
Editors: Richard Ford, rford@se.fit.edu | Deborah A. Frincke, debfrincke@gmail.com

BASIC TRAINING

1540-7993/14/$31.00 © 2014 IEEE Copublished by the IEEE Computer and Reliability Societies July/August 2014 63

Heartbleed 101
Marco Carvalho | Florida Institute of Technology
Jared DeMott | Bromium
Richard Ford | Florida Institute of Technology
David A. Wheeler | Institute for Defense Analyses

D escribed by some as the
worst vulnerability since

e- commerce began on the Internet,
one word sums up what this Basic
Training column is all about: Heart-
bleed. Although we don’t necessarily
agree with such hyperbole (although
it really was pretty bad!), the media
furor around the Heartbleed vulner-
ability was incredible and crossed
over from security mailing lists to
the national press with remarkable
speed. Here, we take a look at this
vulnerability in OpenSSL and out-
line how it was fixed. Perhaps more
important, we also step back and
look at the issue more broadly. Why
was the Heartbleed vulnerability
missed for so long?

Basic Anatomy
To understand Heartbleed, you
must first understand the func-
tionality that OpenSSL develop-
ers were trying to enable, which
takes us all the way back to RFC
6520, “Transport Layer Security
(TLS) and Datagram Transport
Layer Security (DTLS) Heartbeat
Extension.” This seemingly benign
document described an exten-
sion to the TLS protocol designed
to enable a low-cost, keep-alive
mechanism for peers to know that

they’re still connected and all is
well at the TLS layer.

The implementation of RFC
6520 was, in theory, simple: send
a packet of type heartbeat_
request, along with an arbitrary
payload and a field that defines the
payload length. The request should
be answered by a response that
contains an exact copy of the pay-
load. This mechanism would allow
for more streamlined checking of
connection state and lower client/
server overhead on long-lived con-
nections. Unfortunately, as history
shows, a lot can go wrong between
design and implementation.

Version 1.0.1 of OpenSSL added
support for the Heartbeat func-
tionality and enabled it by default,
thereby inadvertently making the
implementation vulnerable by
default. This vulnerability remained
until 1.0.1g—or roughly two years.

The actual source code patch
to fix Heartbleed is shown in part
in Figure 1 and is informative in
its simplicity. In essence, the code
merely adds a check to make sure
that the response isn’t longer than
the request in Figure 1.

This error existed in the source
tree in a couple of places, and the fix is
slightly longer than shown, but it really

does capture the gist of it. Before this
patch was added, the heartbeat_
request packet essentially blindly
returned a block of memory cor-
responding to the package’s stated
payload size instead of its actual size.
With many thanks to xkcd’s Ran-
dall Munroe, Figure 2 shows the
Heartbleed vulnerability graphically
(http://xkcd.com/1354). Yes, it
 really is that simple.

When we look at Heartbleed on
the surface, we see that it’s essen-
tially a buffer overread vulnerability,
where inadequate bounds-checking
is carried out at runtime. Indeed,
the fix addresses precisely this prob-
lem and carefully checks that the
read doesn’t include data unrelated
to the request.

At a slightly more sophisticated
level, another way of looking at
this is that the programmer placed
trust in something that was utterly
untrustworthy and not dependable.
A client cannot and should not trust
the payload length presented in the
heartbeat_request packet. At
a more philosophical level, this was
the root cause of the vulnerability,
but it doesn’t apply to just bounds
checking: placing trust in user-
supplied input is often a bad idea.

This kind of vulnerability has
historically occurred several times
in early Web applications, when the
server couldn’t rely on the client to
provide trustworthy responses. For
example, a client-side JavaScript-
controlled dropdown menu doesn’t
actually constrain input from an
untrusted client, and an unsigned
cookie stored on a client should
never directly determine the value
of items stored in a shopping cart (a
vulnerability that existed in an early

j4bas.indd 63 7/9/2014 11:23:21 AM

e-commerce system). In security,
keeping track of what’s trustwor-

thy and what’s tainted and unreli-
able is key. This mindset would have
prevented the programming error
found in the code.

“What was Heartbleed? How was
it exploited? How was it fixed?”—all
of these are easy questions. What’s
much more interesting is exploring
the factors that allowed such a seri-
ous bug in a security- sensitive and
prevalent software component to
exist for so long.

Many Eyeballs,
Shallow Bugs?
One of the most well-known quotes
about the open source movement
comes from the Cathedral and the
Bazaar, by Eric S. Raymond. It’s all
too common to hear people throw
“Given enough eyeballs, all bugs
are shallow” around as if it tells the
whole story about the trustworthi-
ness of open source code. Unsurpris-
ingly, the discussion in Raymond’s
book is much more nuanced, but
the misconception that open source
is somehow magically protected
by “the community” has become
 common— at least among those who
aren’t actively involved in the tough
world of developing open source
software. This false impression can
be counterproductive, because secu-
rity testing requires directed effort,
regardless of the license or develop-
ment methodology used.

With that said, the fact remains
that it took a significant amount of
time for this flaw to be discovered.

Why wasn’t it found with exist-
ing automated testing techniques?
Let’s examine the two best-known
approaches: static analysis of source
code and input fuzzing.

Static Analysis
Static analysis involves examining
software without executing it, and
it includes anything from human
review to a variety of automated
tools. One of the most common
types of static analysis tools is the
source code weakness analyzer (also
known as the static application secu-
rity testing tool), which examines a
program’s source code to find poten-
tial vulnerabilities. But as far as we
know, all existing source code weak-
ness analyzers wouldn’t have found
this vulnerability by default, includ-
ing those by Coverity, HP/Fortify,
Klocwork, and GrammaTech.

It’s important to understand
that these analyzers don’t verify
the absence of vulnerabilities but
instead try to find as many as pos-
sible. In short, they’re incomplete.
This is intentional; most program-
ming languages aren’t designed to be
easy to analyze, and most software
isn’t written to make it easy for static
analyzers to analyze. Complete
analysis tools often require a lot
of human help to apply to existing
programs. In contrast, incomplete
analysis tools can be applied imme-
diately to existing programs by using
various heuristics. However, this
presents a major caveat: incomplete
source code weakness analyzers
often miss vulnerabilities. A partial
solution is to use multiple tools; that
way, if one tool misses the vulner-
ability, another tool may find it.

In this case, though, OpenSSL’s
complex organization exceeded the
ability of all of these tools to find
the vulnerability. James Kupsch
and Barton Miller identified four
factors that made OpenSSL espe-
cially difficult to analyze (https://
continuousassurance.org/swamp/
SWAMP-Heartbleed.pdf):

Figure 1. Part of the source code path to fix Heartbleed.

+ /* Read type and payload length first */
+ if (1 + 2 + 16 > s->s3->rrec.length)
+ return 0; /* silently discard */
+ hbtype = *p++;
+ n2s(p, payload);
+ if (1 + 2 + payload + 16 > s->s3->rrec.length)
+ return 0; /* silently discard per RFC 6520 sec. 4 */
+ pl = p;
+

Figure 2. The separation provided by the seL4 microkernel.
This separation lets us build well-performing systems with
millions of lines of legacy code, while reducing the trusted
code base to a manageable level. (Source: XKCD, used
with permission.)

64 IEEE Security & Privacy July/August 2014

BASIC TRAINING

j4bas.indd 64 7/9/2014 11:23:22 AM

 ■ Use of pointers. Pointers make
analyzing memory use difficult,
“because the size of the buffer
is not contained in the pointer
but must be stored and managed
separately from the pointer.” This
makes it difficult for a tool to track
the size of an object being pointed
to. Heartbleed had multiple levels
of indirection that made it espe-
cially difficult for a tool to track
what was valid (the vulnerable
function was passed a pointer to
a structure containing another
pointer to a structure with a field
that points to the actual record).
OpenSSL also uses function
pointers to provide extra flexibil-
ity, yet function pointers are espe-
cially difficult for tools to handle.

 ■ Complexity of the execution path
from buffer allocation misuse.
There’s no necessary direct code
path from memory allocation,
through writing, to its invalid
use. Instead, buffers are cached
and reused, which can aid per-
formance but make it exceed-
ingly difficult for tools to identify
invalid uses.

 ■ Valid bytes of the TLS message
are a subset of the allocated buf-
fer. As Kupsch and Miller state,
“The pointers to the message and
the payload both point into the
middle of a buffer, and the con-
tents of the message do not use
the entire memory buffer. For a
tool to track the correct memory
usage in a situation like this, a tool
needs to track the boundaries of
the object and the containing
buffer…. The length of the mes-
sage is much more difficult [to
determine] as it depends on the
semantics of the program.”

 ■ Contents of the buffer don’t
appear to come directly from
the attacker. Many static analy-
sis tools perform “taint analysis.”
They mark data from untrusted
sources as tainted and limit how
it can be used. Most tools then
use heuristics to determine when

the data becomes untainted.
However, the custom memory
allocators make it difficult to
determine which data is tainted
and which is not. In addition, the
process of decrypting, uncom-
pressing, and verifying message
integrity looks similar enough
to data validation that tools may
consider it untainted.

You can improve the results of
a source code weakness analyzer
by providing detailed informa-
tion about the program that you’re
analyzing. We call this approach a
“context- configured source code
weakness analyzer.” Klocwork has
shown, for example, that Heart-
bleed could have been found if addi-
tional information about OpenSSL
was provided (https://continuous
assurance.org/swamp/SWAMP
-Heartbleed.pdf). This does require,
however, more effort.

Source code weakness analyzer
developers continuously improve
their tools, especially when impor-
tant vulnerabilities like Heartbleed
are missed. Coverity, for example,
recently developed some new heuris-
tics that it thinks would’ve detected
Heartbleed (http://security.coverity.
com/blog/2014/Apr/on-detecting
-heartbleed-with-static-analysis.
html). New heuristics will never
lead to finding all vulnerabilities, but
they can help find more.

Fuzzing
Given the limitations of static
analysis, let’s turn our attention to
another security-testing technique,
which many feel could have found
the vulnerability quickly and easily.
Fuzzing is a security-focused testing
approach in which a compiled pro-
gram is executed so that the attack
surface can be tested as it actually
runs. Typically, attack surfaces are
the components of code that accept
user input. Because this is the most
vulnerable part of code, it should be
rigorously tested with anomalous

data. During testing, the applica-
tion is monitored for known bad
states, such as an application crash,
often the result of an out-of-bounds
memory access. If a crash is found,
the input and application state are
stored for later review. Such a flaw
will be entered as a security bug for
developers to repair. Figure 3 shows
a high-level view of fuzzing.

Fuzzing is often an effective way
to find bugs missed in manual and
automated code reviews. Fuzzing
also finds real flaws and has a very
low false-positive rate when com-
pared to techniques such as static
analysis. However, fuzzing tends to
get shallow penetration for com-
plex protocols, and thus has rela-
tively weak code coverage. This is
particularly true for code paths that
might require the specialized input
unlikely to be present in automated
inputs. This is why both static and
dynamic testing approaches are
critical to any well-formed secure
development life cycle.

While the Heartbleed wiki page
specifies how and when the bug was
introduced into the code base, it
doesn’t disclose how the OpenSSL
code was security tested, either stat-
ically or at runtime. It wouldn’t be
surprising to find out that a vulner-
able version of the OpenSSL code
had been fuzzed and the Heart-
bleed bug had been missed. Infor-
mation disclosure bugs are easy to
miss when fuzzing: there might not
be a crash associated with this bug.
Heartbleed is an overread bug, not
an overwrite bug, so many fuzzing
setups simply wouldn’t catch it.

However, crashes in the default
environment aren’t the only excep-
tional condition fuzzers can look
for. Fuzzing tools can also observe
potential memory leaks—for
example, for a network proto-
col such as OpenSSL, the size of
return packets could be recorded,
and anything larger than expected
should be reported on. Likewise,
if the returned data is of a well-

www.computer.org/security 65

j4bas.indd 65 7/9/2014 11:23:22 AM

known format, unknown data
should also be treated with suspi-
cion. Detecting leaked memory is
commonly accomplished by using
a debug heap that sets each alloca-
tion next to an unmapped page, as
Figure 4 shows.

If data is read beyond the scope
of one allocation, a page fault will
occur. Not all information leaks
occur outside the bounds of an
allocated buffer, but this approach
is a good start. Most operating sys-
tems have a debugging system avail-
able with a debug heap that can be
optionally enabled. The heartbeat
extension wasn’t fuzzed using a

debug heap, or else this bug would
have been detected. The beauty of
using debug heaps for fuzzing is
that your existing tools can con-
tinue to focus on catching crashes,
and they’ll now find this bug type.
The tradeoff is that the applica-
tion, and therefore the fuzzer, will
run much slower and require much
more memory.

It’s impossible to know what
security tools were or weren’t used
to analyze OpenSSL for vulnerabili-
ties; people rarely report unsuccess-
ful attempts. The real point is that
many of the tools commonly used
would not—or might not, unless

very carefully applied—have found
the Heartbleed vulnerability.

Looking to the Future
Post Heartbleed, perhaps the best
result we can hope for is that devel-
opment organizations will examine
why current approaches failed and
apply additional approaches that will
counter Heartbleed-like vulnerabili-
ties in the future (for example, see
www.dwheeler.com/essays/heart
bleed.html). In many cases, this
might be hampered by the limited
support that some open source
projects receive in terms of funding.
OpenSSL is used very broadly and
is an important part of the security
ecosystem, yet The New York Times
has reported that the project has
a typical budget of just US$2,000
a year (www.nytimes.com/2014/
04/19/technolog y/heartbleed
-highlights-a-contradiction-in-the
-web.html?_r=0#). Despite the heavy
commercial usage of many open
source projects, for the programmers
involved, it’s sometimes just a labor
of love.

In terms of technical preventives,
static analysis and input fuzzing are
some of the techniques normally
used to find bugs or vulnerabilities
in code and are intrinsically limited
to the scope that they’re designed
to cover. Even if they were applied
in this instance, they would have
missed other serious vulnerabilities
in the complex software systems
that we use today. This is essentially
the nature of the game, and while
our current techniques are insuf-
ficient, they are and will continue
to be an important and necessary
part of the process of building more
secure software systems. Improve-
ments and additions to these tech-
niques have been suggested (www.
dwheeler.com/essays/heartbleed.
html), but we shouldn’t expect such
approaches to be perfect.

Thus, while it is indeed necessary
to continue to advance and improve
our security testing tools and tech-

Figure 4. Debug heap. A special memory allocator can place each valid memory
allocation next to an invalid allocation so that overreads or overwrites of even a
single byte are caught instantly.

X byte allocation

Malloc (size) Exception on out-of-bound read

Unmapped page

Memcpy (size + y)

Figure 3. Fuzzing overview. Malformed input is created and sent to a program,
which is being monitored by a debugger, with results being collected if a crash
is found.

FIles. network,
SMS hook on

phone, and so on

Peach, Sulley,
custom code,

and so onFuzz master

Deliver
data

Attack surface:
all of protocol,

portions of interface

OS, process on OS,
embedded system,

emulator, VM, and so on

Subject
under test

On fault:
record input and
crash information

Crea
te

fuzzy
 in

put

M
onito

r e
xc

ep
tio

ns

Coordinate

Debugger,
reboot monitor,

network capture, and so on

66 IEEE Security & Privacy July/August 2014

BASIC TRAINING

j4bas.indd 66 7/9/2014 11:23:24 AM

niques, we must also recognize their
limitations and look into alternative
or complementary ways to defend
our systems and information. In
recent years, the notions of dynamic
and moving-target defenses, for
example, have been proposed as
ways to improve the resilience of
software systems. These techniques
propose a changing attack surface
that would, at least in theory, make
it more difficult or costly for an
attacker to identify and exploit a
given vulnerability. Dynamic attack
surfaces are normally achieved
through runtime and periodic
changes in system configuration,
ranging from low-level address lay-
out to communication protocols,
operating systems, and service
implementations. Ironically, one of
the most commonly used moving-
target defenses (address space lay-
out randomization) wouldn’t have
helped reduce the impact of the
Heartbleed vulnerability.

W ould any dynamic defense
or moving-target tech-

nique have helped prevent Heart-
bleed? It’s still too early to say if
they would have made a significant

tute of Technology. Contact him
at rford@se.fit.edu.

David A. Wheeler is a research
staff member at the Institute for
Defense Analyses. Contact him at
dwheeler@dwheeler.com.

enough difference to justify their
costs. However, it isn’t unreason-
able to consider a diverse imple-
mentation that could somehow be
coordinated to correlate inputs and
responses. Such an approach might
have exposed a larger attack surface
but could also have helped provide
a much earlier detection of the vul-
nerability’s exploitation.

The far future might depend not
on any one specific technique but
on the appropriate use and coor-
dination of multiple approaches,
tools, and techniques.

Marco Carvalho is an associate pro-
fessor of computer sciences and
the director of the Harris Insti-
tute for Assured Information at
the Florida Institute of Technol-
ogy. Contact him at mcarvalho@
fit.edu.

Jared DeMott is a principle security
researcher at Bromium. Contact
him at jdemott@vdalabs.com.

Richard Ford is the Harris Profes-
sor of computer sciences and
department head for the Com-
puter Sciences and Cybersecurity
Department at the Florida Insti-

Final submissions due: 1 January 2015
Abstracts due by 1 December 2014 to the guest editors

T his special issue intends to support discussions on the
economic aspects of cybersecurity and privacy, taking

into account multidisciplinary perspectives. The objective is
to provide new insights about the economics of cybersecu-
rity and privacy, the costs- benefits involved in adopting such
technologies, the potential investment alternatives and their

returns, the behavioral aspects of actors dealing with security
and privacy issues, the fostering and hampering effects of
privacy and security regulations, and the economic account-
ability of actors in the cyber world.

Contact the guest editors, Massimo Felici and Nick Wain-
wright (Hewlett-Packard Laboratories, Security and Cloud
Lab, UK), and Fabio Bisogni and Simona Cavallini (FORMIT
Foundation, Italy). Corresponding guest editor: massimo.
felici@hp.com.

Call for Papers
What’s New in the Economics of Cybersecurity?
for IEEE Security & Privacy magazine’s September/October 2015 issue

www.computer.org/security/cfp

www.computer.org/software

from minecraft to minds // 11

Landing a spacecraft on mars // 83

Design patterns: magic or myth? // 87

marcH/aprIL 2013

www.computer.org/software

storytelling for software
professionals // 9

In Defense of Boring // 16

Beyond Data mining // 92

may/June 2013

IEEE Software offers pioneering ideas, expert
analyses, and thoughtful insights for software
professionals who need to keep up with
rapid technology change. It’s the authority on
translating software theory into practice.

www.computer.org/software/subscribe

www.computer.org/security 67

j4bas.indd 67 7/9/2014 11:23:25 AM

