Module 4.1
Role-Based Access Control (RBAC)

Ravi Sandhu

Spring 2021
Access Control Models

Discretionary Access Control (DAC) 1970

Mandatory Access Control (MAC) 1970

Role Based Access Control (RBAC) 1995

Attribute Based Access Control (ABAC) 2020s (Hopefully)

Fixed policy

Flexible policy
RBAC: Role-Based Access Control

- Access is determined by roles
- A user’s roles are assigned by security administrators
- A role’s permissions are assigned by security administrators

First emerged: mid 1970s
First models: mid 1990s

Is RBAC MAC or DAC or neither?

- RBAC can be configured to do MAC
- RBAC can be configured to do DAC
- RBAC is policy neutral

RBAC is neither MAC nor DAC!
Role-Based Access Control (RBAC)

- Core concept:
 - All accesses are mediated through Roles

- Core drawback:
 - Roles are a natural concept for human users
 - Not so natural for:
 - Information objects
 - Smart objects (Internet of Things)
 - Contextual attributes

- Sophistication:
 - Role hierarchies
 - Role constraints
Operational model
- specify the decision function for the access decision triple or quad

Administrative
- specify the model’s dynamics
- dynamics change the system state and modify the outcome of some access decision triple or quads

Our RBAC focus

DAC, RBAC, ...
Founding Principles of RBAC96

- **Abstraction** of Privileges
 - Credit is different from Debit even though both require read and write

- **Separation** of Administrative Functions
 - Separation of user-role assignment from role-permission assignment

- **Least Privilege**
 - Right-size the roles
 - Don’t activate all roles all the time
 - Limit roles of a user
 - Limit users in a role

- **Separation of Duty**
 - Static separation: purchasing manager vs accounts payable manager
 - Dynamic separation: cash-register clerk versus cash-register manager
RBAC96 Model Family

- RBAC0
 - BASIC RBAC
- RBAC1
 - ROLE HIERARCHIES
- RBAC2
 - CONSTRAINTS
- RBAC3
 - ROLE HIERARCHIES + CONSTRAINTS

World-Leading Research with Real-World Impact!
A role brings together
- a collection of users and
- a collection of permissions

These collections will vary over time
- A role has significance and meaning beyond the particular users and permissions brought together at any moment

Roles versus Operating System (OS) groups
- Most OS’s support groups as ACL entries
- An OS group is a collection of users
- Selective activation typically not supported
ROLE HIERARCHIES

USER-ROLE ASSIGNMENT

PERMISSIONS-ROLE ASSIGNMENT

SESSIONS

USERS

ROLES

PERMISSIONS

© Ravi Sandhu
HIERARCHICAL ROLES

Primary-Care Physician

Physician

Specialist Physician

Health-Care Provider
HIERARCHICAL ROLES

Supervising Engineer

Hardware Engineer Software Engineer

Engineer
EXAMPLE ROLE HIERARCHY

Director (DIR)

Project Lead 1 (PL1)
 Production 1 (P1)
 Engineer 1 (E1)

Project Lead 2 (PL2)
 Production 2 (P2)
 Engineer 2 (E2)

Quality 1 (Q1)
 Quality 2 (Q2)

Engineering Department (ED)

Employee (E)

PROJECT 1

PROJECT 2
EXAMPLE ROLE HIERARCHY

Director (DIR)

Project Lead 1 (PL1)
 Production 1 (P1)
 Engineer 1 (E1)
 Quality 1 (Q1)

Project Lead 2 (PL2)
 Production 2 (P2)
 Engineer 2 (E2)
 Quality 2 (Q2)

PROJECT 1

PROJECT 2
EXAMPLE ROLE HIERARCHY

PROJECT 1

Project Lead 1
(PL1)

Production 1
(P1)

Quality 1
(Q1)

Engineer 1
(E1)

PROJECT 2

Project Lead 2
(PL2)

Production 2
(P2)

Quality 2
(Q2)

Engineer 2
(E2)
RBAC96 Model Family: RBAC3

ROLE HIERARCHIES

USER-ROLE ASSIGNMENT

PERMISSIONS-ROLE ASSIGNMENT

USERS

ROLES

PERMISSIONS

SESSIONS

CONSTRAINTS
SEPARATION OF DUTY (SOD)

- Static Separation of Duty
 - The same individual can never hold both roles
 - Applies to User-Role Assignment
 - Example: Purchasing Manager, Accounts Payable Manager

- Dynamic Separation of Duty
 - The same individual can never hold both roles in the same session
 - Applies to Session-Role Activation
 - Example: Cash-Register Clerk, Cash-Register Manager
 - Example: Course-Teaching-Assistant, Course-Student
Cardinality Constraints on User-Role Assignment

- At most \(k \) users can belong to the role
- At least \(k \) users must belong to the role
- Exactly \(k \) users must belong to the role

Cardinality Constraints on Permissions-Role Assignment

- At most \(k \) roles can get the permission
- At least \(k \) roles must get the permission
- Exactly \(k \) roles must get the permission
RBAC96 Model Family

- RBAC0: Basic RBAC
- RBAC1: Role Hierarchies
- RBAC2: Constraints
- RBAC3: Role Hierarchies + Constraints
NIST MODEL FAMILY

Select Core RBAC
Option: Advanced Review

Hier. RBAC
a. Limited
b. General

Choose a or b
Option: Advanced Review

SSD Relations
a. w/hierarchies
b. wo/hierarchies

Adhere to dependency

DSD Relations

Requirements Package
RBAC Administration

ROLE HIERARCHIES

USER-ROLE ASSIGNMENT

PERMISSIONS-ROLE ASSIGNMENT

USERS

ROLES

PERMISSIONS

SESSIONS

CONSTRAINTS