure
(SPKI), a technology that we make use of in our implementation.
We view the egalitarian design of SPKI as an ideal environment
for key management in the Aware Home – it allows home owners
to localize their control of certificates and does not require the in-
volvement of a “trusted third-party” to obtain signed certificates for
their networks.

5.3 Environment Role Activation Service
The activation of environment roles involves several different is-

sues that previously have been mentioned. First, environment roles
need to be defined based on environmental conditions that are rele-
vant to access control. Second, the appropriate set of roles must be
active when a request is processed. This is done by an environment
role activation service that we discuss in this section. We also dis-
cuss an authorization service which determines if a request should
be granted or denied based on the active roles and the access rules
that are defined to control access to resources.

5.3.1 Defining Environment Roles
In traditional RBAC, subject roles and their associated hierar-

chies are maintained by a security administrator who is familiar
with the security requirements and objectives of the organization.
As with subject roles, environment roles require similar adminis-
trative care in order to ensure that appropriate sets of environment
roles exist for policy definition and enforcement.

We have chosen to define our environment roles using a prolog-
style logical language for expressing policies. Our policy defini-
tion language consists of statements, each terminated by a period.
As with the Generalized Policy Definition Language (GPDL) pre-
sented in [16], statements are used to define roles, sub-role relation-
ships, transactions, and policy rules. The syntax for role definition
is described below:

erole(role_name).

In the above role definition, role_name denotes the name of
the role. The following examples show how to use this definition.
The meanings of the roles should be obvious from the role names.

erole(weekends).
erole(business_hours).

5.3.2 Role Relationship Definitions
Environment roles are useless without a precise description of

how they are activated and of the conditions that must be met. We
accomplish this via the role relationship definitions. These defini-
tions could be entry conditions that have to be satisfied for a par-
ticular role to be active, or it could be some logical combination of
conditions that have to be satisfied in order to enter that role.

role_rel(erole_name, entry_condition).
role_rel(parent_role, child_role).

In the above definition, erole_name denotes an environment
role, and the entry_condition represents a boolean statement

about the conditions that the current environmental state must sat-
isfy before it can enter that role. The specific syntax of these entry
conditions depends on the type of environmental state that is being
tested. For example, the policy administrator could use a state-
ment such as 08:00 < time_of_day < 17:00 and use it as
an entry condition for the business_hours environment role.
The second statement is used to define higher-order relationships
in a role hierarchy. It specifies a parent-child relationship where
child_role is a child of parent_role.

Below, we present examples of the syntactical forms described
above.

role_rel(business_hours,
08:00 < time_of_day < 17:00).
role_rel(sunday, day_of_week=SUNDAY).

The first statement says that the business hours are from 8:00
a.m. to 5:00 p.m. The second statement says that the environment
role sundaymay be entered when the system variable day_of_week
is equal to “SUNDAY”. The policy administrator would have to
define both the day_of_week variable and the constants corre-
sponding to each day. The activation of these roles is done by
the environment role activation service by collecting information
about the environment states from Aggregators and Interpreters in
the Context Toolkit.

In order to keep track of errors due to conflicting definitions in
the rule base, it is necessary to have error rules.

error(erole1, erole2).

This above rule states that given two environmental rules erole1
and erole2, the system cannot simultaneously activate both of the
rules. For example, it would be erroneous to have the roles week-
end and weekday active at the same time. This is a mechanism to
preserve the integrity of the rule base.

5.3.3 Activation of Environment Roles
The activation of environment roles depends on the environmen-

tal conditions. These conditions change dynamically and hence the
active role set also changes. In our system, we plan to implement
an environment role activation service that keeps track of all the
active roles at a given time. This can be done easily with the fa-
cilities that are available. For example, such a service can read the
current sensor state from widgets and/or aggregators. It can also
place callbacks at the aggregators which will result in a notification
if any of the values provided to the activation service change. Thus,
the service can have a consistent view of the environmental condi-
tions. Based on these, it can maintain the list of currently active
roles, updating the list when any condition change notifications are
received. When a request is made, the requester can request the set
of needed active roles before the request is sent to the authoriza-
tion service. The authorization service can also “pull” the needed
active roles when it handles a request. Our design of the environ-
ment role activation service permits these different approaches for
dealing with the activation of environment roles.

5.4 Authorization Service
Our model for providing security in the Aware Home separates

out the function of access control and makes this a distributed core
service, which performs authorization on behalf of the resources
in the system. A client or subject desiring service from a resource
must first contact an authorization server to obtain the credentials
necessary to access the resource. Ubiquitous computing environ-
ments such as the Aware Home consist of many devices and ser-
vices which will be centrally administered. The authorization ser-
vice ensures that access rules are consistent across all resources and

16

allows for all resources – regardless of processing capabilities – to
enforce security policies. This section will provide a detailed de-
scription of how a centralized policy is defined using environment
roles.

Both subject roles and environment roles provide powerful tools
for capturing and organizing security-relevant information about
various users and system states. In traditional RBAC, transactions
are used to mediate access control. A transaction specifies a partic-
ular action to be performed in the system. Specifically, a transaction
is a tuple in the form:
<srole, object, erole-set, op>,
where srole specifies a subject role, object specifies the object

or resource for which access has been requested, erole-set specifies
environment roles that must be active for the request to be granted,
and op specifies the operation (e.g., read, write, execute, etc.) to be
performed in the transaction. Semantically, the tuple represents an
operation in which a subject acting in subject role srole performs
operation op on a resource object under environmental conditions
specified by the environment roles in erole-set. A policy database
would consist of a transaction listing, paired with a permission bit
for each transaction. The permission bit indicates whether the as-
sociated transaction is allowed or prohibited. Each <transaction,
permission bit> is called a policy rule.

In cases where one or more components of the policy rule are not
required (e.g., a rule that applies to all subjects), we maintain con-
structs that apply to all roles in the particular “class”. Consider an
example that forbids access to resource abc during working hours.
The policy rule corresponding to this requirement would be repre-
sented as follows:
< all-subjects, abc, working-hours, all-ops >
By defining general roles for subjects and environment condi-

tions, a policy administrator can create broad policy statements that
remain in effect for a variety of active roles. In the example pro-
vided above, one policy rule replaces a handful of rules that were
applied for each individual subject and environment role.

6. SECURE APPLICATION SCENARIO
Environment roles are a powerful and elegant concept for spec-

ifying access control rules in a computationally rich environment.
This section shows how environment roles can be applied in prac-
tice to the home environment. It also illustrates some of the addi-
tional security benefits that such roles can provide in a system.

6.1 Securing the Smart Intercom
To illustrate the power and elegance of environment roles, we

begin by creating a simple environment role hierarchy such as the
one provided in figure 2. This role hierarchy presents a graphical
view of some basic time-related environment roles. Specifically,
it shows the relationships that exist between the various roles that
are defined in the system. The figure shows that environment roles
Monday, Tuesday, : : : , Friday inherit traits (e.g., permissions) from
the role Weekdays, which in turn inherits traits from the role Days
of the Week.

Using our policy definition language, we can generate the fol-
lowing statements to define roles and sub-role relationships:

erole(monday).
...
erole(friday).

erole(weekdays).
erole(weekends).

erole(days_of_the_week).

role_rel(monday, day_of_week=MONDAY).
role_rel(weekdays, monday).
...
role_rel(weekdays, friday).

In addition to defining a set of roles and their relationships, we
have described the conditions that must be met in order for a role to
be activated. In this example, the environment role monday may
be entered when the system variable day_of_week is equal to
“MONDAY”.

Assume we want to create an access policy that states: “children
may only use the intercom during weekdays, while they are in the
kitchen.” This rule is defined as specified in section 5.4. Specifi-
cally, our rule would appear in the form:
< child, intercom, (weekdays, in kitchen), activate:page, allow>

To illustrate the access request from beginning to end, we refer
to figure 4.

Suppose that Alice, classified as a child by the home policy ad-
ministrator, wants to use the intercom service on a Wednesday af-
ternoon. Whether done implicitly via sensors or explicitly, Alice
presents credentials to the system and is provided with a set of
active subject roles. Ultimately, these subject roles will help de-
termine the resources she is allowed to access. These rules are
fundamentally consistent with those found in traditional RBAC.

With her set of active roles, Alice is now able to request access
to a particular resource in the home. Knowing the policy limita-
tions in advance, Alice proceeds to the kitchen and turns on the
intercom service. Her request is forwarded to the centralized au-
thorization service where the current home security policy is de-
fined. As indicated above, a policy exists to grant access to Alice
under certain conditions. In order to verify those (environmental)
conditions, the authorization service contacts the environment role
activation service. The environment role activation service, which
interacts securely with the context toolkit, has already received no-
tification from the Kitchen Aggregator that Alice is in the room. It
also knows that it is currently Wednesday (also a weekday). This
set of active roles is returned to the authorization service. The envi-
ronment’s active role set, along with the subject role and resource
request, provides a match to the rule specified in the security pol-
icy. Access rights are therefore granted to Alice and her intercom
session is established.

6.2 Enhancing a System
with Environment Roles

The scenario above presents some sample environment roles and
illustrates how role relationships can be used to establish security
policies for the home. As previously stressed, ease of security pol-
icy definition and implementation is a key requirement for appli-
cations in this domain, since the typical homeowner cannot be ex-
pected to understand information security. In addition, we have
stated that the system and related security mechanisms must be
non-intrusive and easy to use. In this section, we briefly explore
how environment roles can be used to enhance a system and also
fulfill these requirements.

As already mentioned, a system should make access decisions
without placing any undue burden on the users. One example of
this would be a system in which an access request is triggered by
a change in an environment role or condition. That is, the access
request could be generated without explicit input from the user.

Consider a specific application example from the Aware Home.
One research group is exploring how the Aware Home concept can

17

View Active
Environment Roles

Aggregators
Subscribe to Event

Notification

Environment Monitoring via Sensors

Support for Environment Roles in Access Control

Request Access
to Resource

Access Rights

Environment Role Activation Service

Context Toolkit

Authorization Service

User Authentication Service

Subject Role Activation Service

Present User Credentials

ACK User Identity

ACK Role Activation

Request Role Activation

Subject/
Request

Concepts from Traditional RBAC

Policy Definition Language

Figure 4: Transactions with Environment Roles

help elderly residents remain in their homes as opposed to moving
into assisted living communities. This application uses the home’s
sensors to enable important interactions with relatives outside of
the home and with care specialists, effectively providing the same
level of care and supervision that today can be found only in nurs-
ing homes and hospitals. It is important to note that access con-
trol policies are especially important in this example, as it involves
a home that must be “opened” to allow regular access by many
outside entities. For example, doctors, nurses, family members,
lawyers and care groups may each require separate access rights in
the home, depending on their primary function or responsibilities.

Assume we want to create a policy that states: “dial emergency
contact if resident falls and injures himself.” This rule could easily
be defined as follows:
< none, dial emergency, (resident, injured), call, allow >

In this example, the Context Toolkit would create a Person Ag-
gregator that maintains an activity trait for the resident. Should the
resident be injured or incapacitated, the toolkit would recognize
the change in activity status via a callback. The injured role would
then be activated for the resident and propagated to the appropriate
services. The request to dial the emergency contact would be im-
mediately granted. This is done without the presence of a specific
subject role in the transaction.

7. DISCUSSION
We have introduced environment roles and describe why we be-

lieve they can be useful for securing “aware” applications in a ubiq-
uitous computing environment. In addition, we have provided both
a model and implementation details for an access control mecha-
nism that makes use of environment roles in policy definition. In
the following, we discuss some noteworthy aspects of environment
roles that did not receive sufficient review in previous sections.

7.1 Environment Roles and Sessions
In [18], a session is created in order to enforce the principle of

least privilege – a user should be allowed to login to the system
with only those roles appropriate for a given occasion. Unlike sub-
ject roles, however, environment roles are dynamic in nature and it
may not be possible to assign a set of active environment roles to a
session. With traditional RBAC, a session allows constraints to be
established and enforced that limit user-controlled role activation.

It is important to realize that many environment roles may be
active at the time of a request; however, it is likely that not all of
them are relevant to the access control decision being processed.
Testing every environment role on every access control mediation
would be very expensive, so the system should employ an efficient
means of role entry testing for environment roles.

There are several strategies that may be employed to properly
manage environment role testing. In our framework, we use the
environment role activation service to automatically activate and
deactivate roles when appropriate. By maintaining an internal data
structure of all active roles, the environment role activation service
can interact efficiently with the authorization service to aid in mak-
ing prompt access control decisions.

Regardless of how environment role activation is implemented,
sessions are simply inappropriate for this type of role. Additional
research is necessary to determine more efficient strategies for en-
vironment role activation in context-aware environments.

7.2 Manipulation of Environment State
One subtle, though potentially dangerous security issue that may

arise with the use of environment state in access control decisions
is the possibility that a user can affect access rights through his
activities in the system. For example, if a user knows that the sys-
tem prohibits users from playing MPEG video files when the CPU
load is high, he may intentionally run several CPU-intensive pro-
cesses to mount a selective denial-of-service attack against other

18

users who are accessing MPEG files. This type of vulnerability is
very hard to eliminate; perhaps the best way to minimize exposure
to it is to keep the access control policy secret. Of course, any user
who is willing to experiment with the system can gather significant
information about the current access control policy, such as what
objects he can access, under what conditions he can and cannot ac-
cess them, etc. It is unclear whether such vulnerabilities present
a significant risk to the system; however, these vulnerabilities are
common to all current “real-life” computer systems. Certain envi-
ronmental data, such as CPU load, are inherently user-related; in
contrast, environmental data such as the current time are not af-
fected by any (legitimate) user activity. To solve the problem de-
scribed above, we could simply ensure that all “important” access
control rules are not dependent on any environmental data that ma-
licious users can affect.

7.3 Policy Definition
The policy definition language described in section 5.4 is suffi-

cient for defining policies, but in practice could be frustrating and
clumsy for a policy administrator to manage, especially when edit-
ing large, complex policy files. Roles are inherently visual, so
it would be useful to have a graphical policy editor that displays
available roles, their relationships, and policy rules in an easy-to-
understand manner. We have built a prototype graphical editor and
are currently exploring how it can help to define and understand
complex security policies. Such an interface is necessary as our
access model is deployed in the Aware Home.

8. RELATED WORK
In this section, we briefly highlight several existing access mod-

els that have influenced our work with environment roles and context-
aware access control models. We discuss traditional RBAC, time-
based authorization, system-load-based authorization, and several
other notable models.

We have discussed traditional RBAC [7, 19] and acknowledge
the tremendous influence it has had on our research efforts. Our
work expands the RBAC model by providing a more versatile and
more expressive framework that incorporates the use of environ-
ment roles. By using the uniform notion of a role to capture both
user and environmental attributes, our model allows for the defi-
nition of context-aware security policies. In addition, roles make
it easy to define and understand complex security policies; adding
environment roles to the model was necessary to support the ad-
vanced access control requirements that we are faced with in per-
vasive computing environments such as the Aware Home.

Environment roles are really one component in a Generalized
Role-Based Access Control Model (GRBAC) [4, 16]. GRBAC is
highly expressive, and easy-to-use access control model and was
designed with two major goals in mind: flexibility and simplic-
ity. GRBAC is flexible because it gives a policy administrator the
freedom to structure an access control policy around subjects, ob-
jects, environmental conditions, or even a combination of all three.
In addition, GRBAC is a very simple model; it achieves its goal
of flexibility in policy design by using only one general grouping
primitive: the role. In GRBAC, access policies are defined with
subject roles, environment roles and object roles.

Bertino et al. [1, 2] have investigated support for temporal au-
thorizations in database systems. They have examined both peri-
odic and non-periodic authorizations. Their access control model
is discretionary, whereas RBAC is mandatory. But in principle,
their notion of temporal authorization is similar to our notion of
time-based environment roles. We believe our model is better in
terms of its usability and flexibility. Through environment roles,

access policies can be simplified by defining temporal access rules
that are assigned human-understandable names to various periods
of time (e.g., “Monday,” “Weekends,” or even “Weekday mornings
in July”). In contrast, their authorization language is very techni-
cal, which inherently limits its usefulness to the small set of people
who have the background necessary to understand it.

The conditions on environmental state variables can be captured
by constraints; this method has been explored in past RBAC work.
Giuri and Iglio [9] have proposed a role-based access control model
that provides special mechanisms for the definition of content-based
access control policies. By extending the notion of permission, they
have allowed for the specification of security policies in which the
permissions to an object may depend on the content of the object
itself. This approach, if applied to environment roles, would allow
for the creation of role templates specifying constraints that must be
bound to a role. In other words, subject roles would be parameter-
ized based on various environmental conditions. Our model, how-
ever, allows for security policies to be specified using both subject
roles and environment roles. We argue that our approach is more
flexible as it separates the conditions that define constraints from
the subject roles. These conditions are captured by environment
roles which can be activated when necessary.

Similarly, in their Generalized Access Control Language (GACL),
Woo and Lam [21] use the notion of system load as a determining
factor in certain access control scenarios, so that, for example, cer-
tain programs only can be executed when there is enough system
capacity available to handle them adequately. Given appropriate
support for monitoring and reporting changes in system state, our
model can also support such state-based authorization decisions us-
ing environment roles. In fact, the scope of environment roles is
limited only by the level of support that the system provides for
accurately reporting environmental information. As illustrated in
section 5, we are implementing a toolkit that will allow for the ac-
curate and secure capture of contextual information from the envi-
ronment.

Access control languages that allow role-based security policies
to be defined have been proposed recently. For example, a role def-
inition language (RDL) is defined in [10] which allows roles to be
activated (via role certificates) by services; credentials are supplied
by the user making the access request and the RDL program man-
ages access to individual service resources. A novel aspect of this
scheme is that change in security-relevant state results in the revo-
cation of such role certificates. A trust policy language (TPL) is
presented in [11] which allows role activation to be based on cer-
tificates that are available to a requester. The FAM/CAM language
presented in [13] provides support for both negative and positive
access rights. It seeks to separate access policy from access mech-
anism by providing the policy designer with a language that is prov-
ably capable of expressing any access policy.

There are several other access control models that are worth not-
ing due to their influence on our work with environment roles; we
briefly mention them here. The first related model was proposed by
Jajodia et al. [13]. It seeks to separate access policy from access
mechanism by providing the policy designer with a language that
is provably capable of expressing any access policy. We also note
the work of Shen and Dewan [20]. They have developed a flexible,
powerful role-based model for access control in collaborative en-
vironments, where policies must account for concurrent operations
on shared objects and other complex access issues.

9. CONCLUSION
In this paper we have extended traditional role-based access con-

trol to include the notion of an environment role. We are focused

19

on solving the problem of securing context-aware applications in
a ubiquitous computing environment. Our work shows how the
well developed concept of a role can be used to capture security-
relevant context of the environment in which access requests are
made. The resulting access control framework is highly versa-
tile, yet the underlying constructs (roles) remain consistent with
traditional RBAC. We have presented our extended access control
model as well as an initial implementation. This work is currently
being used to build an authorization framework to secure applica-
tions in the home and community, such as those being explored by
the Aware Home Initiative at Georgia Tech.

10. REFERENCES
[1] Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela

Samarati. Supporting periodic authorizations and temporal
reasoning in database access control. In 22nd VLDB
Conference, 1996.

[2] Elisa Bertino, Claudio Bettini, Elena Ferrari, and Pierangela
Samarati. A temporal access control mechanism for database
systems. In IEEE Transactions on Knowledge and Data
Engineering, volume 8, 1996.

[3] Andrew D. Birrell, Butler W. Lampson, Roger M. Needham,
and Michael D. Schroeder. A global authentication service
without global trust. In Proceedings of the IEEE Symposium
on Security and Privacy, pages 223–230, 1986.

[4] Michael J. Covington, Matthew J. Moyer, and Mustaque
Ahamad. Generalized role-based access control for securing
future applications. In Proceedings of the National
Information Systems Security Conference (NISSC), October
2000. Also appeared as technical report GIT-CC-00-02,
available from the Georgia Tech College of Computing.

[5] Anind K. Dey and Gregory D. Abowd. The context toolkit:
Aiding the development of context-aware applications. In
Workshop on Software Engineering for Wearable and
Pervasive Computing, June 2000.

[6] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A
context-based infrastructure for smart environments. In
Proceedings of the 1st International Workshop on Managing
Interactions in Smart Environments (MANSE ’99), Dublin,
Ireland, pages 114–128, December 1999.

[7] David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A
role based access control model and reference
implementation within a corporate intranet. In ACM
Transactions on Information Systems Security, volume 1,
February 1999.

[8] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and
Butler Lampson. The digital distributed system security
architecture. In Proceedings of the National Computer
Security Conference, pages 305–319. NIST/NCSC, October
1989.

[9] Luigi Giuri and Pietro Iglio. Role templates for
content-based access control. In Proceedings of the Second
ACM Workshop on Role Based Access Control, pages
153–159, Fairfax, Virginia, USA, November 1997.

[10] R. J. Hayton, J. M. Bacon, and K. Moody. Access control in
an open distributed environment. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 3–14, 1998.

[11] Amir Herzberg, Yosi Mass, and Joris Mihaeli. Access control
meets public key infrastructure, or: Assigning roles to
strangers. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 2–14, 2000.

[12] Georgia Tech Broadband Institute. The Aware Home
Research Initiative. Research Initiative Web Page, 2000.
http://www.cc.gatech.edu/fce/ahri/.

[13] Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and
Elisa Bertino. A unified framework for enforcing multiple
access control policies. In Proc. of the 1997 ACM
International SIGMOD Conference on Management of Data,
May 1997.

[14] Cory D. Kidd, Thomas O’Connell, Kris Nagel, Sameer Patil,
and Gregory D. Abowd. Building a better intercom:
Context-mediated communication within the home.
Technical Report GIT-GVU-00-27. GVU Center, Georgia
Institute of Technology. June 2000.

[15] D. Moore, I. Essa, and M. Hayes. Exploiting human actions
and object context for recognition tasks. In IEEE
International Conference on Computer Vision, 1999.

[16] Matthew J. Moyer and Mustaque Ahamad. Generalized role
based access control. Technical Report GIT-CC-00-16,
College of Computing, Georgia Institute of Technology,
September 2000.

[17] Ronald L. Rivest and Butler Lampson. SDSI - a simple
distributed security infrastructure. SDSI Version 1.1, October
1996.

[18] Ravi S. Sandhu. Role based access control. In Advances in
Computers, volume 46. Academic Press, 1998.

[19] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and
Charles E. Youman. Role based access control models. In
IEEE Computer, volume 2, February 1996.

[20] Honghai Shen and Prasun Dewan. Access control for
collaborative environments. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work,
pages 51–58, November 1992.

[21] Thomas Y. C. Woo and Simon S. Lam. Designing a
distributed authorization service. In Proceedings of IEEE
INFOCOM, March 1998.

20

