Module 6.1
Views of Cloud Computing

Ravi Sandhu

Spring 2021
The Cloud is the Computer
- IEEE Spectrum, 2008

Datacenter as a Computer
- Barroso and Hölzle, 2009

The Network is the Computer
- Sun Microsystems, early 1990s
Cloudwashing

© Ravi Sandhu
NIST Cloud Computing 3-4-5 Definition

5 Essential Characteristics

2009-2011
16 versions

3 Service Models

4 Deployment Models
NIST Cloud Computing 3-4-5 Definition

5 Essential Characteristics

2009-2011
16 versions

3 Service Models
- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Infrastructure as a Service (IaaS)

4 Deployment Models
NIST Cloud Computing 3-4-5 Definition

5 Essential Characteristics

- On-demand self service
- Broad network access
- Resource pooling (multi-tenant)
- Rapid elasticity
- Measured service

3 Service Models
- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Infrastructure as a Service (IaaS)

4 Deployment Models

2009-2011
16 versions
NIST Cloud Computing 3-4-5 Definition

5 Essential Characteristics

On-demand self service
Broad network access
Resource pooling (multi-tenant)
Rapid elasticity
Measured service

2009-2011
16 versions

3 Service Models
Software as a Service (SaaS)
Platform as a Service (PaaS)
Infrastructure as a Service (IaaS)

4 Deployment Models
Public
Private
Community
Hybrid

World-Leading Research with Real-World Impact!
NIST Cloud Computing 3-4-5 Definition

5 Essential Characteristics

On-demand self service
Broad network access
Resource pooling (multi-tenant)
Rapid elasticity
Measured service

2009-2011
16 versions

Other Common Characteristics

Geographic distribution
Homogeneity
Resilience
Massive scale
Virtualization
Security

3 Service Models

Software as a Service (SaaS)
Platform as a Service (PaaS)
Infrastructure as a Service (IaaS)

4 Deployment Models

Public
Private
Community
Hybrid
“We argue that Cloud Computing not only overlaps with Grid Computing, it is indeed evolved out of Grid Computing and relies on Grid Computing as its backbone and infrastructure support.”

I don’t think so
Cloud and Grid: Foster et al 2008

Scale

Distributed Systems

Supercomputers

Grids

Clusters

Clouds

Web 2.0

Application Oriented

Services Oriented

© Ravi Sandhu

World-Leading Research with Real-World Impact!
1. Coordinates resources that are not subject to centralized control
 - Virtual Organization (VO)
2. Uses standard, open, general-purpose protocols and interfaces
 - Globus toolkit
3. Delivers non-trivial qualities of service
Grid versus Cloud

1. Coordinates resources that are not subject to centralized control
 - Virtual Organization (VO)
2. Uses standard, open, general-purpose protocols and interfaces
 - Globus toolkit
3. Delivers non-trivial qualities of service
 - Yes

Grid

- On-demand self service
- Broad network access
- Resource pooling (multi-tenant)
- Rapid elasticity
- Measured service

Cloud

- Geographic distribution
- Homogeneity
- Resilience
- Massive scale
- Virtualization
- Security

© Ravi Sandhu

World-Leading Research with Real-World Impact!
Grid versus Cloud Drivers

<table>
<thead>
<tr>
<th>Cloud</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Commercially developed</td>
<td>- DoD funded, no commercial traction</td>
</tr>
<tr>
<td>- Little or no academic input</td>
<td>- Mainly academic driven</td>
</tr>
<tr>
<td>- Pay-per-use</td>
<td>- Pay-per-seat (one-time payment)</td>
</tr>
<tr>
<td>- Payment driven</td>
<td>- Project oriented, proposal driven</td>
</tr>
<tr>
<td>- Centrally owned hardware</td>
<td>- Multiply owned hardware</td>
</tr>
<tr>
<td>- Centrally scheduled</td>
<td>- Distributed scheduling</td>
</tr>
<tr>
<td>- Single point of trust</td>
<td>- Multiple trust points</td>
</tr>
<tr>
<td>- Simple security</td>
<td>- Complex PKI based security</td>
</tr>
<tr>
<td>- Interactive</td>
<td>- Batch</td>
</tr>
<tr>
<td>- Commodity computing</td>
<td>- High performance computing</td>
</tr>
<tr>
<td>- Small and medium businesses</td>
<td>- High end organizations</td>
</tr>
<tr>
<td>- Virtualization essential</td>
<td>- Virtualization often not used</td>
</tr>
<tr>
<td>- Not so predictable performance</td>
<td>- Predictable performance</td>
</tr>
</tbody>
</table>
Figure 1. Users and providers of cloud computing. We focus on cloud computing's effects on cloud providers and SaaS providers/cloud users. The top level can be recursive, in that SaaS providers can also be SaaS users via mashups.
Not IaaS or PaaS but classes of utility computing
Cyber Security: What is Different in the Cloud?

Risk = \(f(\text{Threats, Vulnerabilities, Impact}) \)

- Threats
- Vulnerabilities
- Impact
Cyber Security: What is Different in the Cloud?

- Multi-Tenancy
- Security and Privacy
- Compliance and Forensics
- Cloud Service Provider