
Page 1

Access Control Policy Mining:
RBAC to ABAC

L10-2
CS6393

Spring 2020

@Shuvra Chakraborty

Page 2

Paper 2

2. Shuvra Chakraborty, Ravi Sandhu and Ram Krishnan, On the
Feasibility of RBAC to ABAC Policy Mining: A Formal Analysis. In
Proceedings of the 7th International Conference on Secure
Knowledge Management in Artificial Intelligence Era (SKM), Goa,
India, December 21-22, 2019, 17 pages.

**** Role Mining and ABAC policy mining references can be found in “Related works”
section of paper 2

@Shuvra Chakraborty

Page 3

Role 1

Review: RBAC

Role-Based Access Control (RBAC) assigns user to “role”

Role 2

User 2

Object
1

Role 3

User 1

User 3 Object
2

Object1, Read

Object2, Read

Object1, Remove

@Shuvra Chakraborty

Page 4

Paper 2 Workflow

Check ABAC RuleSet Existence (partition-based approach)

Rule Generation

Infeasibility correction (partition-based approach)
(use role-based attributes)

(b) Given RBAC system
with supporting data

(a) Given RBAC
system only

yes

No

yes

@Shuvra Chakraborty

Page 5

• RBAC (Role-Based Access Control) is widely used but has notable
limitations (e.g., role explosion)

• Using ABAC (Attribute-Based Access Control), access control policies can
be written in more flexible and higher level way

• Automated migration of an existing RBAC system to ABAC system
(defined as ABAC policy mining problem) cuts the cost and human
efforts needed

• Stoller et. al. use explicit unique IDs in attribute set to resolve ABAC
policy mining problem which is somehow conflicting with basic principle
of ABAC

 We introduce ABAC RuleSet Existence problem: questions the feasibility
of ABAC policy mining problem in RBAC context
 If not feasible without ID, infeasibility correction technique is applied
 Eliminates use of explicit ID in ABAC policy mining

Problem Motivation

@Shuvra Chakraborty

Page 6

1. Access control

2. An Access control system must have a checkAccess function
which evaluates an access request (user, object, operation) to
true/false

3. Two access control systems are equivalent iff i) set of users (U),
objects (O), and operations (OP) are identical ii) for any access
request, checkAccesssystem1 and checkAccesssystem2 evaluates
the same

4. The following example includes 3 types of Access Control
System
a. Enumerated Authorization System (EAS)
b. RBAC System
c. ABAC System

Review terminologies…

@Shuvra Chakraborty

Page 7

EAS is a tuple <U, O, OP, AUTH, checkAccessEAS>
 U, O, and OP are finite sets of users, objects and operations,

respectively
 AUTH ⊆ U X O X OP
Example 1:
 U = {John, Lina, Ray, Tom}, OP = {read, write}, O = {Obj1, Obj2}

AUTH Explanation
(John, Obj1, write)
(John, Obj2, write)
(John, Obj1, read)
(Lina, Obj2, write)
(Tom, Obj1, read)
(Ray, Obj1, read)

e.g., John is allowed to
do read operation on
Obj1 but not allowed to
do read operation on
Obj2

@Shuvra Chakraborty

Review: EAS

Page 8

RBAC system
- is a tuple <U, O, OP, Roles, RPA, RUA, RH, checkAccessRBAC>

 Roles is finite set of roles
 RH is the role hierarchy relation [RH’: reflexive transitive closure of RH]
 RPA : Role Permission Assignment
 RUA: Role User Assignment
 Permission is an object-operation pair
 authPerm(r) = {p ∈ RPA(r’)|(r, r’) ∈ RH’}, where r,r’ ∈ Roles
 authUser (r) = {u ∈ RUA(r’)|(r’, r) ∈ RH’} where r,r’ ∈ Roles

 checkAccessRBAC(u:U, o:O, op:OP) ≡ ∃r ∈ Roles.(u ∈ authUser(r)
∧ p ∈ authPerm(r) ∧ (o, op) = (obj(p), ops(p))

@Shuvra Chakraborty

Review: RBAC

Page 9

EAS and RBAC system defined in example 1 and 2 are equivalent ​​

Example 2:
• U = {John, Lina, Ray, Tom}, OP = {read, write}, O = {Obj1, Obj2}

[same as Example 1]
• Roles = {R1, R2, R3}
• RPA(R1) = {(Obj1, write)}, RPA(R2) = {(Obj2, write)}, RPA(R3)

= {(Obj1, read)}
• RUA(R1) = {John}, RUA(R2) = {Lina}, RPA(R3) = {Ray, Tom}
• RH={(R1,R2), (R1, R3)} [R1 is a senior role than R2, R3]

@Shuvra Chakraborty

Review: RBAC

Page 10

• ABAC system is a tuple <U, O, OP, UA, OA, UAValue, OAValue, RangeSet,
RuleSet, checkAccessABAC >

Example 3
• U, O, OP are same as Example 1
• UA ={Position, Dept.}, OA = {Type}

• RuleSet contains one separate rule for each operation, {Ruleread, Rulewrite}
• ABAC system is incomplete in Example 3 (No rules given!)

RangeSet

Position {Officer, Student,
Faculty}

Dept. {CS, EE}
Type {File, Printer, Scanner}

UAValue
User
(U)

Position Dept.

John Officer CS
Lina Student CS
Ray Officer CS
Tom Officer CS

OAValue
Object
(O)

Type

Obj1 File
Obj2 Printer

@Shuvra Chakraborty

Review: ABAC

Page 11@Shuvra Chakraborty

ABAC rule structure
For any operation op ∈ OP, Ruleop grammar

 Ruleop ::= Ruleop∨ Ruleop | (Atomicexp)
 Atomicexp ::= Atomicuexp ∧ Atomicoexp | Atomicuexp |

Atomicoexp
 Atomicuexp ::= Atomicuexp ∧ Atomicuexp | uexp
 Atomicoexp ::= Atomicoexp ∧ Atomicoexp | oexp
 uexp ∈ {ua(u) = value | ua ∈ UA ∧ value ∈ Range(ua)}
 oexp ∈ {oa(o) = value | oa ∈ OA ∧ value ∈ Range(oa)}

 checkAccessABAC (a:U, b:O, op:OP) ≡ Ruleop(a:U, b:O)

*** Illustrated ABAC rule examples can be found in later slides
*** Example 1,2 and 3 will be used to demonstrate the workflow of paper 2

Review: ABAC

Page 12

ABAC RuleSet Existence

Does an equivalent ABAC system exist for the given RBAC system and
supporting data?
Find the RuleSet -> *With ID, always possible, *No IDs → Not possible
e.g., cannot separate John from Ray and Tom in Example 3

Role Based Access
Control System

(Example 2)

Supporting Data
(Incomplete ABAC system without

RuleSet in Example 3)

Equivalent ABAC
system

@Shuvra Chakraborty

Page 13

(a) RBAC only

Step 1. Generate role-based attribute set
 For a user u, role-based user attribute denotes the set of roles

possessed by u
 For an object-operation pair (obj, op), role-based object attribute

denotes the set of roles where each role contains permission (obj, op)

Role-based user attribute
(Example 2)

User(U) uroleAtt
John {R1, R2, R3}

Lina {R2}

Ray {R3}

Tom {R3}

Role-based object attribute (Example 2)
Object(O) oroleAttwrite oroleAttread

Obj1 {R1} {R1, R3}

Obj2 {R1, R2} {}

Next step: partition set is generated on set UXO based on similarity in
attribute value assignment

@Shuvra Chakraborty

Page 14

John, Obj1

Lina, Obj1

Lina, Obj2

John, Obj2

Step 2

Partition set is conflict-free w.r.t. read and write → YES

Ray, Obj1
Tom, Obj1 Ray, Obj2

Tom, Obj2

Partition set w.r.t. readPartition set w.r.t. write

@Shuvra Chakraborty

Page 15

Step 3

•Given an operation op, if partition set is conflict-free and each partition is
uniquely identified by the set of (attribute name, value) pair then RuleSet can
be generated [Proved]
•A conjunction of (attribute name, value) pair is made for each conflict-free
bold black partition and OR’ed to Ruleop

e.g., Ruleread ≡ <(uroleAtt(u) = {R3} Λ oroleAttwrite (o)={R1} Λ oroleAttread (o) =
{R1, R3}) V (uroleAtt(u) = {R1, R2, R3} Λ oroleAttwrite(o)= {R1} Λ oroleAttread
(o)= {R1, R3})>

***Rulewrite can be constructed same way
*RuleSet = {Rulewrite, Ruleread}

Example 2 and completed ABAC system in example 3 are equivalent
***Equivalent ABAC system generation is always possible!

@Shuvra Chakraborty

Page 16

RangeSet

Position {Officer, Student, Faculty}

Dept. {CS, EE}
Type {File, Printer, Scanner}

UAValue
User
(U)

Position Dept.

John Officer CS
Lina Student CS
Ray Officer CS
Tom Officer CS

OAValue
Object
(O)

Type

Obj1 File
Obj2 Printe

r

Su
pp

or
tin

g
Da

ta
 (E

x.
 3

)
Equivalent ABAC

system

Step 1: Generate partition set based on similarity in attribute value
assignment. Partition set might have conflicts!

Role Based Access
Control System

(Ex. 2)

(b) With supporting data

@Shuvra Chakraborty

Page 17

John, Obj1
Ray, Obj1

Tom, Obj1

Lina, Obj1Lina, Obj2

John, Obj2
Ray, Obj2
Tom, Obj2

Partition Set

*Partition set has conflict w.r.t. write → YES (Ex. 2 and 3)
Next step: Apply infeasibility correction

Step 1

Conflict
Conflict

@Shuvra Chakraborty

Page 18

Partition Partition the sets of users and
objects present
e.g., {John, Ray, Tom} is partitioned as
{John} and {Ray, Tom}

Generate a conjunctive clause

Step 2 and 3

Infeasibility correction: exact solution can be achieved many ways

conflict

conflict-free, (UA, OA)

if needed
a. Add role-based user attribute to UA
b. Add role-based obj attributes to OA

Use role-based attribute values to identify
e.g., {John} and {Ray, Tom} are assigned different
role-based attribute values

conflict-free
(UA U uroleAtt),

(OA U oroleAttop, opϵOP)

OR to Ruleop

@Shuvra Chakraborty

Page 19

John, Obj1

Lina, Obj1

Lina, Obj2

John, Obj2

Partition Set

Partition set: corrected

Rulewrite ≡ <(Position(u) = officer Λ Dept(u) = CS Λ
uroleAtt(u)={R1, R2, R3} Λ Type(o) = File) V

(Position(u) = officer Λ Dept(u) = CS Λ
uroleAtt(u)={R1, R2, R3} Λ Type(o) = Printer) V

(Position(u) = student Λ Dept(u) = CS Λ Type(o) =
Printer)>

*RuleSet = {Rulewrite, Ruleread}

Ray, Obj1
Tom, Obj1

Ray, Obj2
Tom, Obj2

UAValue
User(U) uroleAtt

John {R1, R2,
R3}

Lina {R2}
Ray {R3}
Tom {R3}

OAValue
Object
(O)

oroleAttwrite oroleAttread

Obj1 {R1} {R1, R3}

Obj2 {R1, R2} {}

@Shuvra Chakraborty

Page 20

 Formalized notion of feasibility on RBAC to ABAC policy mining: first time
 The overall asymptotic complexity of ABAC RuleSet Existence problem is

O(|OP| × (|U| × |O|))
 The overall asymptotic complexity of ABAC RuleSet Infeasibility Correction in

RBAC context is O(|OP| × (|U| × |O|) 3)

Challenges
 Can you ensure partition split always equals 2?
 More compact set of rule generation
 Negative rules?
 Exact solution:
❖Reduce number of split partitions
❖Change number of attributes required
❖Changing existing attribute set, possible?

Paper 2: Summary

@Shuvra Chakraborty

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

