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ABSTRACT 
 

 
 
A FAMILY OF MODELS FOR RULE-BASED USER-ROLE ASSIGNMENT  
 
Mohammad Abdullah Al-Kahtani, Ph.D. 

George Mason University, 2003 

Dissertation Director: Dr. Ravi Sandhu 

 
 
Conventional role based access control (RBAC) was designed with closed-enterprise 

environment in mind where a security officer(s) manually assigns users to roles. 

However, today, an increasing number of service-providing enterprises make their 

services available to users via the Internet. Furthermore, many enterprises have users (i.e. 

workers and/or clients) whose numbers can be in the hundreds of thousands or millions. 

In addition, RBAC is being supported by software products designed to serve large 

number of clients such as popular commercial database management systems.  All these 

factors render the manual user-to-role assignment a formidable task which is costly and 

error-prone. An appealing solution is to automate the assignment process. Besides 

eliminating the drawbacks of its manual counterpart, automatic assignment, particularly 

in the case of external user (i.e. clients), extends enterprise-consumers business 

partnership. In fact some large enterprises have already implemented systems that assign 

and revoke users automatically, and many of them have achieved 90-95% automation of 



administration. Our work lays the theoretical foundation for the implementation of the 

assignment process. It also serves as a benchmark for software implementations. 

In this dissertation, we describe a family of models called RB-RBAC that extends and 

modifies RBAC96, a well-known RBAC model, to allow the specification of automatic 

(implicit) user-role assignment. Model A allows specifying a set of authorization rules 

that can be used to assign users to roles based on users’ attributes. Model B extends 

Model A to allow specifying negative authorization and mutual exclusion among roles. 

Model C extends Model A to allow constraints specification.  

To show the power and usefulness of RB-RBAC, we demonstrate how it can be 

configured to express Mandatory Access Controls (MAC) and Discretionary Access 

Controls (DAC). 

In addition to RB-RBAC family, we developed an administrative model, ARB-RBAC, 

which provides the specification needed to administer users’ attributes and authorization 

rules. 

Our work demonstrates that it is possible to modify RBAC96 to allow implicit user-role 

assignment and, at the same time, retain the central features of RBAC96. 

 
 
 
 
 
 
 
 
 



  ii 
   

 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2003 Mohammad Abdullah Al-Kahtani 
All Rights Reserved 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  iii 
   

 

 
 
 
 

DEDICATION 
 
 
 
 

"O my Lord! Grant me that I may be grateful for Thy favour which Thou has 
bestowed upon me, and upon both my parents, and that I may work 

righteousness such as Thou mayest approve; and be gracious to me in my 
issue. Truly have I turned to Thee and truly do I bow (to Thee) in Islam." 

 
 The Holy Quran 046.015  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



  iv 
   

 

 
 
 
 

ACKNOWLEDGEMENTS 
 
 
 

I would like to sincerely express my gratitude and appreciation to my dissertation 

director, Professor Ravi Sandhu, who has provided valuable guidance and encouragement 

during my doctoral study. 

Also, I would like to thank the members of my dissertation committee, Professor Sushil 

Jajodia, Professor Edgar Sibley, and Professor Kris Gaj. I am thankful for their valuable 

comments on my dissertation. 

I am particularly thankful to my family, especially my father who flew all the way from 

Saudi Arabia to attend my public defense. 

Also, I would like to thank all of my friends at Mason who made my student life at 

Mason an unforgettable one. 

 
 
 
 
 



  v 
   

 

 
 
 

Table of Contents 
 

                                                                                                                                        Page 
 
Abstract………………………………………………………………………………….xiv 
1. CHAPTER 1: INTRODUCTION ..........................................................................................................12 

1.1 RBAC: THE CONCEPT AND FEATURES ................................................................................................12 
1.2 RBAC: THE MODEL ............................................................................................................................14 
1.3 PROBLEM STATEMENT.........................................................................................................................17 
1.4 THESIS STATEMENT.............................................................................................................................19 
1.5 SUGGESTED SOLUTION ........................................................................................................................19 

1.5.1 Motivation...................................................................................................................................19 
1.5.2 Description .................................................................................................................................19 

1.5.2.1 Rule-Based RBAC (RB-RBAC) Family .................................................................................... 20 
1.5.2.2 Administrative RB-RBAC: ........................................................................................................ 21 

1.5.3 The Scope of my Work ................................................................................................................22 
1.5.4 Assumptions ................................................................................................................................23 

1.6 SUMMARY OF CONTRIBUTIONS............................................................................................................23 
1.7 ORGANIZATION OF THE DISSERTATION ...............................................................................................25 

2. CHAPTER 2: BACKGROUND.............................................................................................................27 
2.1 RULE-BASED MODELS .........................................................................................................................27 
2.2 CONSTRAINT SPECIFICATION...............................................................................................................32 

2.2.1 SOD Constraint...........................................................................................................................32 
2.2.2 Cardinality Constraint ................................................................................................................33 
2.2.3 Prerequisite Constraint...............................................................................................................34 
2.2.4 Discussion...................................................................................................................................34 

2.3 NEGATIVE AUTHORIZATION AND CONFLICT RESOLUTION ..................................................................36 
2.4 ADMINISTRATION ................................................................................................................................38 
2.5 SUMMARY ...........................................................................................................................................40 

3. CHAPTER 3: MODEL A .......................................................................................................................41 
3.1 INTRODUCTION....................................................................................................................................41 
3.2 ANALYSIS OF MODEL A.......................................................................................................................43 

3.2.1 Model A Basic Concepts .............................................................................................................43 
3.2.2 Rules Invocation .........................................................................................................................46 
3.2.3 RB-RBAC User States .................................................................................................................47 
3.2.4 Sessions.......................................................................................................................................50 

3.2.4.1 Revocation ................................................................................................................................. 54 
3.2.5 The Authorization Rules..............................................................................................................55 

3.2.5.1 Specification Language ASLA..................................................................................................... 55 
3.2.5.2 Seniority Among Authorization Rules ....................................................................................... 59 
3.2.5.3 Induced Role Hierarchies ........................................................................................................... 61 



  vi 
   

 

3.2.5.4 Analysis of the Seniority Relation Among Rules....................................................................... 65 
3.2.5.5 Analysis of the IRH.................................................................................................................... 66 
3.2.5.6 Discussion .................................................................................................................................. 72 

3.2.6 Given Role Hierarchies...............................................................................................................73 
3.2.6.1 Possible Discrepancies between IRH and GRH ......................................................................... 73 
3.2.6.2 Discussion .................................................................................................................................. 82 

3.3 ALTERNATIVE WAYS TO GAIN AUTHORIZATION.................................................................................82 
3.4 SUMMARY ...........................................................................................................................................84 

4. CHAPTER 4: MODEL B .......................................................................................................................88 
4.1 INTRODUCTION....................................................................................................................................88 
4.2 .ANALYSIS OF MODEL B......................................................................................................................89 

4.2.1 Negative Authorization (Model B1).............................................................................................89 
4.2.1.1 The ASLB1 Syntax....................................................................................................................... 90 
4.2.1.2 Semantics ................................................................................................................................... 90 
4.2.1.3 Motivation.................................................................................................................................. 91 
4.2.1.4 Conflict Due to Negative Authorization..................................................................................... 92 
4.2.1.5 Conflict Resolution Policies....................................................................................................... 94 

4.2.1.6 ........................................................................................................................................................ 96 
4.2.1.7 Users' Authorization in Model B1 .............................................................................................. 98 
4.2.1.8 IRH in Model B1 ...................................................................................................................... 100 
4.2.1.1 GRH in Model B1..................................................................................................................... 101 
4.2.1.2 Related Issues........................................................................................................................... 103 

4.2.2 Mutual Exclusion (Model B2)....................................................................................................106 
4.2.2.1 The ASLB2 Language ................................................................................................................ 107 
4.2.2.2 Conflict Due to Mutual Exclusion............................................................................................ 109 
4.2.2.3 Conflict Resolution Policies..................................................................................................... 111 
4.2.2.4 Users' Authorization in Model B2 ............................................................................................ 115 
4.2.2.5 Mutual Exclusion and GRH ..................................................................................................... 117 
4.2.2.6 Related Issues........................................................................................................................... 119 

4.2.3 Comparison of Models B1 and B2 .............................................................................................121 
4.2.4 Discussion.................................................................................................................................122 

4.2.4.1 Monotonicity............................................................................................................................ 122 
4.2.4.2 Other RBAC Models................................................................................................................ 122 

4.3 SUMMARY .........................................................................................................................................123 
5. CHAPTER 5: MODEL C .....................................................................................................................126 

5.1 INTRODUCTION..................................................................................................................................126 
5.2 ANALYSIS OF MODEL C.....................................................................................................................129 

5.2.1 Method 1: Rule-Specific Constraints ........................................................................................129 
5.2.1.1 Introduction.............................................................................................................................. 129 
5.2.1.2 The ASLC1 Language ................................................................................................................ 134 
5.2.1.3 Constraints Specification.......................................................................................................... 135 
5.2.1.4 Constraints Specification in the Presence of a GRH ................................................................ 140 
5.2.1.5 User States Diagram................................................................................................................. 146 
5.2.1.6 Discussion ................................................................................................................................ 147 

5.2.2 Method 2: System Attributes .....................................................................................................151 
5.2.2.1 Introduction.............................................................................................................................. 151 
5.2.2.2 The ASLC2 Language ................................................................................................................ 151 
5.2.2.3 IRH Derivation......................................................................................................................... 155 
5.2.2.4 Constraints Specification.......................................................................................................... 155 
5.2.2.5 Constraints Specification in the Presence of a GRH ................................................................ 156 
5.2.2.6 User State Diagram .................................................................................................................. 159 
5.2.2.7 Discussion ................................................................................................................................ 159 

5.2.3 Method 3: Invariants ................................................................................................................160 
5.2.3.1 Introduction.............................................................................................................................. 160 



  vii 
   

 

5.2.3.2 The ASLC3 Language ................................................................................................................ 160 
5.2.3.3 IRH Derivation......................................................................................................................... 161 
5.2.3.4 Constraints Specification.......................................................................................................... 161 
5.2.3.5 Constraints Specification in the Presence of a GRH ................................................................ 163 
5.2.3.6 User States Diagram................................................................................................................. 163 
5.2.3.7 Discussion ................................................................................................................................ 163 

5.2.4 Discussion.................................................................................................................................164 
5.2.4.1 Using a Hybrid Method............................................................................................................ 164 
5.2.4.2 Conflict among Constraints in a Hybrid Method ..................................................................... 165 

5.2.5 Summary of Model C ................................................................................................................167 
5.3 MODEL B VS. MODEL C.....................................................................................................................167 
5.4 SUMMARY .........................................................................................................................................169 

6. CHAPTER 6: CONFIGURING RB-RBAC FOR OTHER ACCESS CONTROL MODELS .......172 
6.1 INTRODUCTION..................................................................................................................................172 
6.2 CONFIGURING RB-RBAC FOR MAC.................................................................................................172 

6.2.1 RB-RBAC Construction to simulate LBAC with Liberal *-Property ........................................173 
6.2.2 Discussion.................................................................................................................................181 

6.3 CONFIGURING RB-RBAC FOR DAC .................................................................................................182 
6.3.1 Strict DAC.................................................................................................................................183 
6.3.2 Liberal DAC..............................................................................................................................185 

6.3.2.1 Liberal DAC with One-Level Grant......................................................................................... 185 
6.3.2.2 Liberal DAC with Two-Level Grant ........................................................................................ 186 

6.3.3 Change in Ownership ...............................................................................................................188 
6.3.4 Multiple Ownership ..................................................................................................................189 
6.3.5 Discussion.................................................................................................................................189 

6.4 SUMMARY .........................................................................................................................................189 
7. CHAPTER 7: RB-RBAC ADMINISTRATION.................................................................................190 

7.1 INTRODUCTION..................................................................................................................................190 
7.2 ADMINISTERING USERS’ ATTRIBUTES ...............................................................................................192 

7.2.1 Type-centric Administration .....................................................................................................192 
7.2.2 Organization-centric Administration........................................................................................193 
7.2.3 Location-centric Administration...............................................................................................193 
7.2.4 Security-label Administration ...................................................................................................194 
7.2.5 Role-centric Administration......................................................................................................194 

7.3 ROLE-CENTRIC ADMINISTRATION......................................................................................................196 
7.3.1 Introduction ..............................................................................................................................196 
7.3.2 How RB-RBAC is different........................................................................................................197 
7.3.3 ARB-RBAC X Model .................................................................................................................198 

7.3.3.1 Example for X Model............................................................................................................... 201 
7.3.4 ARB-RBAC Y Model .................................................................................................................204 

7.3.4.1 Example for Y Model............................................................................................................... 205 
7.4 ADMINISTERING AUTHORIZATION RULES..........................................................................................206 

7.4.1 Introduction ..............................................................................................................................206 
7.4.2 Specification .............................................................................................................................207 

7.5 ADMINISTERING CAN_ASSUME RELATION...........................................................................................209 
7.5.1 Introduction ..............................................................................................................................209 
7.5.2 Motivation.................................................................................................................................210 

7.5.2.1 Company C .............................................................................................................................. 210 
7.5.2.2 Hospital H ................................................................................................................................ 211 

7.5.3 Specification .............................................................................................................................212 
7.5.3.1 Coarse-granularity Form .......................................................................................................... 213 
7.5.3.2 Fine-granularity Form .............................................................................................................. 215 



  viii 
   

 

7.5.3.3 Fine-granularity Form with Cascade ........................................................................................ 215 
7.5.3.4 can_assume Revocation ........................................................................................................... 216 

7.5.4 can_assume and IRH ................................................................................................................217 
7.5.5 can_assume and GRH...............................................................................................................219 

7.6 DELEGATION .....................................................................................................................................220 
7.6.1 Introduction ..............................................................................................................................220 
7.6.2 Specification .............................................................................................................................221 

7.6.2.1 can_delegate Relation.............................................................................................................. 221 
7.6.2.2 can_delegate_with_cascade Relation ...................................................................................... 222 
7.6.2.3 Revocation of can_delegate ..................................................................................................... 222 

7.6.3 Delegation Semantics and Users States....................................................................................223 
7.7 SUMMARY .........................................................................................................................................223 

8. CHAPTER 8: CONCLUSION .............................................................................................................225 
8.1 CONTRIBUTIONS ................................................................................................................................225 
8.2 FUTURE WORK ..................................................................................................................................227 

8.2.1 Cross-domain RB-RBAC...........................................................................................................227 
8.2.2 Enforcement architectures ........................................................................................................227 
8.2.3 Role parameterization...............................................................................................................227 

BIBLIOGRAPHY .....................................................................................................................................228 



  ix 
   

 

 
 

 

List of Tables 
 

 
Table 1: Seniority among Terms....................................................................................... 59 
Table 2: Relations among Attribute Expressions.............................................................. 60 
Table 3: Cases Used to Analyze IRH ............................................................................... 67 
Table 4: Example to Motivate Negative Authorization.................................................... 92 
Table 5: Comparison of Conflict Resolution Policies ...................................................... 97 
Table 6: Authorizatioin Under Different Conflict Resolution Policies in Model B1...... 100 
Table 7: Possible Interpretation of Cardinality in the Presence of a GRH ..................... 145 
Table 8: The permission-role assignment ....................................................................... 176 
Table 9: Example to Show How ARB-RBAC Works .................................................... 201 
Table 10: can_administer Relation................................................................................. 202 
Table 11: can_revoke Relation ....................................................................................... 205 
 
 
 



  x 
   

 

 
 
 
 

List of Figures 
 
 
 
Figure 1: RBAC96 Model................................................................................................. 16 
Figure 2: RBAC96 Formal Model, from [SCFY1996]..................................................... 17 
Figure 3: OM-AM Framework ......................................................................................... 22 
Figure 4: RB-RBAC Family ............................................................................................. 42 
Figure 5: RB-RBAC Model A .......................................................................................... 44 
Figure 6: A state diagram of a user with respect to role r................................................. 49 
Figure 7: RB-RBAC model A with Sessions.................................................................... 50 
Figure 8: Progression of user’s states in RB-RBAC with respect to role r....................... 51 
Figure 9: User's State Diagram with Sessions .................................................................. 52 
Figure 10: ASLA language Syntax Diagrams..................................................................... 58 
Figure 11: A graph representing seniority relation in Table 2.......................................... 61 
Figure 12: IRH generated by the rules in table 2 .............................................................. 64 
Figure 13: CASE 1 of IRH Analysis................................................................................. 69 
Figure 14: CASE 2 of IRH Analysis................................................................................. 69 
Figure 15: CASE 3 of IRH Analysis................................................................................. 70 
Figure 16: CASE 4 of IRH Analysis................................................................................. 71 
Figure 17: CASE 5 of IRH Analysis................................................................................. 71 
Figure 18: CASE 6 of IRH Analysis................................................................................. 71 
Figure 19: An example of discrepancies between IRH and GRH .................................... 77 
Figure 20: Missing/Additional Edges ............................................................................... 80 
Figure 21: Inconsistency ................................................................................................... 81 
Figure 22: Model A (Part 1).............................................................................................. 86 
Figure 23: Model A (Part 2).............................................................................................. 87 
Figure 24 : RBAC Hierarchy for a Battalion .................................................................... 92 
Figure 25: A Set of Conflicting Authorization Rules ....................................................... 94 
Figure 26: State diagram of a user with respect to role r ................................................ 104 
Figure 27: GRH Variations Due to Mutual Exclusion.................................................... 118 
Figure 28: User State Diagram in Static Mutual Exclusion............................................ 120 
Figure 29: The Formalization of Model B1..................................................................... 124 
Figure 30: The Formalization of Model B2..................................................................... 125 
Figure 31: Additional Syntax for ASLC1 Language used for Rule-Specific Constraints 

Method .................................................................................................................... 135 
Figure 32: User's State Diagram of Method 1 ................................................................ 147 
Figure 33: Syntax for ASLC2 Language used for System Attribute Method ................... 152 



  xi 
   

 

Figure 34: Syntax Diagrams of ASLC2 Language Used by the System Attribute Method 
(part A).................................................................................................................... 153 

Figure 35: Syntax Diagrams of ASLC2 Language Used by the System Attribute Method 
(part B) .................................................................................................................... 154 

Figure 36: ASLC3 Language for Invariants Method ........................................................ 160 
Figure 37: Syntactic and Semantic View of RB-RBAC Family..................................... 169 
Figure 38: Model C / Part A ........................................................................................... 170 
Figure 39: Model C / Part B............................................................................................ 171 
Figure 40: Security Lattice.............................................................................................. 175 
Figure 41: Role Hierarchies for One-Level Grant Liberal DAC .................................... 186 
Figure 42: Role Hierarchies for Two-Level Grant Liberal DAC ................................... 188 
Figure 43: Example Hierarchy........................................................................................ 201 
Figure 44: Users/Attribute Expressions/Roles Mapping ................................................ 214 
Figure 45: can_assume  and IRH.................................................................................... 218 
Figure 46: ARB-RBAC Formal Model........................................................................... 224 
 
 
 

 
 



  12 
   

 

  
 
 

1. Chapter 1: Introduction 
 
 

1.1 RBAC: The Concept and Features 
 

Role-based access control (RBAC) has emerged as a widely deployed alternative to 

classical discretionary and mandatory access controls [SCFY1996], [SFK2000], and 

[FSGK2001]. In order to regulate the access of users to data and system resources, RBAC 

requires the identification of roles in the system. A role can be viewed as a semantic 

construct associated with a particular working activity and around which access control 

policy is formulated. In contrast to traditional access control systems where permissions 

are assigned to users directly, RBAC associates permissions with roles, and users are 

made members of appropriate roles, thereby acquiring the roles' permissions. This greatly 

simplifies management of permissions. Users are assigned to appropriate roles based on 

factors such as their responsibilities and qualifications. Users can be easily reassigned 

roles. Since roles in an organization are relatively persistent with respect to user turnover 

and task re-assignment, RBAC provides a powerful mechanism for reducing the 

complexity, cost, and potential for error of assigning users permissions within the 

organization. Roles within an organization typically have overlapping permissions, and as 

such can be organized in role hierarchies where a senior role includes all of the 

permissions of its juniors. Role hierarchies reflect the organization’s lines of 

responsibility and authority. RBAC allows the specification of constraints to control 
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different aspects such as user-role assignment, permission-role assignment, the structure 

of the role hierarchy, etc.   

The principle motivation behind RBAC is the desire to specify and enforce enterprise 

security policies in a way that maps naturally to the business practices and organizational 

structure of the enterprise [Kuhn1997].  

In discretionary access control systems, it is assumed that individual users own the 

objects e.g. files or database tables. However, this assumption is not valid in many 

enterprises within the private or government sectors. Rather, these objects are owned by 

the enterprise. This fundamentally affects the way of managing access to these objects.  

To meet the need of such enterprises, users in RBAC are administratively made member 

of appropriate roles which, in turn, are administratively associated with permissions. The 

main features of RBAC, as explained in [FK1995] and [SCFY1996], are: 

a. It does not promote any particular security policy. RBAC is policy-neutral which 

enables it to support different security policies. At the same time, RBAC directly 

supports three well-known security principles: least privilege, separation of 

duties, and data abstraction. 

b. The administration of authorization data is widely acknowledged as an error-

prone process with large and recurring expenses. RBAC provides superb 

administrative capabilities, as the privileges are gathered in roles to/from which 

users can be easily assigned/revoked. Roles privileges can be updated without the 

need to update the privileges assigned to every user. 

c. RBAC maps easily to the way enterprises typically conduct business. So, after an 

RBAC framework is established, the system administrator’s prime job will be 
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assigning and revoking users into and out of roles. This is in contrast to the more 

conventional and less intuitive process of attempting to administer lower level 

access control mechanisms directly. 

d. RBAC allows centralized and decentralized administration of access control.   

 

1.2 RBAC: The Model  
 

Although several models of RBAC have been published, in this dissertation we adopt 

RBAC96, a well-known family of models introduced by Sandhu et al. in [SCFY1996]. 

This model was chosen for several reasons: 

a. It captures the important aspects of conventional RBAC. 

b. It has become a widely cited authoritative reference.  

c. It has been used to develop implementations of various RBAC models and 

mechanisms using UNIX, Oracle, Windows NT, and so on [Ahn1999].  

d. It is closely related to the proposed NIST standard for RBAC [FSGK2001]. 

The basic components of RBAC96 are:  

a. User: A user is typically a human being but can be generalized to include 

intelligent autonomous agents. 

b. Role: A job function or title within an organization with associated semantics 

regarding the authority and responsibility conferred on a member of the role. 

c. Permission: An approval of a particular mode of access to one or more objects in 

the system.  

The above basic components are used to construct more advanced ones: 



  15 
   

 

a. Role hierarchy: Roles are organized in a partial order or hierarchy so that a senior 

role inherits permissions from junior roles, but not vice-versa. This hierarchy 

reflects an organization’s lines of authority and responsibility.  

b. User-role assignment relation UA: A user can be a member of many roles and a 

role can have many users. Membership is acquired via explicit user-role 

assignment, which is captured in UA. 

c. Permission-role assignment relation PA: A role can have many permissions and 

the same permission can be assigned to many roles. Permission-role assignment is 

done manually and is captured in PA.  

d. A session: A mapping of one user to possibly many roles, i.e. a user establishes a 

session during which the user activates some subset of roles of which he is a 

member. Multiple roles can be simultaneously activated. Each session is 

associated with a single user for the life of that session. A user may have multiple 

sessions open at the same time and each may have a different combination of 

roles. A subject (or a session) is a unit of access control, and a user may have 

multiple subjects (or sessions) with different permissions active at the same time. 

RBAC96 is comprised of a family of four conceptual models. In brief, these models are: 

a. RBAC0: This is the base model and the minimum requirement for any system to 

support RBAC.  

b. RBAC1: This model includes RBAC0 and has the additional feature of role 

hierarchies, which allows permissions inheritance among roles. 

c. RBAC2: This model also includes RBAC0 with the additional feature of 

constraints, which impose restrictions on configuration of the components of 
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RBAC. They are shown as dashed lines in Figure 1 that shows the complete 

RBAC96 model. 

d. RBAC3 is the consolidated model, which includes RBAC1 and RBAC2.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: RBAC96 Model 

 
Figures 2 shows the RBAC96 formal model. 
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Figure 2: RBAC96 Formal Model, from [SCFY1996] 
 
 
 

1.3 Problem Statement  
 

Conventional RBAC was designed with a closed-enterprise environment in mind where a 

team of security officers manually assign users to roles. However, the landscape of 

business and information technologies has changed dramatically in recent years. An 

increasing number of service-providing enterprises make their services available to their 

users via the Internet. There has been some work to extend present RBAC models so they 

can be used to manage users’ access to the enterprise services and resources over the 

Internet [FBK1999], [PSA2001] and [PSG99].  

On another front, many enterprises have users (i.e. workers and/or clients) whose 

numbers can be in the hundreds of thousands or millions [KSM2003]. Typical examples 

are banks, utility companies, insurance companies and popular Web sites, to name a few. 

-U¸ a set of users; R and AR, disjoint sets of (regular) roles and administrative roles, P and AP, disjoint 
set of (regular) permissions and administrative permissions; S, a set of sessions. 
-UA  ⊆ U × R, user to role assignment relation 
AUA  ⊆ U × AR, user to administrative role assignment relation 
-PA  ⊆ P × R, permission to role assignment relation 
APA  ⊆ AP × AR, permission to administrative role assignment relation 
-RH ⊆ R × R, partially order role hierarchy 
ARH ⊆ AR × AR, partially order administrative role hierarchy 
(both hierarchies are written as ≥ in infix notation) 
-user: S→U, maps each session to a single user (which does not change) 
 roles: S→2R∪AR maps each session si to a set of roles(si) ⊆{r|∃r’ ≥ r)[(user(si), r’)∈UA ∪AUA]} (which 
can change with time) 
session si has permissions ∪r∈roles(si) {p| (∃r” ≤ r)[(p, r”)∈ PA ∪APA]} 
 
-there is a collection of constraints stipulating which values of the various components enumerated 
above are allowed or forbidden.  
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For such enterprises, although manually assigning internal users to roles may be feasible, 

this is not always true for external users, i.e. the enterprise customers and business 

partners, due to their numbers. Also, automated assignment gives the enterprise an edge 

by extending its user-consumer business partnership. 

Moreover, RBAC is being supported by software products designed to serve large 

number of clients, such as popular commercial database management systems, e.g. 

Oracle, Informix, and Sybase [RS1998].  

All of these factors mentioned above render the manual user-to-role assignment a 

formidable task for the following reasons: 

a. Maintaining up-to-date user role assignment for a large number of users is a 

costly endeavor because it requires a large team of individuals.  

b. Also, as indicated by a study conducted by NIST, membership in roles tend to 

change relatively fast in comparison to changes in permission-role assignment 

[SCFY1996]. This compounds the problem and increases the cost even more. 

c. Manual assignment is also error-prone, in particular when the number of users is 

large and their assignment to roles is in flux.  

In fact, some enterprises with large customer bases have already implemented systems 

that assign and revoke users automatically [KSM2003], and many of them have achieved 

90-95% automation of administration [Ker2002]. This demonstrates that there is an 

urgent need for developing a model that provides a sound conceptual basis for the 

automation process and sets a benchmark for software implementations of the process. 
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1.4 Thesis Statement 
 

The central thesis of this dissertation is that it is possible to modify and extend RBAC96 

to automate user-role assignment (authorization) using rule-based approach based on 

users’ attributes. Consequently, the central features of RBAC96 (such as roles 

hierarchies, constraints specification) and RBAC96 administration can be specified using 

users’ attributes.    

1.5 Suggested Solution  

1.5.1 Motivation 

An appealing solution is to automatically assign users to roles. As mentioned above, 

some enterprises with large customer bases have already implemented systems that 

assign and revoke users automatically and many of them have achieved 90-95% 

automation of administration. The need for a model that specifies implicit (automatic) 

user-role assignment stems from the following: 

a. The model provides the theoretical basis and specification for the automation 

process and its implementation.  

b. It also sets a benchmark for software implementations of the automation process. 

 
1.5.2 Description 

My work in this dissertation has two main components: 
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1.5.2.1 Rule-Based RBAC (RB-RBAC) Family 
 

In conventional RBAC, the decision to assign /revoke a user to/from a role is done by 

humans based on some input, typically changes in users’ attributes. Hence, it makes sense 

to base the automation of user-role assignment on these attributes. Also, the automation 

process should take into account any constraints laid down by the enterprise. 

In this dissertation, we describe a family of models which provides the specification 

needed to automatically assign users to roles based on a finite set of authorization rules 

defined by the enterprise, hence the name Rule-Based RBAC or RB-RBAC for short. 

These rules take into consideration the attributes that users possess and any constraints 

set forth by the enterprise. The location of storing users’ attributes is irrelevant as long as 

the system that implements RB-RBAC can obtain these attributes with high assurance to 

make an authorization decision. Consequently, attributes may be stored in databases that 

are local or remote, under or outside the control of the system that implement RB-RBAC, 

and so on.  

At face value, the idea seems very simple and straightforward. Detailed analysis 

presented in this dissertation, however, reveals the existence of complicated aspects and 

subtle issues that need to be addressed. A system that implements RB-RBAC takes as an 

input: 

a. A set of user attributes, which is a collection of data relevant to the authorization 

process. 

b. A set of authorization rules that governs user-role assignment. 

The main features of RB-RBAC family are: 
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i. It provides a family of languages to express user-role assignment rules. This is 

necessary if RB-RBAC is to express the user-role assignment which is manually 

performed in RBAC96. 

ii. It also defines seniority among the rules, which induces a hierarchy among the 

roles. The need for this feature arises from the fact that RBAC96 recognizes role 

hierarchies which represent the inheritance of permissions among roles.  

iii. It provides the means to specify three important classes of prohibition constraints. 

This is a central feature of RBAC96. For RB-RBAC to be useful, it should be able 

to express these classes of constraints.  

iv. It can be configured to express Mandatory Access Controls (MAC) and 

Discretionary Access Controls (DAC), which are widely used. An advantage of 

RBAC96 is that it can be configured to express both MAC and DAC. Utilizing 

user-role assignment is a key ingredient to make that possible. The RB-RBAC 

family fundamentally changes this key ingredient. Consequently, RB-RBAC 

should be designed such that  this feature of RBAC96, that is simulating MAC 

and DAC, is retained. 

The family is composed of three models: Model A, Model B, and Model C which will be 

analyzed in chapters 3, 4 and 5, respectively. 

Some of the results presented in this dissertation were published in a preliminary form in 

[AS2002] and [AS2003].  

1.5.2.2 Administrative RB-RBAC: 
 

This is the second component of my work. Relying on users’ attributes to perform user-

role assignment has implications on how we administer RB-RBAC model. We propose a 
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companion administrative model, namely ARB-RBAC, whose specifications are based 

on users’ attributes. It allows the authorized individuals to administer users’ attributes 

and authorization rules.  

1.5.3 The Scope of my Work 

To put matters in perspective, the formalization of RB-RBAC and ARB-RBAC falls in 

the model layer of the OM-AM framework suggested by Sandhu [San2000]. This 

framework is designed to help separate the security objective (what we want to achieve) 

from the underlying architectures and mechanisms used to implement it (how to achieve 

what we want). The Objective and Model layers (Figure 3) state what the security 

objectives and trade-offs are, while the architecture and mechanism layers address how to 

meet these requirements. Since my work falls within the model layer of the OM-AM 

framework, no architecture or implementation mechanisms are discussed in details.  

 
 

 
 

Figure 3: OM-AM Framework 
 
 
Many architectures and mechanisms exist to support RBAC96. It is our stance that some 

of these architectures and mechanisms can be utilized for RB-RBAC with appropriate 

modification. 

Objective  

Architecture

Mechanism 

What

How

Model 

Assurance
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1.5.4 Assumptions 
 

This work is based on the following assumptions: 

1. For simplicity a user in this model is a human being, although the concept of a 

user can be generalized to include computer processes and the like. 

2. Users are properly authenticated before the system that implements RB-RBAC 

model is triggered to assign them roles. Issues related to identification and 

authentication are beyond the scope of this dissertation.  

3. Users’ attributes can be obtained with high assurance via several methods, 

including providing them along with the authentication information or by fetching 

from data repositories. Obtaining attributes, though critical for implementing RB-

RBAC, does not fall within the model layer in OM-AM framework. As a result, we 

consider it out of scope and will not discuss it in detail. 

It is to be noted that in many real-world enterprises, the number of users is much larger 

than the number of roles (such as hundreds of thousands or millions of users versus tens 

or hundreds of roles)[Ker2002] and [KSS2003]. This makes the case for RB-RBAC even 

stronger. 

 

1.6 Summary of Contributions 

The principal contributions of this dissertation are summarized in the following: 

a. The formalization of a new family of models called RB-RBAC for the automation 

of user-role assignment based on a set of authorization rules. These models 

provide languages to express the authorization rules. 

b. The definition of the seniority relation that might hold among authorization rules.  
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c. The introduction and formalization of the concept of Induced Role Hierarchies 

(IRH), which are derived from the seniority relation.  

d. The analysis of possible discrepancies between the IRH and a Given Role 

Hierarchy (GRH) that represents the business practices of the enterprise. The IRH 

represents the formal security policy of the enterprise, while the GRH is the de 

facto security policy. My work helps in identifying any discrepancies between the 

two policies and provides some insight into their probable reasons and how to 

reconcile them.   

e. Identification and analysis of possible conflict among authorization rules and 

suggestion of policies to resolve the conflict. Conflict resolution policies are 

discussed. 

f. Analysis of negative authorization in RBAC context. This issue received little 

attention in the RBAC literature since it is typically discussed in the context of 

DAC.  

g. Providing the syntax and specification that allow the specification of limited 

scope constraints and invariants in one model.  

h. Analysis of three classes of prohibition constraints, their semantics in RB-RBAC 

context, and their impact on IRH. We introduce different types of constraints 

within these classes. Also, we suggest three different methods of specifying 

constraints within RB-RBAC. These methods are compared and contrasted to 

determine their relative strengths and weaknesses.   

i. Introducing a companion administrative model, namely ARB-RBAC, whose 

specifications are based on users’ attributes. This allows the authorized 
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individuals to perform administrative tasks, such as the administration of the 

users’ attributes, authorization rules, and delegation.  

j. Introducing novel concepts to RBAC administration, namely can_assume relation 

which gives security officers a new scope of authority over the user-role 

assignment process. 

k. Specifying can_delegate relation that allows users to delegate roles if permitted 

by the security policy. Our work allows new semantics for delegation based on 

users’ states. 

 

1.7 Organization of the Dissertation 
 

The rest of the dissertation is organized as follows: 

• Chapter 2: Gives background about work related to the topic of automating user-

role assignment. This includes discussion related to some suggested models, 

constraints specifications, negative authorization, and RBAC administration. 

• Chapter 3: Describes the basic member of the RB-RBAC family, i.e. Model A, 

which provides implicit user-role assignment in a constraint-free environment. 

This model provides insight into the main aspects of RB-RBAC, such as sessions, 

user states, seniority among rules, assembling IRH, IRH/GRH comparison and 

contrast, etc.  

• Chapter 4: Describes Model B, which extends Model A to allow, using the 

extended syntax, the specification of negative authorization which prohibits users 

from activating certain roles. As a means to specify separation of duty (SOD) 

constraints, Model B allows designating certain roles as mutually exclusive roles. 
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However, it should be noted that only a user-centric SOD can be expressed using 

Model B. 

• Chapter 5: Describes Model C, which also extends Model A to allow the 

specification of three classes of constraints: Separation of Duty (SOD), 

cardinality, and prerequisite constraints. Model C provides three different ways to 

specify these classes of constraints. The chapter concludes with a comparison 

between Models B and C. 

• Chapter 6: Shows how RB-RBAC can be configured to express MAC and DAC. 

An important advantage of RBAC96 is its ability to simulate MAC and DAC. 

Since we are proposing RB-RBAC as a replacement for RBAC96 in certain 

environments,  it is crucial to show that RB-RBAC retain that feature of 

RBAC96. This is not self-evident since RB-RBAC modifies RBAC96 user-role 

assignment which is central in the simulation of MAC and DAC. 

• Chapter 7: Presents the administrative RBAC (ARB-RBAC) model which 

includes administering the following:  

o Users’ attributes 

o The authorization rules  

o SSO direct authorization using can_assume relation 

o User-to-user delegation via can_delegate relation 

• Chapter 8: Concludes the dissertation, reiterates its contributions, and points to 

future work. 
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2. Chapter 2: Background 
  

 
User-role assignment is an important component of RBAC96 model, or any RBAC 

model for that matter. However, it is also a labor intensive, error-prone and costly 

process. Automating this component of RBAC is crucial for utilizing the model, 

especially for enterprises with large customer bases. Limited attention has been directed 

to this component in the RBAC literature. There are many aspects involved in the 

automation that require thorough analysis and formal specification. In this chapter, we 

review related work in regards to the following areas: 

a. The rule-based models 

b. Constraint specification 

c. Negative Authorization 

d. RBAC Administration 

2.1 Rule-based Models 
 
Within RBAC literature, there is limited work in this sphere. The first work we cite is that 

described in [HMM2000] by Herzberg et al. who presents a Trust Establishment (TE) 

system that defines the mapping of strangers to predefined business roles, based on 

certificates issued by third parties. Part of the proposed system is an XML-based Trust 

Policy Language to map users to roles using well-defined logical rules. Each role has one 

or more rules defining how a client can be assigned to that role. The TE system gathers 
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certificates related to a specific client and makes a decision regarding the client’s 

eligibility for a specific role. The TE system does not pay attention to relations that might 

exist among different rules. Another drawback in the TE system is that it is based on 

bottom-up buildup of the public key infrastructure (PKI), which brings in all the issues 

related to PKI. 

Zhong et al. proposes a scheme to use RBAC on the Web and a procedure for user-role 

assignment [ZBM2001]. Based on legitimacy of information gathered, assignment 

policies, and the trustworthiness threshold specified by system administrators, the scheme 

assigns a client to a role. Users’ trustworthiness represents the degree to which the 

enterprise believes that a user will not do harm to its systems. It is accumulated gradually 

over time and drops if harmful actions or potentially harmful actions are discovered. 

There is a major drawback to this approach. A malicious user may use the system for an 

extended period of time without performing any suspicious acts and, hence, he may 

acquire highly privileged roles, enabling him to eventually inflict damage on the system. 

Also, the scheme depends on many security parameters, which must be given initial 

values. This approach leaves the determination of these values to system administrator(s), 

but does not provide any guidelines on how to determine them. 

Lightweight Directory Access Protocol (LDAP) targets management applications and 

browser applications that provide read/write interactive access to directories supporting 

the X.500 models [LDAP1997]. Roles can be stored in directories and retrieved when 

needed. LDAP has been augmented to support dynamic groups. A dynamic group is an 

object with a membership list of distinguished names that is dynamically generated using 

LDAP search criteria. The dynamic membership list may then be interrogated by LDAP 
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search and compare operations, and be used to identify a group’s access control subjects 

[LDAP2001]. This feature could be used to automatically assign users to roles in large 

enterprises. However, implementing LDAP solely for the sake of dynamically assigning 

users to roles is an unwieldy solution. Also, LDAP lacks two important features of 

RBAC: role hierarchies and constraints specification. LDAP returns a simple list of 

attributes (which represent roles in our case) with no logical structure attached to them. 

Also, LDAP does not provide a simple way to express constraints. 

J. Bacon, K. Moody, and W. Yao suggested Open Architecture for Secure Interworking 

Services (OASIS) which aims to enable autonomous management domains, called 

services, to specify their own access control policies and interoperate using service level 

agreements (SLA’s) [YMB2001] and [BMY2002]. OASIS is rule-based in the sense that 

role activation is linked to satisfying the rules associated with roles. OASIS follows 

permission-takes-precedence, so it is sufficient for a user to satisfy any of the activation 

rules associated with a role to activate that role. With each role activation rule, there is a 

companion role membership rule of similar structure such that each rule has a list of 

conditions in the left hand side that are necessary to satisfy in order to activate the role in 

the right hand side of the rule. These conditions are of three types: 

a. Prerequisite roles: OASIS puts a premium on this type of condition since OASIS 

does not recognize the classical role hierarchies. Instead, OASIS applies 

prerequisite roles to develop a directed graph structure to represent the run time 

dependency of each role on its pre-conditions. Stating rj is a prerequisite role for ri 

requires a user to be active in rj in order for him to activate ri, in contrast to 
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RBAC96/ARBAC97 which necessitates the user to be assigned to rj but does not 

require that he is active in rj. 

b. Appointment:  OASIS introduces the notion whereby being active in certain roles 

carries the privilege to issue appointment certificates to other users. This is done 

via credentials. This differs from delegation in the sense that the appointer does 

not have to be a member of the role being appointed. The appointments have a 

lifetime and OASIS provides four ways to revoke the appointments. 

c. Constraints: These are basically environmental constraints such as time and place 

of the role activation or service invocation. Each environmental constraint is 

considered as an atomic proposition. This type of condition is not fully developed 

in OASIS and no syntax was given to specify them. 

The conditions of a role activation rule are tested at time of activation. Its companion 

role membership rule indicates which of the role activation conditions must remain true 

while the role is active. Roles are aggregated in several independently administered 

security domains which OASIS calls services. When a role is activated in a service an 

event channel is created and is associated with each membership condition. An event is 

triggered immediately if any such condition becomes false, causing the role to be 

deactivated. If any of the related conditions lies within another service, then a 

corresponding event channel is established with that service.  

OASIS recognizes a special class of role activation rules called the initial. They provide 

the means to allow users to start a session by acquiring initial roles. Explicit user-role 

assignment is restricted to initial roles. 
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In contrast to OASIS, which disregards role hierarchies, RB-RBAC recognizes two types 

of hierarchies. The model helps in analyzing them to determine how compliant the 

current business practices are with the stated security policy. The analysis provided with 

the model helps reconcile the practices with the policy in case of discrepancy and gives 

insight into the appropriate corrective actions needed. 

OASIS is rich in terms of expressing rules. We believe, however, that eliminating role 

hierarchies is a debatable issue, to say the least. Role hierarchies have values not only 

from the user-assignment perspective of roles but also from the permission-assignment 

perspective. Also, by making the hierarchies implicit via side effects of role activation 

rules, the model does not explicitly capture various relations that might exist among 

roles. 

The Enterprise Role-Based Access Control (ERBAC) model had been implemented as a 

basic concept of a Security Administration Manager (SAM) Jupiter, which is a 

commercial security administration tool [Ker2002] and [KSM2003]. SAM Jupiter relies 

on an automation process that uses users’ attributes, usually stored in a human resources 

database, to automatically assign users to roles. However, no formal model is given to 

describe this process.  

There has been some discussion in the literature about the role’s life cycle in the context 

of enterprise security management as the one presented in [KKSM2002]. The discussion 

highlights the importance of automating user-role assignment but stops short from 

providing the formal basis for it. 

Lastly, we cite the work done by Winsborough et al. in the area of Automated Trust 

Negotiation (ATN). They aim to serve the needs of collaborative environment by basing 
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access control decisions on authenticated attributes of entities (i.e. organizations, users, or 

process in the system) [WL2002]. Authorization decisions are based on the attributes of 

the requestor, which are established by digitally signed credentials. To protect 

information of sensitive attribute they introduce the notion of attribute acknowledgment 

policy. They also introduce a language to express attributes credentials. We believe that 

this work is complementary to ours since they focus on the storage, retrieval and 

exchange of credential that contains users’ attributes. In RB-RBAC, where we assume 

that attributes can be obtained with high assurance, the approach suggested by [WL2002] 

is one way of obtaining the attributes. We focus on what to make of these attributes once 

they are securely obtained. 

2.2 Constraint Specification 
 
In the context of the RBAC96 family and related models such as ARBAC97, constraints 

are invariants that must hold at all times. Traditionally, the classes of constraints 

mentioned in context or RBAC96 are SOD constraints, cardinality constraints, and 

prerequisite role constraints [Ahn1999], [SCFY1996] and [AS2001].  

2.2.1 SOD Constraint 
 
SOD constraints are a major class of authorization constraints aimed at preventing fraud 

and errors, known and practiced since the beginning of commerce. A typical example is 

that of mutually disjoint organizational roles, such as those of purchasing manager and 

accounts payable manager. Generally, the same individual is not permitted to belong to 

both roles because this creates a possibility for committing fraud. There are several types 

of SOD: 
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a. Role-Centric SOD: This type enforces mutual exclusion among roles and is 

further divided into:  

i. Static SOD or strong exclusion: Two roles are strongly exclusive if a single 

user can never be assigned to both roles [NO1999].  

ii. Dynamic SOD or weak exclusion: Two roles are weakly exclusive if the user 

cannot activate them simultaneously. [NO1999]. 

iii. Session-based Dynamic SOD: This requires that there are no users with two 

conflicting roles enabled in a session. 

b. User-centric SOD [Ahn1999]: 

i. Static: This constraint requires that conflicting users cannot have a 

common role.  

ii. Dynamic: This requires that there are no two conflicting users active in the 

same role.  

There are other types of SOD (such as permission-centric SOD) but since RB-RBAC is 

concerned with user-role assignment, these types of constraints will not be discussed.  

2.2.2 Cardinality Constraint 
 
This type specifies the maximum number of members in a role [SCFY1996]. This kind of 

constraint is useful when some roles can only be assigned to a certain number of users, 

like a manager of a bank branch, a chairman of a department, etc. Another example that 

highlights the usefulness of cardinality constraint is enforcing licensing agreements 

[FBK1999]. The discussion of this type of constraint in the two previously quoted works 

is limited to the static aspect of cardinality. RB-RBAC extends the notion of cardinality 

constraint into new types that have valuable applicability.  
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2.2.3 Prerequisite Constraint 
 
The concept of prerequisite role is based on competency and appropriateness, whereby a 

user can be assigned to role ri only if the user is already a member of role rj [SCFY1996, 

SBM1999]. In RBAC96, prerequisite role constraint is used in a static sense. Assume we 

have a project that has four roles: project, tester, developer, and team leader. The project 

role is the most junior, tester and developer roles are both senior to project, but none of 

them is senior to the other. To ensure that, for example, only those users who are already 

members of project role can be assigned to tester role within that project, we specify a 

prerequisite role constraint that states that project is a prerequisite of tester. OASIS 

extends the notion of prerequisite role into a session-based notion and makes it part of the 

conditions that a user must satisfy in order to activate another role [YMB2001]. 

 
 

2.2.4 Discussion 
 
Constraints are discussed in the rule-based models proposed in [HMM2000] and 

[ZBM2001]. RBAC96 allows specifying constraints as invariants without discussion of a 

specification language. To specify these invariants, RCL2000, a constraints specification 

language, was developed around RBAC96. 

OASIS, on the other hand, does not allow specifying constraints as invariants, but rather, 

all constraints are rule-specific. As such, specifying constraints that have global 

applicability is cumbersome because they have to be added to each role activation rule 

and role membership rule.  

Also, OASIS does not provide thorough analysis of the handling of Separation of Duty 

(SOD) constraints. They suggested the use of negative authorization of roles to specify 
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SOD constraints, but they deferred this for a future work. Moreover, OASIS suffers the 

following weakness in specifying constraints: 

a. The model does not distinguish between different types of dynamic SODs, e.g. 

simple dynamic and session-based dynamic SOD. 

b. The model is unable to specify static SOD, so important access control policies 

like the Chinese Wall cannot be enforced.  

c. Also, it does not provide the means to specify user-centric SOD. 

 

RB-RBAC allows specifying the three kinds of constraints using RB-RBAC defined sets 

and functions. It also allows the specification of invariants, rule specific constraints, or a 

mixture of the two.  

Bettini et al. proposes a rule-based policy framework that includes provisions and 

obligations [BJWW2002]. This framework deals with two types of conditions:  

a. Provisions, which are conditions that need to be satisfied or actions that must be 

performed before a decision is rendered, and 

b. Obligations, which are conditions or actions that must be fulfilled either by the 

users or the system after the decision.  

A policy consists of a set of policy rules, where each rule is composed of a header and a 

body. Both the header and the body are composed of predicates. The body of a rule is 

similar to the attribute expression in RB-RBAC authorization rules. Some policy rules 

can be derived from others. Each policy rule is associated with a formula that captures the 

provisions and obligations that apply to that rule. This formula is called PO-formula and 

consists of predicates. The predicates representing provisions and obligations are 

assigned numerical weights.  
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A user request may be satisfied using different rules that could be derived differently, i.e. 

using different derivations, each associated with potentially different sets of provisions 

and obligations (called PO set). Based on the numerical weights of provisions and 

obligations and the semantic relationship among them, the framework provides a 

reasoning mechanism to derive the best derivation. This work could be utilized in RB-

RBAC, as will be discussed in Model C. 

 

2.3 Negative Authorization and Conflict 
Resolution 

 
Negative authorization is rarely mentioned in RBAC literature, mainly because RBAC 

Models such as RBAC96 and the proposed NIST standard model are based on positive 

permissions that confer the ability to do something on holders of the permissions 

[SFK2000]. Bertino and Bonatti mention negative authorization in the context of 

enabling/disabling roles in temporal RBAC [BB2001]. However, this issue is extensively 

discussed in other access control models, especially in the context of open policy. The 

introduction of negative authorization brings with it the possibility of conflict in 

authorization, an issue that needs to be resolved in order for the access control model to 

give a conclusive result. The types of conflicts brought about by the negative 

authorization and conflict resolution polices are discussed in abundance outside RBAC 

literature. For example, Jajodia et al. suggests a model that is based on logical 

authorization language that allows users to specify, together with the authorizations, the 

policy according to which access control decisions are to be made [JSS1997]. The key 

components of the model are objects, subjects, actions, and rules. Subjects who may be 

authorized to perform actions on objects include user, roles and groups. The unit of 
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authorization is an action on an object. The authorization language expresses the policy 

by means of rules of different types. One type of rule is used to explicitly authorize users, 

roles or group. Another type of rule is used to derive further authorization based on those 

provided by the first type of rule. Any conflict that might arise with respect to 

authorization derivation is resolved using a third type of rule. Several types of conflicts 

and conflict resolution policies are suggested. RB-RBAC utilizes some of these policies 

besides those specified in this dissertation for the first time. In another work, Jajodia et al. 

has given formal definitions for several policies for authorization propagation and 

conflict resolution [JSSS2001]. 
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2.4 Administration 
 
Sandhu et al. present a model for role-based administration of roles, known as 

ARBAC97, which describes decentralized administration and has three components 

[SBM1999]: 

a. URA97 which is concerned with user-role assignment 

b. PRA97 which is concerned with permission-role assignment 

c. RRA97 which deals with role-role assignment 

Two central concepts of ARBAC97 are the administrative ranges and the prerequisite 

conditions, which together regulate and impose restrictions on the administration of roles. 

The administrative ranges, or role ranges, reflect the limit of the administrator authority, 

while the prerequisite condition limits the pool of users to whom the administrator can 

assign roles.  We are interested in URA97 model, so the discussion below is cast within 

that model which is composed of two sub-models: 

a. The URA97 Grant Model: A system security officer (SSO) can delegate the 

authority of assigning users to roles to one or more junior security officers (JSO) 

who typically are users in administrative roles. The role hierarchy is divided into 

role ranges such that each JSO is given authority to explicitly assign users to roles 

that fall in the corresponding role range. The assignment takes effect only if the 

prerequisite condition is met. This condition determines, based on membership or 

lack thereof, the pool of users that JSO can assign to the roles in the range. 

b. The URA97 Revoke Model: The JSO is authorized to remove users from the roles 

that are within his assigned range. 
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The model suffers the following weaknesses, which were identified in a later version of 

the model, namely, ARBAC02 [OSZ2003]: 

a. URA97 requires multi-step user assignments for roles higher in the role hierarchy 

and it may require the involvement of two or more security officers.  

b. Due to the multi-step assignment, the URA relation holds redundant data.  

c. To control the actions of JSOs, URA97 stipulates that a prerequisite condition 

must be met for an action by a JSO to be legitimate. This condition is meant to 

restrict the pool of users available to the JSO. URA97 uses the role hierarchy to 

express this condition. However, the role hierarchy is not flexible enough to 

address the needs of the real world, which sometimes requires a more flexible 

user pool. 

The cause of the above disadvantages of URA97 is the unnecessary coupling between the 

pool of users and prerequisite roles. Oh et al. recognize the need to remove this coupling 

by making the pool of users include organizational structure besides the roles, and hence 

they suggested the ARBAC02 model which is centered on the idea of user pools and 

permissions pools. [OSZ2003]. They use the organization structure as the basis for 

defining user and permission pools instead of prerequisite roles in a role hierarchy.  

The above models are designed to manage roles in the context of conventional RBAC 

where user-role assignment is done manually. 

Another concept related to user and permission pools is scope, which is presented by 

Kern et al. to restrict the administrator’s authorities in [KSM2003]. A scope is defined as 

an abstract concept that is used to collect objects over which an administrator has 

authority. Objects include users, user-role assignment, roles, role-role assignment, 
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permissions, and role-permission assignment. The objects are gathered according to one 

or more criteria such as organizational structure, a cost center structure or even 

combination of several structures. Although it was stated that business roles (regular roles 

in RBAC terms) are assigned and revoked automatically, no formalization was provided. 

Kuhlmann et al. presents a process using data mining techniques to collect and 

consolidate human resources information, access control information and other security 

related user information stored in the enterprise databases. The outcome of the process is 

to discover knowledge about roles or other control access patterns inherent to the 

business [KSM2003]. The work does not specify a model for administering the attributes.  

 

2.5 Summary 
 
In this chapter we review the literature relevant to RB-RBAC family. Our review has four 

foci: Rule-Based models, constraints specification, negative authorization, and RBAC 

administration models. When appropriate, we briefly discussed how these relate to the 

RB-RBAC family. 
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3. Chapter 3: Model A 

 
 

3.1 Introduction 
 
The Role-Based Access Control (RBAC) model is used to manually assign users to 

appropriate roles, based on a specific enterprise policy, thereby authorizing them to use 

the roles' permissions. As mentioned in the introduction, there is a compelling case for 

automating user-role assignment. We introduce a family of models to dynamically assign 

users to roles based on a set of rules defined by the enterprise. These rules take into 

consideration users’ attributes and any constraints set forth by the enterprise’s security 

policy. The Rule-Based RBAC (RB-RBAC) models provide a family of languages 

(Authorization Specification Languages or ASL for short) to express these rules. The 

models also define relations among rules, provide specification for derived induced 

hierarchies among the roles, and allow constraints specification.  

This chapter contains a discussion of Model A, the basic model of the RB-RBAC family. 

In contrast to RBAC96, where user-role assignment is done explicitly, the RB-RBAC 

approach is purely implicit user-role assignment. 

As pointed out in Chapter 1, my work falls into the model layer of the OM-AM 

framework suggested by Sandhu in [San2000], thus, unless needed to illustrate a concept 

related to the model, no architecture or mechanism issues will be discussed. 
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Figure 4 shows members of the RB-RBAC family. Model A is the most basic among the 

family. Model B and C extend Model A in different ways. This modular approach 

facilitates the analysis of each model. We intend to keep Model A as simple as possible 

to ease the analysis of the model and to use it as a starting point for analyzing more 

complicated members of the family. This model allows the specification of a set of 

authorization rules that can be used to assign users to roles based on users’ attributes. 

Model B extends Model A to allow specifying negative authorization and mutual 

exclusion among roles. Model C extends Model A to allow constraints specification.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: RB-RBAC Family 
 
The main contribution of this chapter is: 

a. An informal description of an access control model that allows implicit user-role 

assignment based on a set of authorization rules. 

b. A formal definition of the model. 

c. A detailed analysis of the model including how it compares/contrasts to 

conventional RBAC. 

Model C 
(Model A + Constraints 

Specification) 

Model B 
(Model A + Negative 

Authorization/Mutual Exclusion) 

Model A 
(Monotonic Language)
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3.2 Analysis of Model A  
 
This is the basic model that provides the foundation for automating user-role assignment. 

It is also the basic building block to construct more sophisticated RB-RBAC models. I 

modified RBAC such that user-role assignment becomes rule-based rather than being 

explicitly assigned. This requires that the enterprise define the set of rules that are 

triggered to determine which user is authorized to what role(s).  

 
3.2.1 Model A Basic Concepts 
 
Figure 5 shows the main components of the RB-RBAC model1: 

a) U: The users. 

b) AE: The attribute expressions. 

c) R: The roles. 

d) P: The permissions. 

The U, R, and P sets are imported from RBAC96. In RB-RBAC, the security policy of 

the enterprise is expressed in the form of a set of authorization rules. Each rule takes as 

an input the attributes expression (a member of AE set) that is satisfied by a user (a 

member of U set) and produces one or more roles (a member of R set). An attribute 

expression is a well-formed formula in propositional logic that specifies what 

combination of attributes values a user must satisfy in order to be authorized to roles 

specified in the rule. The figure shows that users have many-to-many relation with 

attribute expressions. One user could satisfy one or more attribute expressions depending 

on the attributes that he is associated with. Conversely, several users may satisfy identical 

                                                 
1 The concepts of sessions and role hierarchy are introduced later in this chapter to the RB-RBAC model 
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attribute expressions. A specific attribute expression corresponds to one or more roles. 

The figure shows that roles are flat, i.e. no role hierarchy as defined in [SCFY1996] 

exists among the roles. The figure also shows that a role may correspond to one or more 

attribute expressions. In conventional RBAC, if a user u is deemed by the enterprise to 

belong to a role, say rg, the security officer explicitly assigns him to rg. The system that 

implements RBAC maintains this information in the UA relation. Assigning u to rg 

authorizes u to activate rg in a session.  

In RB-RBAC, user-role assignment is implicit in the sense that it is done using 

authorization rules that reflect the security policy of the enterprise. The attributes 

expressions can be stated using the language provided by the model. Syntactically, a rule 

has two parts: 

 

 

 

 

 

 

Figure 5: RB-RBAC Model A 
 
  

a. The left hand side (LHS) of a rule is an attribute expression.  

b. One or more role(s) in the right hand side (RHS). 

If u satisfies the attribute expression, u is authorized to the role(s) specified in RHS of the 

rule. The following is an example of a rule:  

U AE R P 
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aei ⇒ rg 

where aei is the attribute expression and rg is the produced role. If user u satisfies aei, the 

system maintains this information in U_AE relation, and this means that u is authorized 

to all the roles in the right hand side of rulei. However, this is not true for all the models 

and, thus, to keep track of user-role authorization we define the set URAuth as follows:  

URAuth = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)} 

If (u,r) ∈ URAuth then this means that u is authorized to role r. This set is the key 

component of RB-RBAC since it captures the semantics of the models. Consequently, the 

definition of this set varies from model to model.  

Similar to conventional RBAC, only a user who has authorization on roles that are 

specified in RHS can activate any combination of these roles. Activating a role enables 

the user to execute the permissions assigned to that role. As in RBAC96, a user can 

activate one or more of his authorized roles in a session. Different sessions belonging to 

the same user can have different roles. 

Definition 1 
U, R, and P, imported from RBAC96, are the sets of users, roles, and permissions 

respectively.  In addition RB-RBAC Model A has the following components.  

1. A set of attribute expressions AE.  Elements of AE are denoted as ae ∈ AE (See the 

language in section 3.2.5.1). 

2. A set of authorization rules where each rule rulei is written as: aei ⇒RHS where ⇒ is 

read “generates” or “yields” and RHS ⊆ R. 

3. Function RHS(aei) = RHS returns the set of roles that user u who satisfies aei is 

authorized to activate. 
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4. U_AE = {(u, aei)| (u, aei) ∈U×AE ∧ u satisfies aei}, (u, aei) ∈U_AE means that u is 

authorized to RHS(aei). 

5. IR is the set of roles produced by all authorization rules:  

IR = { rg | (∃aei) [aei ∈ AE ∧ rg∈ RHS(aei)} 

6. URAuth = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)}. For the sake of 

convenience, we will call the right hand side of this definition as "A". We will refer to 

it in future definitions to simplify the relation of different models to each other. 

3.2.2 Rules Invocation  
 
Suppose a user u requests a role rg that is produced by several authorization rules such as 

the following: 

ae1 ⇒ rg 

ae2 ⇒ rg  

ae3 ⇒ rg  

RB-RBAC requires u to satisfy at least one of the 3 rules above in order for u to be 

authorized to rg. This means that there is an implicit “OR” among the rules. If u satisfies 

ae1 and ae2, then we say that rule1 and rule2 are relevant rules to distinguish them from 

rule3. The importance of this distinction becomes apparent when discussing constraints in 

Model C. If u satisfies one or more rules that produce different roles, then he is 

authorized to activate any combination of these roles. Upon receiving a user request of a 

role, the system that implements RB-RBAC searches the authorization rules set to find a 

rule which the user satisfies such that the rule yields that requested role. 
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As a user satisfies more rules, the set of roles that he is authorized to assume does not 

diminish. Thus Model A is monotonic. We will see later in this dissertation that other 

models do not have this property.  

The above discussion is formalized in the following definition. 

 

3.2.3 RB-RBAC User States 

In RB-RBAC, a user can be in any of several states wrt a specific role. For a given role r, 

we distinguish the following user’s states:  

a. Assumed (A): user u has activated role r at least once. Keep in mind that u cannot 

activate r unless he is authorized to r.  

b. Potential (P): user u is authorized to role r but has not activated it yet. 

c. Revoked (R): user u has activated role r at least once but is not currently 

authorized to activate it. 

d. Not-candidate (N): user u has not activated role r and is not currently authorized 

to activate it because he does not have the required attributes for assuming r, i.e. u 

is not authorized to r. 

e. Deleted (Del): user u has been deleted from the system by an authorized 

individual such as the System Security Officer (SSO). 

The importance of this distinction among different states of users becomes clear when 

considering many aspects of RB-RBAC. Take the case of specifying role-based static 

separation of duty (SOD) constraints. Assume that {r1, r2} is a set of mutually exclusive 

roles. User u could be a potential user of both roles. If u activated r1 then he can no longer 

be a potential user of r2 and his state wrt r2 is changed into N.  
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Also, when enforcing maximum cardinality constraints pertaining to a given role r, 

potential users should not be taken into consideration since this may create situations 

where the number of potential users may be greater than the cardinality assigned to r. 

This renders the role inaccessible, which results in depriving users of otherwise 

legitimate access to r. 

By the same token, the distinction that we draw between R and N states is useful since it 

allows the enforcement of policies like the Chinese Wall, where it is critical to keep track 

of a user’s history. Take for example a consultant in a company that provides 

consultation about competing banks. The company categorizes the information into 

mutually disjoint conflict of interest (COI) classes where each bank belongs to exactly 

one COI class. To read information of a bank, one must activate the read role that 

corresponds to that specific bank. So long as that consultant has not yet accessed any 

company information about these banks, he has the potential to read information about 

any bank, i.e. he is in P state wrt all roles that allows him to read bank information. Once 

he activates one of these roles, say rg, he is to be denied read access to all other banks in 

the same COI, i.e. his state wrt all other roles becomes N. Later, if the consultant changes 

jobs, his state wrt rg becomes R. If he regains his previous job, the system remembers that 

he has accessed rg before. As a result, the system that implements RB-RBAC blocks his 

access to the rest of the roles. 

The state diagram in Figure 6 is with respect to a single role. A user u may start as a 

“potential” user, i.e. in P state, if he has the attributes that satisfy the LHS of the rule that 

produces role r. If u does not satisfy any rule that yields r, he is considered a “non-

candidate” so he will be in N state.  
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A user state changes according to changes in the following factors: 

a. Users’ attributes values, denoted by label “ae” in the state diagram. 

b. Attribute expressions in the authorization rules, denoted by label “r”. 

c. Users activating roles which are denoted by label “act”. 

d. Deletion of users from the system, which is represented by label “d”. 

 
 
 

 
 

Figure 6: A state diagram of a user with respect to role r 
 
 
Changes in user’s attributes or in attribute expressions of the authorization rules may 

change the state of the user from P to N and vice-versa. Once a potential user activates a 

role, say r, his state changes into A state. He remains in that state unless one of the 

following happens: 

a. His access right to the role is revoked due to changes in the user’s attributes or 

the authorization rules, i.e. his state becomes R.            

b. He is deleted from the system and his state becomes D.  

Note that a user can be deleted from the system regardless of his state. 
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The state diagram can be viewed from different angles. First, if we consider activation, 

we can vertically break the diagram into two areas. The pre-activation area corresponds 

to states in which u can reside in before activating role r. This includes P, N, and Del. 

The post-activation area includes the states A, R and Del, in which u can reside after he 

activates r for the first time. The vertical axes with the label “Activation” represent this 

distinction.  Another way of viewing the diagram is represented by the horizontal axes, 

which tests whether or not u satisfies an authorization rule that produces r. The upper 

part of the diagram that contains states P and A shows that u is authorized to r, while the 

lower part contains the states that indicate that u is not authorized to r. 

3.2.4 Sessions 
 
RBAC96 has the concept of a session where each session is a mapping of one user to 

possibly many roles, i.e. a user establishes a session during which the user activates some 

subset of roles of which he is a member. Multiple roles can be simultaneously activated. 

Each session is associated with a single user for the life of that session. A user may have 

multiple sessions open at the same time each may have a different combination of roles.  

 
 
 
 
 
 
 
 
 
 

 

 

Figure 7: RB-RBAC model A with Sessions 
 

U AE R P

Sessions
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The concept of a session in RB-RBAC is similar to that of RBAC. To represent sessions, 

“A” user state is further divided into two sub-states: “Act” and “D” which correspond to 

the “Active” and “Dormant” respectively. “Act” refers to the state where the user is 

currently active in the role. After deactivating a role, the user becomes dormant with 

respect to that specific role, i.e. in “D” state. The activation and deactivation of a role 

demarcates a session. Figure 7 shows RB-RBAC Model A with sessions. 

Figure 8 shows a possible scenario of a user using role ri. The following explains the 

figure: 

t1: u possesses attributes that satisfy a rule which generates r. The system that 

implements RB-RBAC considers u a potential user of r and thus puts u in P state 

wrt r.  

t2: User u activates r, i.e. starts a session. From RB-RBAC perspective, u is 

considered an active user, i.e. in Act state.  

t2’: User u ends the session by deactivating r and, thus, becomes dormant and so the 

system that implements RB-RBAC updates his state into D. 

t3: User u starts another session, i.e. so u is considered an active user once more, and 

thus his state becomes Act again.  

 
 

 
 
 
 
 
 
 

Figure 8: Progression of user’s states in RB-RBAC with respect to role r 
 
t3’: User u ends the session and becomes dormant again, i.e. back to state D. 

t1 t2 t2’ t3 t3’

session1 session2

 dormant dormantactiveactive potential 
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Figure 9 shows the state diagram of a user with respect to a single role with sessions, i.e. 

after breaking A state into Act and D. It is crucial to keep in mind that when a dormant 

user u in a role r wants to reactivate r, there must be some rule which u satisfies such that 

the rule yields r. This is critical to ensure that, at all times, a user cannot activate a role 

unless he is authorized to do so.  

To motivate the distinction between “Act” and “D” states, consider dynamic SOD, which 

is enforced among active users only. To specify that constraint, RB-RBAC must be able 

to differentiate between active and non-active users, which we call dormant. Later in the 

dissertation, additional justification for this distinction will be given within the context of 

constraints specification and RB-RBAC administration. 

 

 

Figure 9: User's State Diagram with Sessions 
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Because RB-RBAC recognizes the above mentioned user states, the relations URA, 

URD, URP, URN and URR are defined to hold information about active, dormant, 

potential, not-candidate, and revoked users respectively. 

Definition 2 

The concept of session and the functions sessions and user are imported from RBAC96:   

7. sessions : U →2S, a function mapping each user ui to a set of sessions  

8. user : S → U, a function mapping each session si to the single user user(si) (constant 

for the session's lifetime)  

9. URA ⊆ URAuth, URA = {(u,r)| (u, r) ∈ URAuth ∧ u is currently activate wrt r } 

10. URD ⊆ URAuth, URD = {(u,r)| (u, r) ∈ URAuth, ∧ u has activated r at least once 

but is not currently active wrt r } 

11. URP ⊆ URAuth, URP = {(u,r)| (u, r) ∈ URAuth ∧ u has never activated r} 

URAuth = URA ∪ URD ∪ URP 

URA ∩ URD = ∅  

URA ∩ URP = ∅  

URD ∩ URP = ∅ 

12. URN ⊆ U×AE, URN = {(u,r)| (u, r) ∉ URAuth ∧  u has not activated r in the 

past} 

13. URR ⊆ U×AE, URR = {(u,r)| (u, r) ∉ URAuth ∧ u had activated r at least once in 

the past } 

14. User_State(u, r) = 

Case: 
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a. (u, r) ∈ URP: User_State(u, r) = P. 

b. (u, r) ∈ URA: User_State(u, r) = Act 

c. (u, r) ∈ URD: User_State(u, r) = D. 

d. (u, r) ∈ URR: User_State(u, r) = R. 

e. (u, r) ∈ URN: User_State(u, r) = N. 

f. Del: u is deleted by SSO. 

These states are mutually exclusive.  The state Del is a terminal state. 

15. roles : S → 2R, a function mapping each session si to a set of roles roles(si) ⊆ {r | 

(user(si), r) ∈ URAuth} (which can change with time) 

 
3.2.4.1 Revocation 

Among the user states that RB-RBAC recognizes is state R, which applies to a user who 

had activated role r in the past but can no longer activate it due to changes in either that 

user’s attributes or the attribute expression of the rule(s) that produces r. What if a user 

was revoked the privilege to access r while activating r, i.e. while being in a session that 

involves r?  

RB-RBAC recognizes 3 modes of action to end the user session: 

a. Deferred: In this mode, the system waits until the user finishes the session. 

Also, it allows him to take full advantage of the role, delegate it to others and 

receive delegation from others, acquire new roles using this role as a 

prerequisite, etc. After the user voluntarily deactivates the role, RB-RBAC 

changes the user’s state to R. 
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b. Graceful: The system limits the user to using the role’s permissions and waits 

until the user voluntarily deactivates the role and then changes the user’s state to 

R.  Unlike the deferred case the user can no longer use this role membership for 

purposes such as delegation or pre-requisite membership. 

c. Immediate: In this mode, the system terminates the session immediately and 

changes the user’s state to R.  

 
 

3.2.5 The Authorization Rules 
 
In this section, we define a language to specify the authorization rules, analyze relations 

that may exist among the rules, and explain how to derive the role hierarchy they may 

induce among the generated roles.  

3.2.5.1 Specification Language ASLA 
 
To express authorization rules, RB-RBAC provides ASLA a language based on a context-

free grammar. The production rules of this language and its semantics are discussed 

below.    

3.2.5.1.1 The Production Rules 
 
The terminal symbols: {∧, ¬, <, =, >, ≤, ≠, ≥, IN, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ‘{’, ‘}’ ,(,)} 

The non-terminal symbols: {Attribute_Expression, Term, Relation_Operator, Attribute, 

Enumerated_Set, Role, Attribute_Value, Roles} 

The values of the non-terminal symbols Enumerated_Set, Attribute, Attribute_Value, 

and Roles are specified by the organization. This makes the language 

customizable for the organization. 

The Start symbol: Rule 
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The production rules (in BNF notation): 

Rule ::= Attribute_Expression||⇒||Roles 

The symbol ⇒ means “generates” or “yields” and || is used to denote 

concatenation. In order for users to be authorized to the role produced by an  

authorization rule, they have to satisfy the attribute expression mentioned in the 

left hand side of the rule. 

Attribute_Expression ::= Term  

| [┐] ||Attribute_Expression 

| Attribute_Expression ||∧ ||Attribute_Expression  

| (||Attribute_Expression|| ∧ ||Attribute_Expression||) 

Attribute expression is a well-formed formula in propositional logic using ¬ and 

∧ connectives.  

Term::= Attribute||Relation_Operator||Attribute_Value 

| Attribute||IN||Enumerated_Set 
 

Examples for terms are: 

• Salary > 1500 

• Employee IN Salespersons 

The enterprise security policy determines the set of valid attributes names. In the 

above examples, “salary” and “employee” are enterprise-chosen attribute names. 

The policy also determines the attribute values required in order for users to 

satisfy the attribute expression of an authorization rule, and, as such, qualify for 

activating the role produced by that rule. In the first example, users whose salaries 
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are greater than $1500 satisfy this term. “Salespersons” in the second example is 

an Enumerated_Set name specified by the enterprise.  

Roles ::=  Role | {||Role-set||}  

Role-set ::= Role | Role||,||Role-set 

Accordingly, the set of roles in the RHS of a rule contains one or more roles from 

which a user who satisfies the rule is authorized to any combination of these roles.  

Relation_Operator ::=  < | = | > | ≤ | ≠ | ≥ 

Attribute ::= {specified by organization}     

Attribute_Value ::= {specified by organization}     

Enumerated_Set ::= {specified by organization} 

Role ::= {specified by organization}  

 

3.2.5.1.2 The Syntax Diagrams 

The syntax diagram of the ASLA language is shown in Figure 10. 
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Figure 10: ASLA language Syntax Diagrams 
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3.2.5.2 Seniority Among Authorization Rules 

Different terms and attribute expressions can have logical relationship with each other. A 

user who satisfies a term Age ≥ 18 also satisfies a so-called junior term Age ≥ 6. We 

introduce seniority levels, which are first assigned to the basic building blocks of 

attributes expressions, namely the terms, and then to the rules. When giving seniority 

levels to terms of numeric values, the following method is used: 

a. For comparative operators {≥, >}, seniority follows the normal order so if x and y 

are two terms such that x ≥ y, then this implies that x is senior to y. 

b. Seniority levels go in reverse order with comparative operators {<, ≤}.  

In case of equality operators {=, ≠} and Enumerated_Sets, seniority levels –if they exist- 

must be explicitly specified. 

Clearly, satisfying a term that has high seniority level implies satisfying all the ones that 

have lower seniority levels (Table 1).  

 Table 1: Seniority among Terms 

 
 Term Remarks 

1 Age ≥ 18 Term 1 is senior to terms 2 &3 i.e. if 1 is 
satisfied, then 2 and 3 are also satisfied 

2 Age ≥ 13 Term 2 is senior to term 3 
3 Age ≥ 6  

 
 

Term1 and term2 in Table 1 follow the normal order so term1 is senior to term2, i.e. 

satisfying term1 implies satisfying term2. Since attribute expressions are well-formed 

formulas composed of terms, seniority can be determined among these expressions, or in 
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other words, among the rules whose left hand sides are composed of these expressions. 

The “≥” symbol, read “is senior to”, represents seniority relation among rules:  

rulei ≥ rulej ↔ (aei → aej) 

where aei and aej are the LHS of rulei and rulej respectively. This implies that users who 

satisfy rulei also satisfy rulej and, hence, are authorized to the roles produced by rulej. In 

the context of discussing seniority levels, authorization rules and attribute expressions are 

used interchangeably.  

Assume we have the situation shown in Table 2 where the rightmost column in the table 

shows the relations among attribute expressions of the rules.  

Table 2: Relations among Attribute Expressions 

 
 
 
 
 
 
 
 
 
 
 
 
 

Rule Attribute Expression (LHS) Roles 
(RHS) 

Relations 

rule1 ae1 = Salary> 1000 Λ  age > 50 r1 ae1 → ae2,  
ae1 → ae3,  
ae1 → ae4       

rule2 ae2 = Salary> 1000 Λ  age > 40 r2 ae2 → ae4  
ae2 ↔ae3  

rule3 ae3 =  ┐( Salary ≤ 1000  V  age ≤ 
40) 

r3 ae3 → ae4  
ae3 ↔ ae2 

rule4 ae4 = Salary> 400  r4 See the above  
rule5 ae5 = Age > 60 r5 Not related to any of the 

attribute expressions 



  61 
   

 

 
 
 
Figure 11 is a graphical representation of the “≥” relation among rules in the table. The 

twin arrows between ae2 and ae3 say that these 2 attribute expressions are logically 

equivalent.  

 
 
 

 
 

Figure 11: A graph representing seniority relation in Table 2 
 
 
3.2.5.3 Induced Role Hierarchies 
 
Suppose we have four users: A, B, C and D who satisfy ae1, ae2, ae3, and ae4 respectively. 

Since A satisfies ae1, he is authorized to role r1. However, since ae1→ ae2, ae1→ ae3 and 

ae1→ ae4, A is also authorized to r2, r3 and r4. Using similar reasoning, we conclude that 

B is authorized to r2, r3 and r4; C is authorized to r2 and r3 and r4. In other words, we find 

that r1 has one user: A; r2 has three users: B which it gets from rule2 and A which it 

inherits because rule1 ≥ rule2, c who is authorized to r2 because of ae2 ↔ ae3. Similarly, r3 

has three users: A, B and C; r4 has four users: A, B, C and D. This shows a flow of user 

inheritance among the roles indicating the existence of some role hierarchy. Thus, the “≥” 
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relation on authorization rules, that is among attributes expressions forming the LHS of 

the rules, induces a hierarchy among the roles forming the RHS of these rules. This 

induced role hierarchy (IRH) captures inheritance of user-role assignment. If ri is senior 

to rj then the users who satisfy the LHS of the rule that yields ri will also satisfy the rules 

that yields rj. As a result, the set of ri users is a subset of rj users. In other words, user 

inheritance flows downwards in the IRH graph, that is, a junior role in IRH inherits all 

the users assigned to its seniors.   

IRH captures the enterprise security policy since it is derived from the relations among 

the authorization rules which represent the policy.    

The IRH is formally defined below.  

Definition 3  
 

16.  (rulei ≥ rulej) ↔ (aei → aej).  

17.  IRH ⊆ IR x IR is a relation such that rg is senior to rh ( (rg, rh) ∈ IRH is also 

written as rg ≥ rh ):  

IRH= {(rg ,rh) | (∀rulei) [(aei⇒ rg) → (∃rulej) [rulei ≥ rulej Λ aej⇒ rh]]} 

Intuitively, this means rg is senior to rh in IRH if every rule that produces rg is 

senior to a rule that produces rh. 

 

However, this definition is not resilient to changes in the model’s semantics. We choose 

to redefine it in terms of URAuth which reflects users' inheritance as follows:  

Definition 4  

18. IRH = {(rg ,rh) | (u, rg) ∈URAuth  → (u, rh) ∈URAuth} 
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The elegance of this definition stems from the fact that it confines the changes in the 

models specification to the definition of URAuth. Intuitively, this definition states that for 

role rg to be senior in the IRH to role rh we require one of the following to be true: 

a. (u, rg) ∈URAuth via satisfying rulei such that rg ∈RHS(aei) ∧ (u, aei) ∈ 

U_AE. Here, (u,rh) ∈ URAuth either via: 

i. Satisfying rulej such that rh ∈RHS(aej) ∧ (u, aej) ∈ U_AE ∧ (aei 

→aej). 

ii. Satisfying can_assume(rg, rh, t, d). 

b. (u, rg) ∈URAuth via satisfying can_assume(rk, rg, t, d). In this case, for 

(u,rh) ∈ URAuth to be true, we need can_assume_with_cascade(rg, rh, t, 

d), a form of can_assume which allows multi-step authorization via 

can_assume. 

For Model A only the subcase i of case a applies.  The other cases will be relevant after 

the concept of can-assume has been introduced in Section 3.3. 

 

Figure 12 shows different ways of representing IRH that corresponds to the attributes 

expressions in Table 2. In Figure 12 (a) and (b), we maintain roles r2 and r3 as separate 

entities. However, the authorization rules set that produces Figure 12 (a) will have 2 

authorizations rules with logically equivalent attribute expressions such that one of these 

rules yields r2 while the other yields r3. Consequently, any user authorized to r2 will also 

be authorized to r3 and vice-versa.  
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Figure 12: IRH generated by the rules in table 2 
 

The authorization rules can be modified such that one rule produces r2 and r3, which 

corresponds to Figure 12 (b). From a functional standpoint, figures 12 (a) and 12 (b) are 

equivalent. Figure 12 (c) shows the case in which r2 and r3 are collapsed into one role (r6). 

From a functional perspective, r6 is a new role assigned the permissions of r2 and r3. From 

IRH standpoint, the users authorized to r2 and r3 are authorized to r6.   

Nonetheless, collapsing roles is not always a prudent course of action for the following 

reasons: 

a) Combining roles of incompatible natures such as a striker and a defender in a 

video game yields a role that is meaningless in this context. 

b) The new role may have a set of permissions that a user does not have to activate 

at one time in order to perform his task. This violates the principle of least 

privilege, which requires that a user should be given no more privilege than 

necessary to perform his job.  

c) Combining roles may also result in a violation of the principle of dynamic 

separation of duties (SOD). An example of this is the roles of programmer and 

tester. A user can be assigned to the programmer role, and thus becomes able to 

perform certain operations on the source code that he develops. Alternatively, 
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he may choose the tester role where he can test code developed by other 

programmers but not his. Combining the two roles violates the dynamic SOD. 

 
3.2.5.4 Analysis of the Seniority Relation Among Rules 
 
The seniority among rules is purely a logical implication among attribute expressions that 

formulate the LHS of the rules. We know that the implication relation is a quasi order 

because it is reflexive, transitive, but not anti-symmetric since (aei → aej ∧ aej → aei) → 

(aei ↔ aej), however, aei ↔ aej does not mean aei = aej.  In the example above, (ae2 → 

ae3 ∧ ae3 → ae2 )→ (ae2 ↔ ae3) but ae2 ≠ ae3 

However, from a functional perspective, ae2 and ae3 are equivalent and should be treated 

as such. Users who satisfy ae2 also satisfy ae3, and, thus, are authorized to roles produced 

by authorization rules that have ae3 as their LHS. Similarly, users who satisfy ae3 are 

authorized to roles produced by authorization rules that have ae2 as their LHS.  Although 

permissions assigned to r2 and r3 could be different, this difference is irrelevant as far as 

IRH is concerned. IRH does not capture seniority among roles according to the 

permissions assigned to them. Rather, IRH relation captures user-role assignment 

inheritance as pointed to above. Accordingly, roles that have identical sets of users can be 

treated as equivalent. As a result, we can collapse equivalent roles into equivalence 

classes, a well-known technique that transforms a quasi-order relation into a partial order. 

Now, we can derive an induced role hierarchy based on equivalence classes, which we 

refer to as IRH . From user-role assignment standpoint, if a user is authorized to a role 

that is a member of an equivalence class, then effectively, he is being authorized to every 

member of that class. Roles have identical sets of users if they are mutually senior to each 
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other, i.e. belong to the same equivalence class. The above discussion is formalized in the 

following definition: 

Definition 5 

19. IR  is the set of  equivalence classes that results from defining relation “mutually 

senior to one another” on IR such that:  

[ri] = { rj | ri and rj are mutually senior to one another} 

20. IRH  = {([rg] ,[rh]) | ∀u∀rg∈[rg]∀rh∈[rh] [((u,rg)  ∈ URAuth → (u,rh)  ∈ URAuth)  

∧ ((u,rh)  ∈ URAuth → (u,rg)  ∈ URAuth)]} 

 

3.2.5.5 Analysis of the IRH 
 
As discussed above, the definition of IRH yields a quasi-order relation. Being not anti-

symmetric is an intrinsic feature since IRH is based on “≥” relation defined on AE, which 

is also not anti-symmetric.   

For the purpose of our discussion, we consider an IRH to be a well-behaved relation if it 

is at least a partial order. To achieve this, we clearly need to impose some restrictions on 

stating the authorization rules. We will consider two areas that are subject to restrictions: 

a. The seniority relations among the authorization rules, or more precisely among 

the elements of AE. We will analyze the cases in which we require AE to be: 

a) A total order, 

b) A partial order, and 

c) Quasi-order. 
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b. The number of roles produced by a rule: We will discuss the impact of restricting 

the cardinality of the roles set produced by authorization rules to one. The impact 

of cardinality of one or more is also discussed. 

These two factors yield six possible scenarios shown in Table 3. We established the 

consequence of these six cases as follows: 

Theorem 1 

 
For each case numbered 1 to 6 in the columns of Table 3 the restriction specified 

on the “→” relation on AE and on the number of roles permitted in the right hand 

side of each rule imply that the IRH and IRH  will be a total (T), partial (P) or 

quasi (Q) order as indicated in the bottom two rows of Table 3.     

 

Proof: 

For all six cases, reflexivity and transitivity of IRH and IRH follows trivially from 

the definition. Also, by default, IRH is a quasi-order and IRH is a partial order. 

Cases 4, 5 and 6, therefore, follow directly from the definition. Cases 1, 2, and 3 

are proven below.  

 

Table 3: Cases Used to Analyze IRH 
 
 
 
 
 
 
 
 
 

 CASES 
Restrictions 1 2 3 4 5 6 
→ on AE set: T T P P Q Q 

# roles= 1 ≥1 1 ≥ 1 1 ≥1 
The resulting induced roles hierarchy based on the restriction on stating authorization 
rules as in the 6 cases above 

IRH T Q P Q Q Q 
IRH T T P P P P 
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CASE 1: 

• Seniority relation on authorization rules (or → on AE set) forms a total order. 

• Number of roles at the RHS of a rule = 1  

 
IRH is well-behaved because it is a total order.  

Proof: First, we prove that IRH is a partial order:  

To show that IRH is anti-symmetric, consider rg ∈ RHS(aei), rh∈ RHS(aej): 

We want to prove that (rg ≥ rh ∧ rh ≥ rg)→ (rg = rh) is always true.  

By IRH definition,  

(rg ≥ rh) ↔ ((rg ,rh) | (u, rg) ∈URAuth  → (u, rh) ∈URAuth)---(1) 

Similarly: 

(rh ≥ rg) ↔ ((rh ,rg) | (u, rh) ∈URAuth  → (u, rg) ∈URAuth)---(2) 

Considering (1) and (2) above, we conclude that (u, rh) ∈URAuth  ↔ (u, rg) 

∈URAuth. The definition of URAuth, there must be at least two attribute 

expressions aex and aey such that aex ↔ aey and rg ∈ RHS(aex) ∧ rh∈RHS(aey) and 

either: 

i. aex = aey: But then (aex = aey) → rg = rh because there can only be one role 

in RHS. 

ii. aei ≠ aej: But since relation “→” on set AE is a total order, it is anti-

symmetric so (aei ↔ aej) → (aei = aej) which is a contradiction.  

Now, we prove that IRH is a total order: Since “→” on AE is a total order, it 

follows (∀ ri) (∀ rj) (ri ≥ rj ∨ rj ≥ ri) is true because (aei→aej) ∨ (aej→aei) is true.  
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Since IRH is a total order, it follows that IRH is identical to IRH. Case 1 is 

illustrated in Figure 13. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: CASE 1 of IRH Analysis 

 

CASE 2: 

• Seniority relation on authorization rules (or → on AE set) forms a total order. 

• Number of roles at the RHS of a rule ≥ 1  

IRH is a quasi order by definition. The proof that IRH is a total order is similar to 

Case 1 with each role replaced with the corresponding equivalent class. Case 2 is 

illustrated in Figure 14. 

 
 

 

 

 

 

 

 

 

Figure 14: CASE 2 of IRH Analysis 
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CASE 3: 
 

• Seniority relation on authorization rules (or → on AE set) is a partial order. 

• Number of roles at the RHS of a rule = 1  

The proof that IRH is a partial order follows from the proof for anti-symmetry of IRH in 

Case 1. However, note that contrary to Case 1, in Case 3 the relation "→" is a partial 

order on set AE. Since IRH is a partial order, it follows IRH is identical to IRH. Case 3 is 

illustrated in Figure 15. 

  

 

 

 

 

 

 

Figure 15: CASE 3 of IRH Analysis 
 
CASE 4:  

Cases 4, 5 and 6 follow directly from the definition of IRH and IRH. These cases are 

illustrated in Figures 16, 17 and 18 respectively. 
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Figure 16: CASE 4 of IRH Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: CASE 5 of IRH Analysis 
 

 
 

Figure 18: CASE 6 of IRH Analysis 
 
 
This ends the proof of the theorem.                                                                                 
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� 

3.2.5.6 Discussion 

Cases 1 and 3 of Table 3 indicate that discipline in stating the authorization rules will 

lead to a well-behaved IRH relation. Case 2 further indicates that IRH will be totally 

ordered if AE is totally ordered. This case is rather restrictive but could by useful in 

special circumstances. The remaining cases indicate that we should focus on IRH rather 

than IRH in general. The examples presented in the proof also show that we cannot make 

strong statements about IRH in general. Computing IRH from IRH is straightforward 

using well-known algorithms in the literature. 
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3.2.6 Given Role Hierarchies 

So far our discussion of roles is confined to roles derived from the authorization rules, 

which represent the security policy of an enterprise. IRH is the hierarchy that might exist 

among these roles. However, roles hierarchies may be derived from other sources. An 

example of such a hierarchy is the one that is presented by the enterprise to reflect its 

current business practice. This type of role hierarchy is called given roles hierarchy 

(GRH), to differentiate it from induced role hierarchies (IRH) [AS2003]. GRH is 

identical to role hierarchies defined in RBAC96, that is, it is permission-driven: 

(ri ≥ rj)  → rj permissions ⊆ r i permissions 

where ≥ has the same semantics as in RBAC96. 

As such, inheritance of permissions flows upward in the GRH. The introduction of GRH 

necessitates modifying the definitions of Model A as follows: 

3.2.6.1 Possible Discrepancies between IRH and GRH 

In an ideal world, IRH2 and GRH should be mirror images of each other because the 

business practices of the enterprise (captured in the GRH) is supposed to comply with the 

security policy (represented by the set of authorization rules) from which IRH is derived. 

The implicit assumption is that there is correlation between user-to-role assignment and 

permission-to-role assignment. However, sometimes discrepancies may exist amongst the 

two hierarchies. This section describes possible discrepancies, their functional 

implications, and how to resolve them.  

Assume we have IRH shown in Figure 19 (a), which was introduced as a by-product of 

the relations that exist amongst different authorization rules, which are extracted from the 
                                                 
2 For this discussion, we assume IRH is well-behaved, that is, it is a partial order. 
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security policy. Part (b) of the figure shows a GRH, which represents the actual practice 

of the enterprise wrt permission-role assignment. The two parts of the figure display 2 

types of inheritance: 

• User-role assignment inheritance, which flows downwards from senior roles to 

their junior roles (part a of Figure 19).  

• Permission-role inheritance, which flows in the opposite direction (part b of 

Figure 19). 

A node in the figure denotes a role, while an edge captures the nature of the relation 

between the two nodes at its ends. Analyzing the possible discrepancies between the IRH 

and GRH provides an insight into the meaning of these discrepancies and the ways to 

reconcile them. Since the roles in IRH and GRH may not be identical we introduce the 

following notation. 

Definition 6 

21. IRH and GRH are the sets of roles in IRH and GRH respectively.  

From an IRH perspective, the possible discrepancies between two hierarchies could be 

classified into the following categories:  

3.2.6.1.1 Missing nodes  
 

These are nodes that exist in the GRH but not in the IRH (parts a and b of Figure 19). 

Depending on the location of the missing node, this category could be divided further 

into the following categories: 
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3.2.6.1.1.1 Root Node  
 

Assuming that node r1 in IRH is missing. Since r1 is the top-most node in GRH, this 

could mean one of the following: 

a. There is a loss of functionality in the security policy since no user can be assigned 

to r1 and use its permissions. In this case, the policy has to be modified by adding 

an authorization rule that generates r1. 

b. The security policy is designed to split the functions of r1 among its junior roles. 

In this case, no changes are needed. This assumes that no permissions are 

explicitly assigned to r1 in GRH. 

3.2.6.1.1.2 Leaf Node  
 

In the figure, node r7 is missing in IRH, which means that no authorization rule assigns 

users to that role. But since the permissions of r7 are inherited by r2 and r3, both are 

captured in IRH, this scenario neither poses a threat to the system’s security, nor does it 

reduce its functionality. That is: 

(ri ∈ GRH Λ ri ∉IRH Λ rj ∈IRH Λ  (ri , rk ) ∉ GRH Λ (rj , ri ) ∈ GRH) → no harm 

The term (ri , rk ) ∉ GRH indicates that what is missing ( i.e. role ri) is a leaf node. To 

reconcile the two hierarchies, r7 is deleted from GRH and its permissions are added to its 

immediate ancestor(s).  In the real world, r7 could be the lowest role to which the 

enterprise does not intend to assign users. Rather, that role is assigned permissions that 

are common among its senior roles and, thus, it is being used as a building block for 

constructing these senior roles. If none of r7 ancestors in GRH belongs to IRH, then one 

of the following is true:  

 



  76 
   

 

• The security policy, which was used to derive IRH, has overlooked parts of the 

business practice of the enterprise and, hence, some functionality is missing. In 

this case, the policy needs to be modified such that an authorization rule will 

assign users to r7. 

• The business practice followed by the enterprise has created unnecessary roles to 

which no users are to be assigned. These roles have to be deleted from the GRH 

and their permissions reassigned. 

3.2.6.1.1.3 Internal Node  

Role r3 is missing in the IRH part of the figure. This could result from the enterprise 

recognizing r3 as a semantic construct that groups several permissions, but not seeing any 

need for assigning users to it. From a functionality standpoint, no harm is done so long as 

at least one of r3 senior roles is part of IRH, which guarantees that the permissions are 

accessible. Formally speaking: 

 (ri ∈ GRH Λ ri ∉IRH Λ rj ∈IRH Λ  (ri , rk ) ∈ GRH Λ (rj , ri ) ∈ GRH) → no harm 

This is similar to the case of leaf node. 
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Figure 19: An example of discrepancies between IRH and GRH 

 
 
3.2.6.1.1.4 Stand-alone Node 

r4 in GRH represents this case. It entails harm only if the following holds: 

(∀ri ∈ GRH) [ r4 permission set  - ∪(ri permission set) ≠ φ] 

If the above formula holds, then some permissions of r4 are not accessible. This indicates 

a flaw in either the security policy, or the business practice of the enterprise. An example 

for this case is the security officer who works for a bank but reports to a security 
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hierarchy recognizes his permissions. To remove the discrepancy, we either add an 

authorization rule that generates r4, or remove r4 from the GRH if that does not diminish 

the functionality.  

 
3.2.6.1.2 Additional Nodes 

In the following cases no functionality is ignored by the IRH since all roles in the GRH 

are present in the IRH. Nonetheless, the security policy has added to IRH empty roles, i.e. 

they have no permissions associated with them. We use parts c and d of Figure 19 for 

illustration.   

3.2.6.1.2.1 Root Node 

Assume there is a role in IRH that is senior to r1, say rroot, then we have 2 possibilities: 

• If r1 is the only child, then r1 permission set = rroot permission set which results in functional 

redundancy. Removing rroot from IRH can solve this. 

• If rroot has more than one child that belong to GRH, then:  

rroot permission set  = ∪  ri permission set 

where: ri is the immediate child of rroot in GRH. 

GRH may be modified to adopt rroot, and thus rroot will inherit the permissions of 

all its juniors.   
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3.2.6.1.2.2 Leaf Node 

In the figure, node r8 is an example of this case. To reconcile the hierarchies, r8 must be 

removed and the security policy must be modified so that the authorization rule(s), which 

produces r8, must be altered such that it does not yield this problematic role. 

Alternatively, the current business practice has to be revised to incorporate r8 into GRH 

with the appropriate permissions. IRH provides us with useful insight into the permission 

set of r8, that is, it should be a proper subset of the permission set of r2. 

 

3.2.6.1.2.3 Internal Node  

Role r10 exists in the IRH but not in GRH. If r10 has a single child, which belongs to 

GRH, then one can assume that r10 permissions set is identical to that of its child, 

however, the set of users assigned to r10 is a subset of its child’s users set. From a 

functional standpoint, r10 is redundant to its child, r5 in this case, because its users will be 

confined to the permissions associated with r5. Role r10 should be removed from IRH and 

the authorization rules should be modified so they yield r5 instead of r10. Alternatively, r10 

can be added to GRH with permission set such that:  

r5 permission set  ⊂  r10 permission set  ⊂  r2 permission set 

However, if r10 has more than one child, which are nodes in GRH, then r10 can be added 

to GRH such that:  

r10 permission set  = ∪  ri permission set 

where ri ∈ GRH Λ  r10 ≥ ri  
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3.2.6.1.2.4 Stand-alone Node  

This role has no functional purpose and, thus, has to be discarded. An example for this is 

r9. The security policy should be modified by deleting r9 from the RHS of the 

authorization rules.  

3.2.6.1.3 Missing Edges  

The enterprise business practice sees a functional relation, i.e. permissions inheritance 

between r1 and r11 and captures that in the form of an edge between these two roles in 

GRH. However, the security policy does not recognize that and, therefore, no user-role 

inheritance exists between r1 and r11 in Figure 20. In reality, the users assigned to r1 are 

capable of utilizing the permissions attached to r11 since they are a subset of r1 

permissions even if IRH fails to reveal this relation. This can be eliminated by modifying 

the policy so that the authorization rule that generates r1 becomes senior to the one that 

yields r11. 

(ri,rj) ∉ IRH  ∧ (ri ∈IRH) ∧ (rj ∈IRH) ∧ (ri , rj) ∈ GRH → modify the security policy 

 

 

 

 

 

 

 

Figure 20: Missing/Additional Edges 

 

r1 
r2 

r5 r12

r1

r3

r6

r2

r5

r11 
r3 

r6 

(a) IRH with missing/ 
additional edges 

(b) Referenced GRH 

r12 
r11



  81 
   

 

3.2.6.1.4 Additional Edges  

In Figure 20, IRH has the edge that links r1 and r12, which GRH does not recognize. From 

a functional stance, this should not be a problem since it is acceptable to assign a user to 

roles that are not functionally related. However, if we want to reconcile the two 

hierarchies, the permissions set of r1 need to be modified to include that of r12, which 

results in introducing an edge between the two roles in GRH. Formally: 

(ri,rj) ∈ IRH  ∧ (ri ∈GRH) ∧ (rj ∈GRH) ∧ (ri , rj) ∉GRH → modify ri permission set 

3.2.6.1.5 Inconsistency  

Normally, user-role assignment inheritance and permission-role inheritance flow in 

opposite directions.  

 
 

 
 
 
 
 
 
 
 
 

Figure 21: Inconsistency 
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This result contradicts the one derived from part (a). This contradiction manifests itself 

graphically as two arrows flowing from r2 and r3. Either the policy or the role-permission 

assignment has to be modified. 

 
3.2.6.2 Discussion 
 
The analysis of IRH/GRH and any discrepancy that might exist between them serves 

multiple purposes. The discrepancy reveals flaws in the security policy, business 

practices or both. It also gives insight to about how to fix these flaws and, in some cases, 

provides guidance regarding permission-role assignment.  

3.3 Alternative Ways to Gain Authorization  

Thus far, the only way a user u may receive authorization to activate a role r is to satisfy 

one or more rule rulei such that r∈RHS(rulei). There are situations where this approach is 

not flexible enough. Thus, to provide flexibility, we do the following: 

1. Adopt the concept of delegation. 

2. Introduce the concept of can_assume. 

The semantics, motivation, and formal specifications of these two concepts are discussed 

in detail in Chapter 7. For now, it suffices us to say that authorized individuals such as the 

system security officer (SSO) can use can_delegate relation to permit regular users to delegate 

their memberships in specific roles to other users. For example, can_delegate(rg, rh, d, t) allows 

users who are authorized to role rg to delegate their membership in rg to users authorized to rh 

starting at time t for duration of d. Also, the SSO may use one form of can_assume relation to 

explicitly authorize users who are authorized to a role, say rg, to another role, rh, for a certain 

duration d starting at a specific time t. The SSO specifies the duration and the starting time. As a 
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result, the user(s) in role rg is authorized to activate role rh at time t for duration of d. Introducing 

these ways of obtaining authorization definitely impacts the definition of URAuth. This 

impact of introducing can_assume relation will be analyzed and formalized when 

specifying each model. Although similar analysis can be provided for can_delegate, due to 

lack of space such analysis will not be provided. Suppose that an SSO issues 

can_delegate(rg, rh, d, t). Effectively, this means that for each user u such that (u, rg) ∈ URAuth, u 

becomes authorized to rh until can_delegate expires. The modified definition of URAuth is given 

in the following definition. 

Definition 7 

22. URAuthwith can_assume = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)   

∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, d ) ∧ 

can_assume has not expired ] )} 

Let's call the second term in the right hand side B, and hence we say: 

URAuthwith can_assume = A ∨ B 

Intuitively, this means that there are two ways for users to be authorized to roles: 

either via satisfying authorization rules, via satisfying a can_assume relation or 

both.  

The introduction of can_assume calls for reviewing the IRH mathematical properties. 

The following theorem serves that purpose. 

Theorem 2 
The IRH that is based on URAuth with can_assume is a quasi order. 
 

Proof: 

a. For all six cases, reflexivity of IRH follows trivially from the definition.  
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b. Transitivity: This property means that (rg, rh) ∈IRH ∧ (rh, rk) ∈IRH →(rg, rk) 

∈IRH:  

By IRH definition, (rg, rh) ∈IRH means that (u, rg) ∈URAuth → (u, rg) 

∈URAuth. The way by which a user obtains authorization over the role is 

irrelevant ------(1). 

Also, by IRH definition, (rh, rk) ∈IRH means that (u, rh) ∈URAuth → (u, rk) 

∈URAuth ------(2). 

From (1) and (2), it follows that (u, rg) ∈URAuth →(u, rk) ∈URAuth which 

means that (rg, rk) ∈IRH. This applies to the six cases. 

c. Anti-Symmetry: We will consider cases 1 and 3 only in Theorem 1. This 

property means that (rg, rh) ∈IRH ∧ (rh, rg) ∈IRH → rg = rh. This property does 

not hold for IRH because of the following: 

By the IRH definition, (rg, rh) ∈IRH could be true because of seniority among 

rules, i.e. (∀rulei) [(aei⇒ rg) → (∃rulej) [rulei ≥ rulej Λ aej⇒ rh]]. On the other 

hand, (rh, rg) ∈IRH could be true because of a can_assume(rh,rg,t,d). This does not 

necessitate that rg = rh.  This proves that IRH is a quasi order.  

3.4 Summary  

Model A is interesting in and of itself because it lays the formal foundation necessary for 

the automation of user-role assignment. In this chapter, I discussed the main components 

of the model, the language it provides to express authorization rules, the relations that 

might develop among these rules, and how we can use it to derive the IRH and IRH. IRH 

is also analyzed and the possible discrepancies between the IRH and GRH are analyzed, 
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and used to provide insight into the meaning of these discrepancies and the ways to 

reconcile them. Also, Model A serves as the basic building block for Models B and C 

which will be discussed in the following chapters. Figure 22 and 23 summarize the 

formalization of Model A. For the most part, the discussion will be centered on the 

URAuth set and how the added semantics affect it. 



  86 
   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22: Model A (Part 1) 

U, R, and P, imported from RBAC96, are the sets of users, roles, and permissions respectively.  In addition RB-RBAC Model A 
has the following components.  

1. A set of attribute expressions AE.  Elements of AE are denoted as ae ∈ AE (See the language in section 3.2.5.1). 
2. A set of authorization rules where each rule rulei is written as: aei ⇒RHS where ⇒ is read “generates” or “yields” and 

RHS ⊆ R. 
3. Function RHS(aei) = RHS returns the set of roles that user u who satisfies aei is authorized to activate. 
4. U_AE = {(u, aei)| (u, aei) ∈U×AE ∧ u satisfies aei}, (u, aei) ∈U_AE means that u is authorized to RHS(aei). 
5. IR is the set of roles produced by all authorization rules:  

IR = { rg | (∃aei) [aei ∈ AE ∧ rg∈ RHS(aei)} 
6. URAuth = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)}. For the sake of convenience, we will call the right hand side 

of this definition as "A". We will refer to it in future definitions to simplify the relation of different models to each other. 
The concept of session and the functions sessions and user are imported from RBAC96:   

7. sessions : U →2S, a function mapping each user ui to a set of sessions  
8. user : S → U, a function mapping each session si to the single user user(si) (constant for the session's lifetime)  
9. URA ⊆ URAuth, URA = {(u,r)| (u, r) ∈ URAuth ∧ u is currently activate wrt r } 
10. URD ⊆ URAuth, URD = {(u,r)| (u, r) ∈ URAuth, ∧ u has activated r at least once but is not currently active wrt r } 
11. URP ⊆ URAuth, URP = {(u,r)| (u, r) ∈ URAuth ∧ u has never activated r} 

URAuth = URA ∪ URD ∪ URP 
URA ∩ URD = ∅  
URA ∩ URP = ∅  
URD ∩ URP = ∅ 

12. URN ⊆ U×AE, URN = {(u,r)| (u, r) ∉ URAuth ∧  u has not activated r in the past} 
13. URR ⊆ U×AE, URR = {(u,r)| (u, r) ∉ URAuth ∧ u had activated r at least once in the past } 
14. User_State(u, r) = 

Case: 
a. (u, r) ∈ URP: User_State(u, r) = P. 
b. (u, r) ∈ URA: User_State(u, r) = Act 
c. (u, r) ∈ URD: User_State(u, r) = D. 
d. (u, r) ∈ URR: User_State(u, r) = R. 
e. (u, r) ∈ URN: User_State(u, r) = N. 
f. Del: u is deleted by SSO. 
These states are mutually exclusive.  The state Del is a terminal state. 

15. roles : S → 2R, a function mapping each session si to a set of roles roles(si) ⊆ {r | (user(si), r) ∈ URAuth} (which can 
change with time) 

 
16. URAuthwith can_assume = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)   

∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, d ) ∧ can_assume has not expired ] )} 
Let's call the second term in the right hand side B, and hence we say: 
URAuthwith can_assume = A ∨ B 

17. (rulei ≥ rulej) ↔ (aei → aej).  
18.  IRH ⊆ IR x IR is a relation such that rg is senior to rh ( (rg, rh) ∈ IRH is also written as rg ≥ rh ):  

IRH= {(rg ,rh) | (∀rulei) [(aei⇒ rg) → (∃rulej) [rulei ≥ rulej Λ aej⇒ rh]]} 
Intuitively, this means rg is senior to rh in IRH if every rule that produces rg is senior to a rule that produces rh. 

19. IRH = {(rg ,rh) | (u, rg) ∈URAuth  → (u, rh) ∈URAuth} 
20. IR  is the set of  equivalence classes that results from defining relation “mutually senior to one another” on IR such that: 

[ri] = { rj | ri and rj are mutually senior to one another} 
21. IRH  = {([rg] ,[rh]) | ∀u∀rg∈[rg]∀rh∈[rh] [((u,rg)  ∈ URAuth → (u,rh)  ∈ URAuth)  

∧ ((u,rh)  ∈ URAuth → (u,rg)  ∈ URAuth)]} 
 

22. IRH and GRH are the sets of roles in IRH and GRH respectively.  
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Figure 23: Model A (Part 2) 

Theorem: 
 

For each case numbered 1 to 6 in the columns of Table 3 the restriction specified on the “→” relation on 
AE and on the number of roles permitted in the right hand side of each rule imply that the IRH and IRH  
will be a total (T), partial (P) or quasi (Q) order as indicated in the bottom two rows of Table 3.     

 
Proof:  Provided in the chapter’s text. 
 
Theorem: 
 

The IRH that is based on URAuth with can_assume is a quasi order. 
 
Proof:  Provided in the chapter’s text. 
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4. Chapter 4: Model B 
 

4.1 Introduction 
 

In this chapter we discuss Model B, which extends Model A to allow the specification of 

negative authorization (Model B1) and mutual exclusion (Model B2) by extending the 

ASLA language. The extended language is called ASLB1 and ASLB2, respectively.  This 

extension has an impact on user authorization, formally represented by URAuth set. Also, 

it may cause conflict among rules. This conflict is analyzed, and conflict resolution 

polices are presented; some of them are novel. The definition of URAuth is modified to 

accommodate the semantics of negative authorization and mutual exclusion. The new 

definition takes into consideration conflict resolution policies in effect. 

Negative authorization is typically discussed in the context of access control systems that 

adopt open policy. There is an extensive amount of work in this regard, see for example 

[BSJ1993], [BSJ1997], and [JSMS2001]. However, this issue received little, if any, 

attention in the RBAC literature. Model B1 is the first RBAC model that provides 

detailed analysis of different aspects of negative authorization in an RBAC context. This 

includes providing semantics, identifying cases of conflict, suggesting conflict resolution 

policies including novel policies, the impact of negative authorization on URAuth, IRH, 

GRH and any RB-RBAC enforcement architecture. In Model B2, conflict among 
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authorization rules due to mutual exclusion, the impact of mutual exclusion on URAuth, 

IRH, GRH and any RB-RBAC enforcement architecture are discussed. 

4.2 .Analysis of Model B 
  
4.2.1 Negative Authorization (Model B1) 
 
In the real world of access control, there are two well-known decision policies 

[JSMS2001]:  

a. Closed policy: This policy allows access if there exists a corresponding positive 

authorization and denies it otherwise. 

b. Open policy: This policy denies access if there exists a corresponding negative 

authorization and allows it otherwise. 

Bertino et al. contends that the closed policy approach has a major problem in that the 

lack of a given authorization for a given user does not prevent this user from receiving 

this authorization later on. They therefore proposed an explicit negative authorization as 

blocking authorizations. Whenever a user receives a negative authorization, his positive 

authorizations become blocked [BSJ1997]. 

In a database context, Bertino et al. defines negative authorization as that if a user has it 

for a privilege on a table, the user can neither exercise nor administer that privilege. 

Moreover, a negative authorization for a privilege on a table renders the user incapable of 

exercising the privilege on the table even though he may have received, or will receive in 

the future, authorizations giving that privilege. This is particularly important in 

environments where authorization administration is decentralized and other users, besides 

the owner of a table, can grant authorization [BSJ1993]. So when Discretionary Access 

Controls (DAC) is applied, negative authorization is critical.  
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Bertino and Bonatti mention negative authorization in the context of enabling/disabling 

roles in temporal RBAC where negative authorization simply means disabling the role 

[BB2001]. This is different from the semantics given to this concept in RB-RBAC, as 

will be discussed shortly. 

 
4.2.1.1 The ASLB1 Syntax 

 
ASLB1 imports the syntactic constructs of ASLA but it modifies the syntax of Roles as 

follows:  

Roles ::= [┐] Role  

role-set ::= Role | Role||,||role-set 

4.2.1.2 Semantics 
 
The syntax above allows specifying negative authorization on roles such as the following: 

aek ⇒ ¬ ri 

The rule above states that once a user satisfies aek the system that implements RB-RBAC 

prohibits him from assuming ri. Typically, we assume a closed policy where users are 

prohibited from activating roles unless explicitly authorized, however, there are situations 

where negative authorization provides an extra safeguard to prevent users from getting 

unauthorized access to roles as discussed in the next section. 
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4.2.1.3 Motivation 
 
The motivations to use negative authorization are not as strong in environments where 

RBAC is applied. Even though users-role assignment could be decentralized [SBM1999], 

it is not left to users’ discretion to assign other users to roles. Instead a small number of 

individuals (e.g. SSOs) are entrusted with applying the enterprise security policy 

regarding user-role assignment. As a result, the possibility of assigning a user to a role 

that violates the enterprise security policy in RBAC environment is slim. However, since 

RB-RBAC automates this process, negative authorization provides an extra safeguard, 

since it is not always easy to foresee all possible combinations of roles a user can assume 

based on his attributes, which change over time. Negative authorization helps in blocking 

any user whosoever satisfies certain criteria (expressed as attributes expression) from 

assuming certain roles. Also, it can be used to block receiving authorization of certain 

roles via can_assume and can_delegate relations. The system security officer (SSO) can 

use can_assume relation to explicitly authorize users who are authorized to a role, say rg, 

to another role, rh, for a certain duration d starting at a specific time t. As a result, the 

user(s) in role rg is authorized to activate role rh at time t for duration of d. Also, he may 

use can_delegate relation to permit regular users to delegate their memberships in 

specific roles to other users. These relations are discussed in more details in Chapter 7. 

To motivate the use of negative authorization in the context of RBAC, consider the 

example of a military unit that has a Commander and 4 staff officers, usually known as 

G1 through G4 as depicted in Figure 24. 
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Figure 24 : RBAC Hierarchy for a Battalion 

 
The commander can delegate his authority to any of his staff officers as long as the staff 

officer meets certain criteria specified by the military regulations. In Table 4, we show a 

security policy that specifies a possible real world situation. The policy uses negative 

authorization to prevent a Commander from delegating his role to a staff officer whose 

rank is lower than a Lt. Colonel. 

 

Table 4: Example to Motivate Negative Authorization 
 
 

Attributes in the System: 
 

a1: rank-type = officer 
a2: Staff course = T 
a3:  Leadership  course = T 
a4:  Rank ≥ Lt. Colonel 
a5: Assignment Order = T 

 
Authorization Rules: 

a1∧ a2 ⇒ {G1, G2, G3, G4} 

a1∧ a2∧ a3 ∧a4 ∧ a5 ⇒ Commander 

¬a4 ⇒ ¬Commander 
can_delegate(Commander,  G1, d, t) 

 
 
4.2.1.4 Conflict Due to Negative Authorization 
 
Introducing “┐” to the RHS may lead to conflict in the state of a single user wrt a single 

role. The conflict is due to simultaneous positive and negative authorizations. Using the 

Commander

G1 G4
G2 G3
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set of authorization rules shown in Figure 25, the following are several variations of this 

type:   

a. Conflict among unrelated rules like the one between rule2 and rule3. If u satisfies 

rule2 and rule3 simultaneously then u should be authorized to assume r1 (i.e. u is 

in P state wrt r1) and denied r1 at the same time (i.e. u is in N state wrt r1). This 

case is represented by the following: 

(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r ∈RHS(aei) ∧ ¬r ∈RHS(aej) 

b. Conflict among related rules: rule3 and rule5 are conflicting because if u satisfies 

rule3 then he is denied r1 (i.e. u is in N state wrt r1), but at the same time, 

authorized to assume r1 (i.e. u is in P state wrt r1) because rule3 ≥ rule5. This case 

is represented by the following: 

(u, aei) ∈ U_AE ∧ (u, aej) ∈ U_AE ∧ r ∈RHS(aei) ∧ ¬r ∈RHS(aej)  

∧ ((aei → aej)∨ (aej → aei)) 

c. Conflict between an authorization rule and an action taken by authorized 

individuals, e.g. SSO. Suppose that SSO issued the following: 

can_assume(r4, r3, t, d) 

This allows users who are authorized to r4 to activate r3. If u satisfies ae1, i.e. u is 

in N state wrt r3, and at the same time is authorized to r4. Nonetheless, the 

can_assume relation above authorizes u to r3, which leads to a conflict.     
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Figure 25: A Set of Conflicting Authorization Rules 
 

 
4.2.1.5 Conflict Resolution Policies 

Conflict resolution policies have been discussed extensively in the literature, see for 

example, [BSJ1997], [JSS1997] and [JSMS2001]. Most notable among them are:  

a. Denial Takes Precedence (DTP): Negative authorizations are always adopted 

when conflict exists.  

b. Permission Takes Precedence (PTP): Positive authorizations are always adopted 

when conflict exists. 

These two policies in their original form suffer the following deficiencies: 

a. They are very rigid in the sense that they do not allow the specifying of special 

cases that violate the policy enforced. Suppose a hospital has a policy that has the 

following authorization rules: 

rule1: No. of years in residency ≤ 1 ⇒ intern  

rule2: No. of years in residency ≤ 1 ⇒ ¬ ER_doctor  

rule1:  ae1  ⇒ ¬r3, r4
rule2: (ae2) ⇒ r1
rule3: (ae3) ⇒ ¬r1, r2
rule4: (ae4) ⇒ r2
rule5: (ae5) ⇒ r1
rule6: (ae6) ⇒ ¬ r1

such that: 
rule1 ≥ rule2, 
rule1 ≥ rule3≥ rule5, 
rule1 ≥ rule4≥ rule5 
rule1 ≥ rule6

rule2:

RHS = r1

rule3:

RHS = ¬r1, r2

rule5:

RHS = r1

rule4:

RHS = r2

1

rule6:

RHS = ¬r1

rule1:
RHS = ¬r3, r4
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Naturally, during the holiday seasons large numbers of the medical staff take their 

yearly vacation. However, this period of the year witnesses a surge in the number 

of people admitted to the emergency room. Clearly, additional medical staff are 

needed to handle this surge in demand of medical care. The administration may 

allow interns to work in the ER, and hence authorizes them to role ER-doctor. 

One way to handle this is to change the hospital policy by deleting rule2. This 

course of action is not preferred because it might lead to unseen side effects. Also, 

it might lead to a breach in the security policy if the SSO forgets to add it back 

after the holiday season is over. A better solution is to use can_assume relation as 

follows: 

can_assume(intern, ER_doctor, t, d) 

This authorizes interns to activate the role ER_doctor, i.e. to work in the 

emergency room. can_assume conflicts with rule2, so if DTP is enforced, the 

interns will not be able to work in the ER unless rule2 is deleted. What is needed 

in this situation is a relaxed version of DTP that allows the stating of this 

exception in the security policy. 

b. DTP with negative authorization is useful in a closed policy environment. 

However, PTP renders negative authorization meaningless in such environments. 

This is so because wrt any role that is associated with negative authorization, 

there could be only one of the following possibilities: 

i. Conflict may arise: Since PTP is enforced, the negative authorization is 

ignored. 
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ii. No conflict may arise: There is no need for the negative authorization 

since we are assuming a closed policy. 

Based on that, we argue that there is a need for more flexible conflict resolution policies. 

The following section discusses newly formulated conflict resolution policies; some of 

them specify DTP policy with varying degrees of flexibility.  

4.2.1.5.1 Localized DTP (LDTP)  
  
DTP policy resolves any conflict in favor of denial, even if the conflict occurs among 

unrelated rules from among the relevant rules. This is rather restrictive since it means the 

more rules a user satisfies, the higher is the risk that he might be denied access to a role 

due to a conflict in authorization. This is counter-intuitive and requires us to modify the 

policy so that the conflict among unrelated rules is resolved in favor of permission. In 

other words, the denial is localized to conflict among comparable rules. We name the 

modified policy: the Localized DTP, or LDTP for short.  

4.2.1.5.2 Flexible DTP (FDTP)  
  
This policy enforces DTP in cases where conflict occurs among authorization rules. 

Otherwise, it enforces PTP which allows for exceptions caused by can_assume and 

can_delegate relations. Thus, when FDTP is enforced, in the example of the hospital 

discussed above, an intern can work as an ER doctor via can_assume relation without the 

need to remove rule2 from the authorization rules set. In other words, FDTP policy 

authorizes u to role r if there is no conflict wrt role r, or if there is a can_assume relation 

which authorizes u to role r even if u receives a negative authorization wrt to r.  

In Table 5 we summary how the afore-discussed policies compare and contrast.  
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Table 5: Comparison of Conflict Resolution Policies 

Conflicting Parties 
Policy 

↓ 
Comparable 

Rules 

Non-comparable 

Rules 

Rules and SSO-initiated authorization 

(can_assume and can_delegate)  

DTP Denial Denial Denial 

PTP Permission Permission Permission 

LDTP Denial Permission Denial 

FDTP Denial Denial Permission  

 

The entry at the intersection of the fourth row with the third column, for example, means 

that under LDTP if the conflicting parties are non-comparable rules, then permission 

prevails.  

4.2.1.5.3 Weighted Rules  
 

Authorization rules are assigned weights according to criteria determined by the 

enterprise such as: 

i. The seniority of the rule, so rule3 has higher weight than rule5 in Figure 25 

and, thus, the negative authorization is enforced.  

ii. The seniority of the rule issuer, e.g. an SSO-issued rule has higher weight than 

a rule issued by a junior security officer. 

4.2.1.5.4 Labeled Roles 
 
Each role is assigned a label, which could be either one of the following values: DTP or 

PTP. If rg and rh are respectively labeled DTP and PTP, then in case of conflict wrt rg, 

DTP is always enforced, while PTP is enforced in case of rh. The notion and notation of 
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role ranges [SBM1999] could be utilized in this context. An assign_label relation can be 

defined as follows: 

 assign_label ⊆ {DTP, PTP}× 2IR 

So, assign_label(DTP, [rg, rh]) assigns DTP label to all roles in the range [rg, rh]. There 

are some subtle issues that need to be analyzed further. Suppose we have two roles rg and 

rh such that rg ≥ rh. Suppose also that we assign the labels DTP and PTP to rg and rh 

respectively. If u satisfies authorization rules such that he has conflict in both roles, then 

based on the labels assigned to the roles, u is authorized to rh but not to rg. Although this 

reduces the privileges available to u, this situation is not problematic since senior roles 

are naturally assigned more permission and, as thus, it is wise to err on the side of denial 

in case of conflict. However, assume that the labels were reversed and that u has conflict 

in both roles. The resolution will be such that u is authorized to rg but not to rh, which is 

very problematic since rh’s permissions are a subset of rg’s permissions. To follow this 

policy strictly, we need to suspend this subset of permissions, which may render rg 

deficient or even meaningless. We have not found any practical example in which this 

scenario is applicable. So, when assigning labels to roles, we require that the roles higher 

in the hierarchy receive labels of equal or higher level than their juniors. We assume that 

DTP label is higher than PTP. We believe this requirement is reasonable since senior 

roles are naturally assigned more permission, so they need more protection.  

4.2.1.6 Users' Authorization in Model B1 

In the previous section we discuss several policies that can be deployed to resolve 

conflicts that may arise among authorization appointed to a specific user. In this section, 

we modify the definition of the set "URAuth" under selected policies to reflect the impact 
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of conflict, if it exists, on user’s authorization. While it is possible to do this with respect 

to all the conflict resolution policies that we have newly introduced, for the sake of 

brevity, we choose to focus on DTP, PTP, LDTP and FDTP.  

Definition 8 

1. The model's syntax is shown in section 4.2.1.1. 

2. URAuth  varies according to the policy enforced: 

a.  PTP: URAtuh in PTP with/without can_assume is similar to the corresponding 

URAtuh in Model A. 

b. DTP : URAuthDTP = A ∧ C , or 

URAuthDTP = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei) 

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]} 

c.  DTP with can_assume: URAuthDTP with can_assume =  (A ∨ B) ∧ C , or 

URAuthDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)]   

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  

can_assume(r’, r, t, d ) ∧ can_assume has not expired ]) 

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]} 

d. LDTP: We modify the term C to require the conflicting rules to be comparable. 

Call the modified term C', thus URAuthLDTP = A ∧ C' 

URAuthLDTP = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)  

∧ ( (aej → aei) ∨ (aei → aej)] )  

e.   LDTP with can_assume: URAuthLDTP with can_assume = (A ∨ B) ∧ C'  
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URAuthLDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  

can_assume(r’, r, t, d ) ∧ can_assume has not expired ]) 

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ ( (aej → aei) ∨ (aei 

→ aej)] } 

f.   FDTP: URAuthFDTP = URAuthDTP 

g. FDTP with can_assume: URAuthFDTP with can_assume = (A ∧ C ) ∨ B 

URAuthFDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ] ) 

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  

can_assume (r’, r, t, d ) ∧ can_assume has not expired ]} 

Table 6: Authorizatioin Under Different Conflict Resolution Policies in Model B1 
 

 

Table 6 summaries the definition of URAuth under different policies. 

4.2.1.7 IRH in Model B1 

The modifications we introduced on the definition of URAuth do not affect the properties 

of IRH. Consequently, the IRH that is based on URAuth without can_assume  will have 

the properties stated in Theorem 1. On the other hand, the IRH is a quasi order when it is 

based on URAuth with can_assume as stated in Theorem 2.   

Policy URAuth Without can_assume URAuth With can_assume 
PTP A  

( A ∨ B) 

DTP A ∧ C 
( A ∨ B) ∧ C 

LDTP A ∧ C' (A ∨ B) ∧ C' 
FDTP A ∧ C (A ∧ C ) ∨ B 
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4.2.1.1 GRH in Model B1 

We have stated in Model A analysis that we may be provided with a given role hierarchy 

GRH that represents the current business practice of the enterprise. The GRH is identical 

to role hierarchies defined in RBAC96, that is, it is permission-driven: 

(ri ≥GRH rj)  → rj permissions ⊆ r j permissions 

where ≥ GRH has the same semantics as in RBAC96. As such, inheritance of permissions 

flows upward in the GRH. When a GRH is present, the rule aei ⇒ ┐rg may have one of 

the following two possible semantics: 

a. Propagation prohibited: Users who satisfy aei should be prohibited from 

assuming rg. This is the interpretation given previously. 

b. Propagation allowed: Negative authorization propagates upward in GRH such 

that users who satisfy aei should be prohibited not only from assuming rg, but 

also from assuming any role rk such that rk ≥GRH rg. This ensures that the user 

cannot circumvent the system by assuming rk, whose permissions are a superset 

of rg’s. From a functional perspective, this may not be desirable since it is usually 

the case that the prohibition is targeting users who merely satisfy rulei, but not 

those who can assume roles higher in the hierarchy by virtue of satisfying rules 

senior to rulei, which usually means that they meet higher security requirement. 

Allowing the negative authorization to propagate upward requires modification 

of the definition of URAuth. For a user to be authorized to a role r, not only do 

we require that u has positive authorization wrt r and does not have negative 

authorization wrt r, but we also require that u does not have negative 

authorization wrt any role r' such that r ≥ GRH r' i.e. r is senior to r' in GRH. 
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Definition 9 
 

URAuth definition is modified to take propagation of negative authorization into 

account. We need to modify term C as follows: 

Term C becomes: Cmodified = ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r' ∈RHS(aej)  

∧ r ≥GRH r'] 

 

Notice that we can replace the term C' in Definition 8 with Cmodified  since r ≥GRH r' 

implies that the rules that generate r  and r' are comparable.  
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4.2.1.2 Related Issues 

4.2.1.2.1 User State Diagram 

Suppose that the system that implements RB-RBAC has the following set of rules only: 

rulei: aei ⇒  rg 

rulej: aej ⇒ rh 

rulek: aek ⇒ ┐rh 

Let’s consider the following scenarios assuming DTP is in effect and using Figure 26: 

Scenario 1: Assume that u satisfies rulej only. Since u does not satisfy rulek i.e. there is 

no negative authorization associated with rh, (u, rh) ∈URAuth. In other words, u could be 

in any of the following states wrt rh: P, D, or Act. A change in u’s attributes or in the 

authorization rules may cause the system that implements RB-RBAC to invoke rulek 

assigning negative authorization to u wrt rh. Accordingly, (u, rh) ∉URAuth and u’s state 

will be changed from P to N or from D or Act to R. The arrows labeled ae/r represent 

this.  

Scenario 2: Assume that u satisfies rulei only. Since u does not satisfy rulek i.e. there is 

no negative authorization associated with rg, (u, rg) ∈URAuth. As a result, u could be in 

any of the following states wrt rg: P, D, or Act. A change in u’s attributes or in the 

authorization rules that cause the system that implements RB-RBAC to invoke rulek 

assigning negative authorization to u wrt rh. If rg ≥ rh and propagation is allowed, u’s state 

will be changed as in scenario 1.   

A change in u’s attributes or in the authorization rules may make u no more able to 

satisfy rulek, and thus, u is no more authorized to ¬rh. Also, u could become unable to 
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satisfy rulek either because it was modified or deleted. This results in changing his state 

from N back to P, or from R to D. 

 

 

 

Figure 26: State diagram of a user with respect to role r 

4.2.1.2.2 Enforcement Requirements 

Enforcing the negative authorization requires that the system which implements RB-

RBAC has access to all relevant attributes. This requirement affects the architectural 

options that can be used to enforce Model B since the system must either have these 

attributes under its control or be granted access to them when needed. If this is not the 

case, then users may evade the model. Consider the following unrelated rules: 

rulei: aei ⇒ ┐ rh 

rulej: aej ⇒ rh  

If these rules were in public domain or were somehow unconcealed, then users whose 

attributes satisfy both aei and aej can avoid rulei simply by not providing the attributes 

necessary to satisfy aei. Though this may not be a problem under PTP policy, it amounts 
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to a security breach under DTP policy. If RB-RBAC has access to users’ attributes, DTP 

policy can be enforced. 
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4.2.2 Mutual Exclusion (Model B2) 

The specification, motivation, usage, and implications of mutual exclusion in RBAC have 

received a fair amount of attention in the literature [Kuhn1997], [FK1995] and 

[SCFY1996]. Mutual exclusive roles, which are used to express separation of duty 

policies, are a powerful feature of RBAC96 that is supported by commercial software, 

such as Informix database management systems, to enforce static and dynamic separation 

of duty policies. The classical example for two mutually exclusive roles comes from 

organizations that prohibit a single individual from requesting and approving of a major 

expenditure. Expressing separation of duty policies is crucial since these policies are 

often closely tied to RBAC, which is a natural tool for implementing separation of duty. 

Several variations of mutual exclusion have been discussed in the RBAC literature, the 

most important of which are:  

a. Static: Any two roles that have been specified as mutually exclusive cannot both 

be included in the set of roles assigned to a user.   

b. Dynamic: Any two roles that have been specified as mutually exclusive cannot 

both be included in the set of roles activated by a user. 

c. Complete: Mutually exclusive roles do not share any permission. 

d. Partial: Mutually exclusive roles may share some, but not all, permissions. 
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4.2.2.1 The ASLB2 Language 

4.2.2.1.1 ASLB2 Syntax 

To allow the specification of mutual exclusion, the syntax of ASLB2 is as follows: 

Roles ::= [Dynamic | Session dynamic] ME 

ME ::= {||role-set||} || ⊕ || {||role-set||}  

| {||role-set||} || ⊕ || ME 

role-set ::= Role  

| Role||,||role-set 

So, mutually exclusive roles can be specified in a rule as follows: 

aek ⇒ [Dynamic | Session dynamic] {role_seta} ⊕ {role_setb} 

Each of role_seta and role_setb can be composed of one role or more. This allows 

expressing several variations of mutual exclusion among roles: 

a. role-vs-role:  

aek ⇒ {ri}⊕ {rj} 

Roles ri and rj are identified to be mutually exclusive. 

b. role-vs-role_set: In the following example the mutual exclusion is specified 

between ri and any role rj ∈ role_setx: 

aek ⇒ {ri}⊕ {role_setx} 

We assume that ri ∉ role_setx. 

c. role_set-vs-role_set: In the following example the mutual exclusion is specified 

between any two roles ri and rj such that ri ∈ role_setx and rj∈ role_sety: 

aek ⇒ {role_setx} ⊕ {role_sety} 



  108 
   

 

Here, we assume that role_setx ∩ role_sety = ∅. 

 

Also, ASLB2 allows specifying mutual exclusion among multiple roles or role sets. For 

example, aek ⇒ {ri}⊕,..,⊕{rm} means that if u assumes ri where 1≤ i ≤, n, then u cannot 

assume any role rk where 1≤ k ≤, n and k ≠ i. Thus far, we used the language to specify 

static mutual exclusion. The key word “Dynamic” could be inserted to specify simple 

dynamic mutual exclusive roles as follows: 

aek ⇒ Dynamic {ri}⊕ {rj} 

Similarly, session-based dynamic mutual exclusion could be specified by inserting the 

key word “Session dynamic” before the RHS of the rule. This feature of ASLB2 enables us 

to specify static mutual exclusion among certain roles and, at the same time, specify 

dynamic mutual exclusion among other roles. 

4.2.2.1.2 Semantics 

The following is the meaning of the 3 types of mutual exclusion allowed by RB-RBAC: 

a. Static: If ri and rj are specified as mutually exclusive roles, then if user u activates 

any one of them, say role ri, then u is permanently banned from activating rj. This 

is useful in specifying role-centric SOD constraints, which means that no user 

should assume ri and rj. 

b. Simple Dynamic: If ri and rj are specified as mutually exclusive roles, then u 

cannot activate both roles at the same time. However, if u becomes dormant in 

one of them, he can activate the other. This provides a role-centric dynamic SOD. 

The reserved word “Dynamic” is used to identify this type.  
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c. Session Dynamic: If ri and rj are specified as mutually exclusive roles of this type, 

then u cannot activate them simultaneously in one session. We use the reserved 

word “Session dynamic” to identify this type. 

Note that the roles which are declared mutually exclusive are treated as such wrt the users 

who satisfy the rule(s) in which the roles are specified mutually exclusion. 

4.2.2.2 Conflict Due to Mutual Exclusion 
 

Mutual exclusion may introduce conflict among authorization rules. There are two types 

of conflict: 

4.2.2.2.1 Type A conflict 

This type occurs due to conflict among authorization rules or between some authorization 

rules and authorization granted by the SSO via can_assume or can_delegate. We have 

identified the following cases of this conflict where rg and rh are two roles that are 

mutually exclusive: 

 
a. Conflict among rules: We recognize conflict only if it takes place among 

authorization rules. We specify this case as follows: 

{(u,rg), (u,rh)} ⊆ URAuthModel A ∧ {{rg} ⊕ {rh}} ⊆ RHS(aej) ∧ (u, aej) ∈U_AE 

URAuthModel A contains user's authorization according to Model A, i.e. without 

considering the conflict caused by the mutual exclusion. We use {{rg ⊕ rh}} ⊆ 

RHS(aej) to mean that rulej generates rg and rh which are mutually exclusive. Note that 

Model B2 allows us to identify two roles to be mutually exclusive only wrt to users 

who satisfy the rule that specify the mutual exclusion. In other words, it is possible 
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for a user u to satisfy rules that authorize him to the roles that are identified to be 

mutually exclusive via other rules. Consider the following scenario: 

rg ∈RHS(aei) 

rh ∈RHS(aej) 

{{rg} ⊕ {rh}}  ⊆ RHS(aek) 

Suppose that the rules are not related and that u satisfies rulei and rulej. Form Model 

B2 perspective, u has not met the criteria needed to invoke the mutual exclusion, and 

thus, the system does not prevent u from activating both roles. There are two forms of 

this conflict: 

1. Conflict among related rules: The case is formalized as follows: 

{rg, rh} ⊆ RHS(aei) ∧ (u, aei) ∈U_AE 

∧ {{role_setx} ⊕ {role_sety}}  ⊆ RHS(aej) 

∧ rg ∈ role_setx ∧ rh ∈ role_sety ∧ (u, aej) ∈U_AE 

∧ ((aei → aej)∨ (aej → aei)) 

Suppose that rulei is senior to rulej and  that u satisfies rulei. As a result, 

u  is authorized to either rg, rh, or both. However, u also satisfies rulej , 

hence u is authorized to either rg or rh but not both.  

2. Conflict among unrelated rules: This case is a generalization of the 

previous one by removing the term: ((aei → aej)∨ (aej → aei)). 

 

b. Conflict between an authorization rule and authorization granted by the SSO. This 

case is represented by the following:  
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{{role_setx} ⊕ {role_sety}}  ⊆ RHS(aej) ∧ rg ∈ role_setx ∧ rh ∈ 

role_sety 

∧ (u, aej) ∈U_AE 

∧ can_assume(rg, rh, t, d ) ∧ can_assume has not expired) 

 

4.2.2.2.2 Type B conflict   

This type of conflict is identified for the first time in RBAC literature. The conflict is due 

to contrast in mutual exclusion types. To illustrate, suppose we have the following two 

rules: 

rulei : aei ⇒  {{rg}⊕ {rh }} 

rulej : aej ⇒  Dynamic {{rg}⊕ {rh }} 

The first rule specifies a static mutual exclusion between rg and rh while the second 

specifies a dynamic mutual exclusion between the same roles. So if user u activates role 

rg, then, according to rulei, the system should permanently prohibit u from becoming 

authorized to rh. But according to rulej this ban should be lifted once u deactivates rg.   

 

4.2.2.3 Conflict Resolution Policies 

4.2.2.3.1 Type A conflict: 

In the following discussion, we present policies to resolve conflict due to mutual 

exclusion. The novelty of these policies stems from the fact that either they have never 

been discussed in the RBAC literature, or that they were modified so that they have 

added semantics. Let's define URInvoked set such: 

URInvoked = 



  112 
   

 

 {(u,r) | u has activated r at sometime in the past or is currently activating r} 

Suppose also: 

• u is authorized to rg and rh.  

• rg and rh be two mutually exclusive roles,  

• (u, rg)  ∈URInvoked  

• u wants to activate rh. 

Now, on the one hand, u is authorized to rh. However, on the other hand, he should be 

prevented from activating rh since rg and rh are mutually exclusive roles. Clearly, there is 

a conflict. To resolve it, we suggest the following policies:  

 

4.2.2.3.1.1 DTP with modes  

This policy has three modes: 

i. Static: User u is permanently denied authorization to rh. This is the extreme case 

of DTP. Specifying this policy requires a change in our definition of URAuth 

since it is dependent on the first choice made by the user and the impact of that 

choice is permanent. In the example above, the fact that u activates rg makes 

activating rh out of reach from u's standpoint. 

ii. Simple Dynamic: u is authorized to both roles, however he is denied authorization 

to rh as long as he is active wrt rg. The definition of URAuth for case is similar to 

Model A. 

iii. Session Dynamic: u can activate rh but not in the same session with rg. In this case 

also, the definition of URAuth is similar to Model A. 
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4.2.2.3.1.2 FDTP with modes 

This policy enforces DTP in cases where conflict occurs among authorization rules. Also, 

similar to DTP, it has three modes. However, when a rule conflicts with an authorization 

issued by the SSO such as can_assume, permission always takes precedence. In this case, 

the three modes become irrelevant since the mutual exclusion is not enforced. 

 

4.2.2.3.1.3 Weighted Rules 

Authorization rules are assigned weights according to criteria determined by the 

enterprise similar to Model B1. 

 

4.2.2.3.1.4 Labeled roles with modes 

This policy enables modes of enforcement of DTP policy. The assign_label relation is 

modified as follows: 

Modes (M) = {DTPS, DTPD, DTPSD} 

assign_label ⊆ M × 2IR 

DTPS, DTPD and DTPSD mean DTP in static, simple dynamic and session dynamic 

modes respectively.   

 
4.2.2.3.2 Type B conflict 

Although the policies we presented above could be applied, we will limit the discussion 

to the basic versions of DTP and PTP. Before stating the policies we need the following 

theorem.   
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Theorem 3 

If static mutual exclusion holds → Simple dynamic mutual exclusion holds → 

Session based mutual exclusion holds. 

Proof:   

Let rg and rh be two roles. Then, based on the definition of static, simple dynamic, 

and session-based mutual exclusion, we can state the following: 

If rg and rh are identified to be mutually exclusive in static mode, then static 

mutual exclusion holds between rg and rh wrt user u if 

{(u,rg) , (u,rh)} ⊆ URAuthModel A ∧ {(u,rg) , (u,rh)} ⊄ URA ∪ URD …….(i) 

If rg and rh are identified to be mutually exclusive in simple dynamic mode, then 

simple dynamic mutual exclusion holds between rg and rh wrt user u if 

 {(u,rg) , (u,rh)} ⊆ URAuthModel A ∧ {(u,rg) , (u,rh)} ⊄URA    …….(ii) 

If rg and rh are identified to be mutually exclusive in session-based mode, then 

session-based mutual exclusion holds between rg and rh wrt user u if 

 {(u,rg) , (u,rh)} ⊆ URAuthModel A ∧ {rg,rh} ⊄ {(u,ri) | ri ∈ roles(OE(Sessions))   

∧ u = user(OE(Sessions))}  …….(iii) 

such that OE(Sessions) returns the roles activated in one session. OE is a non-

deterministic function, pronounced oneelement and first introduced in [CS1996], 

non-deterministically returns one element of a given set. (Further discussion of 

this function is presented in the following definition)  

Based on (i) and (ii) above, the following holds: 

If static mutual exclusion holds → Simple dynamic mutual exclusion holds 

Based on (ii) and (iii) above, the following holds: 
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Simple dynamic mutual exclusion holds → Session based mutual exclusion holds 

This proves the theorem.                                                                                       

 � 

4.2.2.3.2.1 DTP 

When a conflict of type B arises among rules, the more restrictive form of mutual 

exclusion is enforced. Between two conflicting rules of type B, the more restrictive is the 

one that is an antecedent to the other according to the previous theorem. 

4.2.2.3.2.2 PTP 

The less restrictive form of mutual exclusion is enforced, which is a consequent to the 

other conflicting type. 

 
4.2.2.4 Users' Authorization in Model B2 

In the previous section we discussed several policies to resolve conflict in case it arises. 

In this section, we modify the definition of the set "URAuth" under selected policies to 

specify what roles users are authorized to. We present the formal definition of URAuth 

for DTP and FDTP with the three types of mutual exclusion. Specification can be 

provided for URAuth under the remainder of the policies. 

Definition 10 

 

1. Syntax: See section 4.2.2.1.1 for details. 

rulei: aei ⇒ {role_set1}⊕…⊕ {role_setn} such that any role-set, role_seti = {rx,..,ry} ∧ 

(role_seti ∩ role_setj = ∅ for any i and j both in [1,n] such that i ≠ j) 

2. ME_set(rulei) = { role_setj | role_setj is a mutually exclusive role-set in the right hand 

side of rulei} 
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3. URInvoked = {(u,r) | u has activated r at sometime in the past or is currently 

activating r} 

URInvoked = URA ∪ URD ∪ URR 

4. Non-deterministic functions, Oneelement and Allother, first introduced in [CS1996]: 

• Oneelement (OE): set→ element.   

• Allother (AO): set→set, i.e. get set by taking out one element.  

These two functions are related by context since for any set X,  

AO(X) =  X − OE(X) 

and at the same time, neither is a deterministic function. Also, multiple occurrences of 

OE in a sentence all return the same element xi form X. 

5. For Dynamic or Session Dynamic mutual exclusion: URAuth is identical to its 

counterpart in Model A. 

6. For Static mutual exclusion:  

a. URAuthStatic DTP = {(u,rg)| (∃rulei)[(u, aei) ∈U_AE ∧ (rg ∈OE(ME_set(rulei)) 

∧ rh ∈OE(AO(ME_set(rulei)))) → ¬ ∃(u,rh)[(u, rh) ∈URInvoked]]} which 

changes according to the user's initial choice. For the sake of naming 

convenience, let's call this D ∧ E. 

b. URAuthStatic DTP with can_assume = (D ∧ E) ∨ (F ∧ G) 

{(u,rg)| ((∃rulei)[(u, aei) ∈U_AE ∧ (rg ∈OE(ME_set(rulei)) ∧ rh 

∈OE(AO(ME_set(rulei)))) → ¬ ∃(u,rh)[(u, rh) ∈URInvoked]])  

∨ (can_assume (rk, rg, t, d ) ∧ can_assume has not expired ∧ 

¬(∃rulej) [rg ∈OE(ME_set(rulej)) ∧ rh ∈OE(AO(ME_set(rulej))) ∧ 
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(u, aej) ∈U_AE ∧ (u,rh) ∈URInvoked])}, which changes according 

to the user's initial choice.  

c. URAuthStatic FDTP = URAuthStatic DTP = D ∧ E 

d. URAuthStatic FDTP with can_assume = (D ∧ E )∨ B  

{(u,rg)| ((∃rulei)[(u, aei) ∈U_AE ∧ (rg ∈OE(ME_set(rulei)) ∧ rh 

∈OE(AO(ME_set(rulei)))) → ¬ ∃(u,rh)[(u, rh) ∈URInvoked]])  

∨ (can_assume (rk, rg, t, d ) ∧ can_assume has not expired)}, 

which changes according to the user's initial choice.  

 
4.2.2.5 Mutual Exclusion and GRH 

Suppose we have the rule: aei ⇒ rg ⊕ rh. Suppose also that rg ≥ GRH rh, i.e. rg is senior to rh 

in GRH. This scenario is problematic because a user u who satisfies the rule can activate 

rg. And since rg ≥ GRH rh, u can execute the privileges of rh, rendering the mutual exclusion 

ineffective. Some researchers argue that mutually exclusive roles should not have a 

common parent role [Kuhn1997]. Formally, we state this as follows: 

(rg ∈OE(ME_set(rulei)) ∧ rh ∈OE(AO(ME_set(rulei))) ) →  

¬ (∃ rk) [rk ≥ GRH rg ∧ rk ≥ GRH rh] 

It could be argued that this is not always desirable. Consider the case of a software 

development team where we have two roles that are mutually exclusive: developer and 

tester. Traditional business practice calls for a team leader role which is usually superior 

to both roles. 
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A user’s choice of a mutually exclusive role may affect the choices available to him by 

other rules. Suppose, for example, that rg and rh are mutually exclusive, and rh and rk are 

mutually exclusive i.e.: 

{{role_setx} ⊕ {role_sety}}  ⊆ RHS(aei) ∧ rg ∈ role_setx ∧ rh ∈ role_sety  ∧ (u, aei) 

∈U_AE 

∧ {{role_sety} ⊕ {role_setz}}  ⊆ RHS(aej) ∧ rh ∈ role_sety ∧ rk ∈ role_setz  ∧ (u, aej) 

∈U_AE 

 

 
 

Figure 27: GRH Variations Due to Mutual Exclusion 
 

Suppose that we have the GRH shown in part (a) of Figure 27. If u assumes rh via rulei, 

then he rules out the possibility of assuming rk via rulej which reduces rulej to: aej ⇒  rh. 

As a result, effectively u is authorized to the partial GRH shown in part (b). On the other 

hand, if u assumes rg through rulei, then rh will be out of reach for him reducing rulej into: 

aej ⇒  rk. This leads to the GRH in part (c). The availability of the GRH to the user is 

dependent on what type of mutual exclusion is enforced:  

• If static mutual exclusion is specified then u will be permanently associated with 

only one of these hierarchies based on the rule invoked and user's choice of roles. 

• In case of simple dynamic mutual exclusion, u will alternate between the two 

hierarchies at the time of role activation. 

(b) (c) 

rx

rg rh rk

ry rx

rh

ry rx

rg rk

ry

(a) 



  119 
   

 

• If session-based dynamic mutual exclusion is specified, then u can have the above 

two GRH in effect simultaneously but not in the same session.    

 

4.2.2.6 Related Issues 

4.2.2.6.1 User State Diagram   

For the sake of discussion, we will focus our attention on the user state diagram when the 

conflict resolution policy in effect is DTP in static and dynamic modes. Other conflict 

resolution policies mentioned above can be discussed in a similar way. Suppose we have 

two rules: 

aej ⇒ {rg, rh} 

aei ⇒  {rg} ⊕ {rh} 

Assume that u initially satisfied aej ⇒ {rg, rh} only. Accordingly, u could be in “P”, 

“Act”, or “D” state wrt to rg and rh. Let us assume that u activated rg. A later change in 

u’s attributes or authorization rules may cause rulei to become relevant to u. As a result, u 

becomes a potential user of rh. The system behavior varies according to the mode 

enforced.  

a. Static: The state diagram of this case is shown in Figure 28. The system 

implementing RB-RBAC may take one of the following courses of action: 

i. Immediately deactivates u wrt all active mutually exclusive roles, in this case, 

rg. Later, if u wants to activate any mutually exclusive role, say rh, his state in 

rg changes from P to N, or from D to R (label 1). 



  120 
   

 

ii. Waits until u willfully deactivates the current role but does not allow u to 

activate any role that is mutually exclusive with rg. The remainder is like case 

(i). 

Note that once a user is assigned N or R state due to mutual exclusion, that user 

can no longer go back to P, Act or D states even if the attributes or the rules 

change. The ae/r label in the arrows leaving N or R states indicates possible 

changes before a mutual exculsion occurs. This shows that the prohibition 

imposed on that user is permanent.  

b. Dynamic or Session Dynamic: The state diagram is similar to Model A.  

 

 
 

Figure 28: User State Diagram in Static Mutual Exclusion 
 

 

P Ac

N R

start

start
ae/r/1 ae/r

ae/r/1

D
deact

actact

Del
d

d d

d

d

Activation

No Yes

(u,r) ∈URAuth

No

Yes

ae/rae/r 



  121 
   

 

4.2.2.6.2 Enforcement Requirements 

Similar to the case of negative authorization, enforcing the mutual exclusion necessitates 

that all relevant attributes should be readily available to the system, which affects the 

enforcement architectures that can be used with Model B. Assume that the following 

unrelated rules are publicly known: 

rulei : aei ⇒  {rg, rh} 

rulej : aej ⇒ {rg} ⊕ {rh} 

Users, whose attributes satisfy both rulei and rulej, can avoid the separation of duty 

simply by not providing the attributes necessary to satisfy rulej.  

4.2.3 Comparison of Models B1 and B2 

The semantics of models B1 and B2 bear some resemblance, but at the same time include 

some differences. In B1, a user u who receives negative authorization wrt a specific role 

is not authorized to that role until: 

• The authorization rules are modified, and/or 

• The user's attributes are changed. 

In B2, when u activates a role from among a set of mutually exclusive roles, u is 

prohibited from activating the rest of the roles. Effectively, this can be seen as if u has 

received negative authorization wrt the rest of the roles. However, if the mutual exclusion 

is static, u is permanently prohibited from activating these roles. This amounts to a 

permanent negative authorization which can not be specified using Model B1.  
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4.2.4 Discussion 

4.2.4.1 Monotonicity 

In contrast to Model A which is monotonic, the syntax of ASLB1 language permits 

specifying the rules such that the set of roles that a user is authorized to decreases as the 

number of rules he satisfies increases. Suppose that we have (┐rg) ∈ RHS(aei) and {rg , 

rh} ⊆ RHS(aej). If a user u satisfies rulej, then he is authorized to rg and rh. In case of 

DTP, if u satisfies both rules, he is authorized to rh only. The above shows that Model B1 

is non-monotonic. We can show that Model B2 is also non-monotonic if we modify the 

case above such {rg ⊕ rh} ⊆ RHS(aei). 

4.2.4.2 Other RBAC Models 

In OASIS model, negative authorization of roles was suggested as a means of specifying 

SOD constraints. No details were given but, rather, it was referred to as a future work 

[BMY2002]. In addition, OASIS has the following limitations: 

a. It does not distinguish between simple dynamic and session-based dynamic SOD. 

b. It is unable to handle static SOD, and as a result, important access control policies 

like the Chinese Wall cannot be enforced.  

Model B overcomes these limitations. However, it is my position that negative 

authorization in RBAC context is less useful than it is in a DAC environment. The 

limited benefit it brings may not justify the substantial amount of complexity it 

introduces to the model.    
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4.3 Summary 

Model B extends the language of the base model so that the language allows specifying 

negative authorization and mutual exclusion. Negative authorization in the context of 

RBAC is a novel concept. RB-RBAC Model B1 is the first RBAC model that provides 

detailed analysis of different aspects of negative authorization in an RBAC context. This 

includes providing semantics for the negative authorization in this new territory, 

identifying cases of conflict, suggesting several conflict resolution policies (many of 

them are novel) and analyzing the impact of negative authorization on IRH, GRH and 

any RB-RBAC enforcement architecture.  

Model B2 provides the syntax needed to express mutual exclusion among roles in 

authorization rules. Mutual exclusion is a tool to specify the time-honored Separation of 

Duty (SOD) constraints.  Allowing mutually exclusive roles in the RHS of the 

authorization rules introduces conflict among rules. Different types of conflict were 

identified and analyzed and suitable conflict resolution polices were presented and 

discussed. The impact of mutual exclusion on IRH, GRH and RB-RBAC enforcement 

architecture is discussed. The formalization of Models B1 and B2 is provided in Figures 

29 and 30. 

In the following chapter, we introduce Model C which allows specifying a set of 

constraints that includes SODs. 
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Figure 29: The Formalization of Model B1 
 

 

 

 

Model B1 
1. The model's syntax is shown in section 4.2.1.1. 
2. URAuth  varies according to the policy enforced: 

a.  PTP: URAtuh in PTP with/without can_assume is similar to the corresponding URAtuh in Model A. 
b. DTP : URAuthDTP = A ∧ C , or 

URAuthDTP = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei) 
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]} 

c.  DTP with can_assume: URAuthDTP with can_assume =  (A ∨ B) ∧ C , or 

URAuthDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)]   
∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  
can_assume(r’, r, t, d ) ∧ can_assume has not expired ]) 
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)]} 

d. LDTP: We modify the term C to require the conflicting rules to be comparable. Call the modified term C', thus 
URAuthLDTP = A ∧ C' 

URAuthLDTP = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej)  
∧ ( (aej → aei) ∨ (aei → aej)] )  

e.   LDTP with can_assume: URAuthLDTP with can_assume = (A ∨ B) ∧ C'  
URAuthLDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  
can_assume(r’, r, t, d ) ∧ can_assume has not expired ]) 

∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ∧ ( (aej → aei) ∨ (aei → aej)] } 
f.   FDTP: URAuthFDTP = URAuthDTP 
g. FDTP with can_assume: URAuthFDTP with can_assume = (A ∧ C ) ∨ B 

URAuthFDTP with can_assume = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 
∧ ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r ∈RHS(aej) ] ) 

∨ (∃rulej) [(u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧  
can_assume (r’, r, t, d ) ∧ can_assume has not expired ]} 

3. URAuth definition is modified to take propagation of negative authorization into account. We need to modify term C as 
follows: 

Term C becomes: Cmodified = ¬ (∃rulej)[(u, aej) ∈U_AE ∧ ¬r' ∈RHS(aej) ∧ r ≥GRH r'] 
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Figure 30: The Formalization of Model B2 
 

 

 

 

 

 

 

 

Model B2: 
1. Syntax: See section 4.2.2.1.1 for details. 

rulei: aei ⇒ {role_set1}⊕…⊕ {role_setn} such that any role-set, role_seti = {rx,..,ry} ∧ (role_seti ∩ role_setj = ∅ for any i 
and j both in [1,n] such that i ≠ j) 

2. ME_set(rulei) = { role_setj | role_setj is a mutually exclusive role-set in the right hand side of rulei} 
3. URInvoked = {(u,r) | u has activated r at sometime in the past or is currently activating r} 

URInvoked = URA ∪ URD ∪ URR 
4. Non-deterministic functions, Oneelement and Allother, first introduced in [CS1996]: 

• Oneelement (OE): set→ element.   
• Allother (AO): set→set, i.e. get set by taking out one element.  

These two functions are related by context since for any set X,  
AO(X) =  X − OE(X) 

and at the same time, neither is a deterministic function. Also, multiple occurrences of OE in a sentence all return the same 
element xi form X. 

5. For Dynamic or Session Dynamic mutual exclusion: URAuth is identical to its counterpart in Model A. 
6. For Static mutual exclusion:  

a. URAuthStatic DTP = {(u,rg)| (∃rulei)[(u, aei) ∈U_AE ∧ (rg ∈OE(ME_set(rulei)) ∧ rh ∈OE(AO(ME_set(rulei)))) → 
¬ ∃(u,rh)[(u, rh) ∈URInvoked]]} which changes according to the user's initial choice. For the sake of naming 
convenience, let's call this D ∧ E. 

b. URAuthStatic DTP with can_assume = (D ∧ E) ∨ (F ∧ G) 
{(u,rg)| ((∃rulei)[(u, aei) ∈U_AE ∧ (rg ∈OE(ME_set(rulei)) ∧ rh ∈OE(AO(ME_set(rulei)))) → ¬ 
∃(u,rh)[(u, rh) ∈URInvoked]])  
∨ (can_assume (rk, rg, t, d ) ∧ can_assume has not expired ∧ ¬(∃rulej) [rg ∈OE(ME_set(rulej)) 
∧ rh ∈OE(AO(ME_set(rulej))) ∧ (u, aej) ∈U_AE ∧ (u,rh) ∈URInvoked])}, which changes 
according to the user's initial choice.  

c. URAuthStatic FDTP = URAuthStatic DTP = D ∧ E 
d. URAuthStatic FDTP with can_assume = (D ∧ E )∨ B  

{(u,rg)| ((∃rulei)[(u, aei) ∈U_AE ∧ (rg ∈OE(ME_set(rulei)) ∧ rh ∈OE(AO(ME_set(rulei)))) → ¬ 
∃(u,rh)[(u, rh) ∈URInvoked]])  
∨ (can_assume (rk, rg, t, d ) ∧ can_assume has not expired)}, which changes according to the 
user's initial choice.  
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5. Chapter 5: Model C 
 
5.1 Introduction 
 

No discussion of an access control model is complete unless constraints are discussed and 

ways to specify them are meticulously described. Constraints specification is an 

extensively discussed issue both in general [CW1986], and within the context of RBAC 

in specific, see for example [CS1995], [SCFY1996], [FBK1999] and [BMY2002]. In this 

chapter, we introduce Model C, which extends Model A by allowing the specification of 

constraints in the authorization rules using different methods. My goal is not to provide 

an exhaustive discussion of all possible methods of constraints specification, but rather, 

to discuss selected alternatives, compare them and highlight their pros and cons. These 

selected methods for specifying constraints are as follows: 

a. Rule-Specific Constraints: A constraint is specified as a stand-alone component 

within the rule to which it applies which limits its scope to users who satisfy that 

rule.  

b. System Attributes: This method extends Model A with attributes that hold values 

related to system information such as conflicting users, conflicting roles, etc. 

These are called system attributes and are needed to specify the constraints. 

Similar to the previous method, the constraints specified are local for each rule. 
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c. Invariants: As its name indicates, this method specifies constraints that must hold 

at all times and are applicable to all rules simultaneously.  

These three methods were chosen because they are very intuitive. In addition, they have 

been discussed in the literature, though not necessarily in RBAC context. In fact, RB-

RBAC is the first model that allows specifying constraints using these three methods 

together. RBAC96 recognizes invariants only, while OASIS, at the other extreme, allows 

rule-specific constraints only. We will focus the analysis of these methods on three 

classes of constraints which we believe are of importance, especially in context of the 

RBAC model. 

1. Separation of Duty (SOD) constraints: These are a major class of role-based 

authorization constraints aimed at preventing fraud and errors. A typical example 

is that of mutually disjoint organizational roles, such as those of purchasing 

manager and accounts payable manager. Generally, the same individual is not 

permitted to belong to both roles because this creates a possibility for committing 

fraud [SCFY1996] , [FBK1999]. 

2. Cardinality constraints: This type specifies the maximum number of members in a 

role [SCFY1996]. It is useful when some roles can only be assigned to a certain 

number of users like a manager of a branch in a bank, a chairman of a department, 

etc. Also, this type is useful in enforcing licensing agreements, for example 

[FBK1999]. 

3. Prerequisite role constraints: The concept of prerequisite role is based on 

competency and appropriateness, whereby a user can be assigned to role ri only if 

the user is already a member of role rj [SCFY1996]. 
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Because RB-RBAC recognizes different states of users, to specify constraints there are 

several possible policies that go from one extreme, where the model is constraint-free, to 

another extreme where constraints are specified at the session level. To illustrate this, 

consider specifying role-centric SOD constraints, where we have the following options: 

a. Constraints-free policy: In structuring the authorization rules, this policy requires 

that no user can belong to a set of conflicting roles. This policy puts all the 

responsibilities on the rules and it is what Model A provides. 

b. Potential-vs.-assumed policy: The model allows identifying conflicting roles and 

gathering them into conflicting roles sets. The constraints are specified among 

potential and assumed users. Assume ri and rj belongs to a conflicting role set crx, 

and a user, say u, is a potential user of both roles. According to this policy, once u 

assumed ri, he is permanently banned from assuming rj. This policy corresponds 

to static SOD.  

c. Active-vs.-dormant policy: This potential-vs.-assumed policy is not fine enough 

to differentiate between active and dormant users. If u in the above example 

becomes dormant with respect to ri, he is still unable to activate rj. The active-vs.-

dormant policy specifies constraints that differentiate between active and dormant 

users. If u becomes dormant with respect to ri, he can activate rj. While active in rj 

he cannot reactivate ri until he deactivates rj. This policy corresponds to simple 

dynamic SOD. The advantage of this policy over the previous one is that when 

there are large numbers of users, many users may be potential users wrt specific 

roles but they may never assume these roles. In this case, it is more useful to 

specify constraints using this policy rather than potential vs. assumed policy. 
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d. Session-based policy: This policy specifies the constraints among roles accessed 

by a single active user within a single session. As its name indicates, this policy 

corresponds to session-based dynamic SOD.  

5.2 Analysis of Model C 

In the following sections we discuss the three methods provided by Model C to allow 

constraints specification. We analyze each method and highlight its pros and cons. Model 

C comes with three languages ASLC1, ASLC2, and ASLC3, which correspond to methods 1, 

2, and 3 respectively. 

5.2.1 Method 1: Rule-Specific Constraints 

5.2.1.1 Introduction 
 

The scope of constraints of this kind is limited to the authorization rule in which the 

constraint is specified. The constraints are specified using the syntactic extension 

described later. Here is an example: 

 aei ⇒ ri ST cx  

This rule states that users who satisfy attribute expression aei are authorized to role ri only 

if constraint cx holds.  

 

5.2.1.1.1 Relations Among Constraints  

Since constraints are logical predicates, we can define relations among them based on 

logical implication. We may start by defining them wrt simple predicates and then move 

to identifying relations among composite constraints that are built using simple 
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predicates. Relations among constraints have been discussed in the literature; see, for 

example, [BJWW2002]. Below we identify some relationships between similar 

constraints consisting of simple predicates. 

Theorem 4 

With respect to a specific role in Role-centric SOD, the following holds: 

a. For any set of conflicting roles:  

Static constraint holds → Simple dynamic constraint holds → Session-based 

dynamic constraint holds 

b. For two conflicting roles sets, crx and cry, with cx and cy being SOD constraints of 

the same type on crx and cry, respectively, the following holds: 

(crx ⊆ cry) → (cy holds → cx holds) 

Proof:  

a. The proof for part (a) of the theorem follows from the definition. 

b. The proof for part (b): Let crx and cry be the two sets of role, {r1,..,rm} and 

{r1,..,rn}, respectively, such that crx ⊆ cry. Assume also that cy is a static role-

centric SOD constraint that holds on cry. This means that a static role-centric SOD 

holds on any subset of cry. If cx is the constraint that enforces static role-centric 

SOD on crx, then cy holds → cx holds. The same thing can be said about simple 

dynamic and session-based dynamic constraints. 

� 

Theorem 5 

With respect to a specific role in User-centric SOD, the following holds: 

i. For any set of conflicting roles:  
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Static holds → Dynamic holds  

ii. For the 2 conflicting users sets, cux and cuy with cx and cy being user-centric 

SOD constraints on is on cux and cuy respectively, the following holds: 

(cux ⊆ cuy) → (cy holds → cx holds) 

Proof:  

a. The proof for part (a) of the theorem follows from the definition. 

b. To prove part (b), let cux and cuy be two sets of users, {u1,..,um} and {u1,..,un}, 

respectively, such that cux ⊆ cuy. The rest of the proof is similar to part b of the 

previous theorem.                                                                                                   

 � 

Theorem 6 

With respect to role r, the following holds among cardinality constraints: 

a. Assume we have two constraints: cx is specifying the static cardinality, while cy is 

specifying the dynamic cardinality. If the static and dynamic cardinality values of 

r are equal, then cx holds → cy holds. 

b. Assume we have two constraints: cx and cy are specifying a cardinality value m 

and n over of r where n ≥ m, then, cx holds → cy holds. 

Proof: The proof follows from the definition.                                                                      

� 

Theorem 7 

With respect to role rk, the following holds among prerequisite roles constraints: 
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a. Assume we have two constraints that specify a single role as a prerequisite role 

for rk: cx specifies rg, while cy specifies rh. If rg ≥ rh , then cx holds→ cy holds. 

b. Assume we have these two constraints both specify a set of roles as prerequisite 

roles for rk: cx specifies role-setg, while cy specifies role-seth. If role-setg ⊆ role-

seth , then cy holds → cx holds. 

Proof: 

a. Assume that cx and cy state that rg and rh are prerequisites for rk, respectively. If rg 

≥ rh then any user u who is authorized to rg is also authorized to rh. In other words, 

if cx holds wrt u, then cy holds too.  

b. Suppose that cx and cy specify role-setg and role-seth as prerequisite for rk, 

respectively. If cy holds for a user u, this means u is authorized to role-seth. Since 

role-setg ⊆ role-seth, then u is authorized to role-setg, and hence, cx holds.  

This proves the theorem.                                                                                                

� 

 
5.2.1.1.2 Authorization Policies  

In Model A we consider a rule, say rulei, relevant wrt a user, say u, when activate r such 

that r∈RHS(aei), if u satisfies rulei, i.e. (u,aei) ∈U_AE. We require that a user must 

satisfy all constraints in one relevant rule. This concept is important for determining 

authorization in Model C. There are two possible approaches: 

a. PTP: We require that a user must satisfy all constraints in one relevant rule.  

b. DTP: We require that a user must satisfy all constraints in all relevant rules. 
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The PTP approach is less restrictive, and keeps the model monotonic. On the other hand, 

it can be argued that DTP approach is more secure since it requires the user to satisfy all 

the constraints in all the relevant rules. Obviously, the approach selected affects users' 

authorization i.e. URAuth definition. The following definition reflects this. 

Definition 11 

Model A definition with the following modifications:  

1. An authorization rule rulei: aei ⇒ RHS ST ci. The syntax is given in by ASLC1 

language. 

2. PTP approach:  

a. URAuthPTP= {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei) ∧ ci is true for u} 

Call this A ∧ α 

b. URAuth with can_assume = (A ∧ α) ∨ B  

URAuthPTP with can_assume  = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] ∧ ci 

is true for u) 

∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, 

d ) ∧ can_assume has not expired ]} 

 

3. DTP approach:: 

a.   URAuthDTP = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

 ∧ (∀rulei)[(u, aei) ∈U_AE] ∧ r ∈RHS(aei) → ci is true for u]} 

Call this A ∧χ 

b. With can_assume: (A ∧χ) ∨ B  
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URAuthDTP with can_assume= {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

 ∧ (∀rulei)[(u, aei) ∈U_AE] ∧ r ∈RHS(aei) → ci is true for u]) 

∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, 

d ) ∧ can_assume has not expired ]} 

5.2.1.2 The ASLC1 Language 

Model C extends ASLA language of Model A by allowing the specification of constraints 

in the authorization rules. The resulting language ASLC1 (shown in Figure 31) modifies 

the syntax ASLA as follows: 

Rule ::= Attribute_Expression ⇒ Roles [SUBJECT TO Constraints] 

Constraints ::= [┐] ||Constraints  

| Constraints ||∧ ||Constraints  

| (||Constraints ||∧ ||Constraints||)   

| Constraint 

Constraint ::= {specified by the organization}   

In the discussion below, we will shorten the reserved word “SUBJECT TO” to “ST”. 



  135 
   

 

 

Figure 31: Additional Syntax for ASLC1 Language used for Rule-Specific 
Constraints Method 

 

 
5.2.1.3 Constraints Specification 

To specify constraints, we will use functions and sets that we defined for RB-RBAC 

model. Note that constraints specified in this section are enforced only when the 

corresponding authorization rule is invoked. Before we start specifying the constraints, 

we need the following definitions. 

Definition 12 

1.  The following sets are modified from [Ahn1999]: 

• Conflicting Roles Set (CR) = all conflicting roles sets {cr1,.…,crn} where 

cri = {ri …rt}⊆ IR. CR is a collection of sets of roles that have been 

defined to conflict.  

Rule 

ConstraintsConstraints 

¬

Constraint

Constraints Constraints

( ) 
∧

Constraints Constraints

Constraints 

RolesAttribute Expression

ST

∧
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Conflicting Users Set CU = all conflicting user sets {cu1,.…,cuw} where cui = 

{ui ,.…,ux} ⊆ U 

2.  Function d_roles (ui): U → 2IR returns roles in which user ui is dormant 

d_roles(ui) = {r ∈IR| ((ui,r) ∈ URD} 

3. Current_user: Holds the user who satisfies the authorization rule that the system 

invokes so the role(s) in its RHS can be activated by the user. 

4. Other_Conflicting_Users(u), for short,  OCU(u): U → 2U, a function that returns a 

set that holds all users in conflict with u, = ∪ cus– {u} where cus is any 

conflicting user set such that u ∈ cus and cus ∈ CU. 

 
5.2.1.3.1 SOD Constraints 

RB-RBAC enables specifying the following types of SOD constraints:  

5.2.1.3.1.1 Role-Centric SOD 

Assume that rg and rh are 2 conflicting roles, i.e. both rg and rh ∈ crx. Model C allows 

expressing these types of constraints: 

i. Static: This means that no user should assume rg and rh. In RB-RBAC, this includes 

active and dormant users. To express this constraint in the production rule that yields 

rg, we write 

aei ⇒ rg ST |(roles(sessions(Current_user)) ∪ d_roles (Current_user) ∪ rg) ∩ 

OE(CR)|≤ 1 

Current_user is the user who satisfies aei and the system that implements RB-RBAC 

wants to determine if he is authorized to rg. roles(sessions(Current_user)) returns all 

the roles in which Current_user is active while d_roles (Current_user) returns all the 
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roles in which Current_user is dormant. The union of the two gives all assumed roles 

of Current_user. OE(CR) returns one set of conflicting roles, so the constraint is saying 

that the set that represents all Current_user’s roles does not have any 2 roles that are in 

conflict. 

ii. Simple dynamic SOD: This requires that no user with two conflicting roles be 

activated simultaneously. In the production rule that yields rg, we express this 

constraint:  

aei ⇒ rg      ST | (roles(sessions(Current_user)) ∪ rg) ∩ OE(CR)|≤ 1 

Since we only care about roles in which Current_user is active, we use 

roles(sessions(Current_user)). 

iii. Session-based Dynamic SOD: This requires that there are no users with two 

conflicting roles enabled in a session. 

aei ⇒ rg ST |(roles(OE(sessions(Current_user))) ∪ rg) ∩ OE(CR) | ≤ 1 

Function roles(OE(sessions(Current_user))) returns the roles which Current_user  

activates in one session.  

5.2.1.3.1.2 User-centric SOD 

In this section, we specify SOD properties with the notion of conflicting users.  

a. Static: 

This constraint requires that conflicting users cannot have a common role.  

aei ⇒ rg      ST  

((roles(sessions(Current_user))  ∩ d_roles(OCU(Current_user))) =∅ 

∧ (roles(sessions(Current_user)) ∩ roles(sessions(OCU(Current_user))) =∅) 
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(roles(sessions(Current_user)) means all roles which are activated by Current_user.  

roles(sessions(OCU(Current_user))) and d_roles(OCU(Current_user)) return the roles that 

other users who conflict with Current_user are activating or are dormant in, 

respectively. The above expression ensures that no two conflicting users will be in a 

role even if one of them is dormant. Once a user activates the role, the role is locked 

up permanently so no other user who belongs to the conflicting set is allowed to 

assume that role. 

b. Dynamic: 

This requires that there are no two conflicting users active in the same role. This 

requirement is expressed as follows: 

aei ⇒ rg ST  

roles(sessions(Current_user)) ∩ roles(sessions(OCU(Current_user))) =∅ 

If a conflicting user becomes dormant wrt rg, this constraint allows another conflicting 

user, i.e. belongs to the same conflicting set, to activate rg. 

 

5.2.1.3.2 Cardinality Constraints 

To specify this, we introduce the following definition.  

Definition 13 

5. Function a_users  (rg): IR → 2U returns users active wrt role rg 

a_users(rg) = {u ∈U| ((u,rg) ∈ URA} 

6. Function d_users (rg): IR → 2U returns users dormant wrt role rg  

d_users(rg) = {u ∈U| ((u,rg) ∈ URD} 
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The static cardinality value of a role rg is the maximum number of assumed users (i.e. 

dormant or active) allowed in rg at any point in time. Dynamic cardinality value specifies 

the maximum number of users who can simultaneously activate rg.  

Using the definition above, we specify the two types of cardinality constraints:  

a. Static cardinality constraint: This specifies that the number of assumed users in 

role rg is less than or equal to the static cardinality value we assign to rg. Thus we 

write: 

aei ⇒ rg  ST  |a_users (rg) ∪ d_users (rg)| ≤ n 

 

So, the maximum number of users, whether active or dormant wrt r, should not 

exceed n. 

b. Dynamic cardinality constraint: This specifies that the number of active users in rg 

does not exceed the dynamic cardinality value we desire for rg. To express this we 

write: 

aei ⇒ rg  ST | a_users (rg)| ≤ n 

So, the maximum number of active users wrt rg should not exceed n. 

 

5.2.1.3.3 Prerequisite Role Constraints 

RB-RBAC differentiates between two types of constraints:  

a. Static prerequisite constraint: This states that a user who satisfies the attribute 

expression required by the authorization rule cannot assume roles in its RHS, say rg, 
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unless he has already assumed another role rh regardless of whether he is active or 

dormant wrt rh. To express this, we write 

aei ⇒ rg    ST  (Current_user, rh) ∈ URA ∨ (Current_user,rh) ∈ URD   

b. Dynamic prerequisite constraint: Assume role rh is a dynamic prerequisite for role rg. 

This means that a user cannot assume role rg unless he is an active user in role rh. 

Thus we write: 

aei ⇒ rg    ST  (Current_user, rh) ∈ URA  

5.2.1.4 Constraints Specification in the Presence of a GRH 

In the following sections we discuss specification of different constraints in the presence 

of a given role hierarchy. Seniority among roles in the GRH has to be taken into 

consideration and, as a result, some functions have been modified as in the following 

definition.  

Definition 14 

7. roles*: S → 2IR is modified from roles to require roles*( si) = {r ∈ IR | (∃r’≥ r)[ r’ 

∈ role(si)]} (which can change with time)  

8. a_users*(rg) = {u ∈U| (∃r’) [r’≥GRH rg ∧ (u, r’) ∈ URA]} which returns the active 

users in role rg and all roles senior to it in a GRH.  

5.2.1.4.1 SOD Constraints 

5.2.1.4.1.1 Role-Centric SOD 

Assume that rg and rh are two conflicting roles, i.e. both rg and rh ∈ crx. Using the 

definition above, Model C allows us to express three types of constraints:  

a. Static:  
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aei ⇒ rg ST  

|(roles*(sessions(Current_user)) ∪ d_roles (Current_user) ∪ rg) ∩ OE(CR)|≤ 1 

 

roles*(sessions(Current_user)) returns all the roles in which Current_user is active 

and all roles junior to them.  

b. Simple dynamic SOD:  

aei ⇒ rg      ST | (roles*(sessions(Current_user)) ∪ rg) ∩ OE(CR)|≤ 1 

c. Session-based Dynamic SOD: 

aei ⇒ rg ST |(roles*(OE(sessions(Current_user))) ∪ rg) ∩ OE(CR) | ≤ 1 

Function roles*(OE(sessions(Current_user))) returns the roles which Current_user 

activates in one session and their juniors.  

5.2.1.4.1.2 User-centric SOD 

a. Static: 

aei ⇒ rg      ST  

 ((roles*(sessions(Current_user))  ∩ d_roles(OCU(Current_user))) =∅ 

∧ (roles*(sessions(Current_user)) ∩ roles*(sessions(OCU(Current_user))) =∅) 

(roles*(sessions(Current_user)) means all roles which are activated by Current_user 

and their juniors.  roles*(sessions(OCU(Current_user))) returns roles which other 

conflicting users in the same conflicting user set cui are activating and their junior 

roles. The above expression ensures that no two conflicting users will be in a role 

even if one of them is dormant. Once a user assumed the role, the role is locked up 

permanently so no other user who belongs to the conflicting set is allowed to assume 

that role. 

b. Dynamic: 
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aei ⇒ rg ST  

roles*(sessions(Current_user)) ∩ roles*( sessions(OCU(Current_user))) = ∅ 

 

roles*(sessions(Current_user)) returns all roles which Current_user, who is a 

conflicting user, activates in sessions and their junior roles. 

roles*(sessions(OCU(Current_user))) returns all roles which are activated by other 

conflicting users in the same conflicting users set cui and their junior roles. 

5.2.1.4.2 Cardinality Constraints 

This section presents new semantics for the cardinality semantics and scope. The 

Indirect/Static and Indirect/Dynamic cardinalities, discussed below, are newly added 

interpretations of the cardinality constraint. Also, the limited scope vs. extended scope is 

a novel concept in this regard.  

So far, we considered two types of cardinality counts: static and dynamic. By introducing 

GRH, when interpreting the cardinality of a role, one may count only users who assume a 

role via satisfying an authorization rule, which yields that role; call this direct method. 

Alternatively, in addition to the users who assume a role directly, cardinality counts those 

who activate it via activating one of its seniors in GRH. For the sake of argument, we call 

this the indirect method. This yields four possible interpretations of cardinality: 

a. Direct/Static cardinality: Similar to the case of flat roles discussed above, i.e. 

no GRH. 

b. Direct/Dynamic cardinality: Similar to the case of flat roles discussed above, 

i.e. no GRH. 
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c. Indirect/Static cardinality: To require that the maximum number of users in rg  

≤ n, we write 

aei ⇒ rg  ST  |a_user*( rg  ) ∪ d_users (rg  )| ≤ n 

This counts those who are active in rg or any of its seniors and those who are 

dormant wrt rg.   

d. Indirect/Dynamic cardinality: This states the maximum number of active users 

allowed to a specific role. Thus, to express that the maximum number of 

active users in r must be less than or greater to m, we write 

aei ⇒ rg      ST  | a_users*( rg )| ≤ m 

This counts only those who are active in r or any of its seniors.  

Also, there are two possible scopes for enforcing cardinality constraints:  

a. Limited scope: Enforcement of rg cardinality is limited to the rule in which the 

constraint is specified. 

b. Extended scope: Enforcement of rg cardinality includes the rule in which the 

constraint is specified and any rule that authorizes users to rg.  

Enforcing constraints belongs to the mechanism layer in the OM-AM framework 

discussed in Chapter 1 of the dissertation. As such, it will be discussed briefly to show its 

relation to the specification of the model. The issue of enforcement scope should not be 

confused with direct and indirect interpretations of cardinality which determine which 

users to count. To illustrate, consider the following set of rules: 

rule1: ae1 ⇒ rk    ST c1     

rule2: ae2 ⇒ rk     

rule3: ae3 ⇒ rg    ST c3     
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rule4: ae4 ⇒ rg     

where c1 and c3 are cardinality constraints on rk and rg respectively. Suppose that rule1 ≥ rule3 , 

rule2 ≥ rule4 and the liberal approach is used to construct IRH. Accordingly, rk ≥ rg in IRH 

which we assume is in conformance with GRH. The limited scope calls for enforcing the 

cardinality constraints when rule1 or rule3 is invoked. The extended scope wrt rg entails 

enforcing the cardinality constraint on rule1 and rule2 since they authorize users to rk 

which is senior to rg. It also entails enforcing the constraint on rule3 and rule4 because it 

authorizes users to rg. If a user u satisfies ae2 and wants to activate rk, constraint c3 will be 

enforced. u will not be counted if direct cardinality is enforced, but if indirect cardinality 

is in effect,  u will be counted.  

Moreover, if a user u satisfies rule1 which has a cardinality constraint, c1, the two 

constraints, i.e. c1 and c3, might conflict. Different policies to resolve this conflict can be 

developed such as: 

a. The constraint in the rule being invoked takes precedence, so if a user satisfies 

rule1, c1 is enforced even if this leads to exceeding the maximum number of users 

authorized to rg according to c3.    

b. The constraint with the lower value takes precedence so in the above example, if 

c3 ≤ c1, a user who satisfies rule1 may not be authorized to rk even if c1 holds 

because c3 will be violated. 

In all cases, the scope of enforcement does not say anything about which users to count 

when enforcing the constraint. This is determined by direct/indirect interpretation. 

Assume that u1, u2, u3, and u4, satisfy rule1, rule2, rule3, and rule4 respectively. Suppose also 

that u1 and u4 are dormant wrt rk and rg, while u2 and u3 are active wrt rk and rg 
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respectively. Table 7 shows the interaction among the four cardinality interpretations and 

the two scopes of enforcement wrt rg. 

 

Table 7: Possible Interpretation of Cardinality in the Presence of a GRH 
 

 

 

 

 

 

 

5.2.1.4.3 Prerequisite Role Constraints 

When specifying this constraint, the presence of a GRH necessitates taking roles senior to 

the prerequisite role into consideration. Here is the RB-RBAC specification:  

a. Static prerequisite constraint: This states that a user who satisfies the attribute 

expression required by the authorization rule is not authorized to a role(s) in its 

RHS, say rg, unless the user is authorized to another role rh, or the user is 

authorized to rk such that rk ≥GRH rh. 

To express the above requirements, we write 

aei ⇒ rg    ST  ((Current_user, rh) ∈ URA ∪ URD)  

∨ (∃rk) [rk≥ GRH rh  ∧ (Current_user, rk) ∈ URA ∪ URD]    

 Users Counted   
Scopes of enforcement & 

Cardinality Interpretation ↓ 
Active 

users wrt 
rk ≥ rg   

Dormant 
users 
wrt rg 

Enforcement  
scope on rules:  

 

Users to count 

Direct/Static/Limited N Y 3 u3 
Direct/Static/ Extended N Y 1→4 u3, u4 
Direct/Dynamic/Limited N N 3 u3 
Direct/Dynamic/Extended N N 1→4 u3 
Indirect/Static/Limited Y Y 3 u1, u2,u3, u4 
Indirect/Static/ Extended Y Y 1→4 u1, u2,u3, u4 
Indirect/Dynamic/ Limited Y N 3 u2,u3 
Indirect/Dynamic/Extended Y N 1→4 u2,u3 
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b. Dynamic prerequisite constraint: If role rh is a dynamic prerequisite for role rg, 

then this means that a user cannot assume role rg unless he is an active user in role 

rh or any role senior to rh. Thus we write: 

aei ⇒ rg     ST  ((Current_user, rh) ∈ URA)  

∨ (∃rk)[rk≥GRH rh ∧(Current_user, rk) ∈ URA]  

5.2.1.5 User States Diagram 

Introducing constraints via this method requires that user state diagram of Model A be 

modified as shown in Figure 32. The modification is represented by the label 'c' which 

indicates a change in a user's compliance to a constraint. The diagram is equally valid for 

PTP or DTP approaches. Users’ states change according to constraints evaluation. We 

require performing constraints evaluation as follows:  

a. Periodical evaluation: This happens as often as dictated by security policy and 

should be supported by RB-RBAC enforcement architecture. The user’s states wrt 

roles yielded by the rule that specifies constraints are updated every time these 

constraints are evaluated. Introducing a new constraint or loosing compliance to 

an existing one may result in changing the user’s state from P to N, and from Act 

or D to R. Similarly, dropping or modifying a constraint may result in changing a  

user in N or R states to P or D respectively. Note that no user’s state can change 

from R to Act because that requires a user’s active measure, which is not possible 

to invoke while being in R state. Instead, the system that implements RB-RBAC 

must change the user’s state into D first. All these changes are represented by 

label “c” in the diagram.  
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b. To maintain consistency of the system, the relevant constraint is evaluated if a 

potential or dormant user tries to activate a role. This ensures that users who 

happen to be in these two states cannot exploit the system between periodical 

evaluations of constraints.    

 

 

Figure 32: User's State Diagram of Method 1 
 

5.2.1.6 Discussion 

This method has the following merits: 

a. It provides fine granularity specification of constraints, which is needed when we 

desire to control the assignment of users who meet certain criteria (represented by 

the attributes expression in the authorization rule) to roles while unrestricting the 

assignment of these very roles via meeting other criteria. In contrast, an invariant 

(discussed later) applies to all rules, and subsequently, to all users rendering it less 

flexible.  
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b. From an implementation standpoint, the processing of rules is more efficient since 

only constraints associated with the invoked rules are evaluated. This is in 

contrast to invariants where every invariant has to be checked for compliance 

every time a rule is invoked. 

c. From a functional outlook, stating the constraints as a separate part of the rule vis-

à-vis integrating them with attributes expressions (as is the case of system 

attribute method) provides neatness and visibility. It is easy to tell what 

constraints must hold for a user to assume a specific role.  

d. Also, it facilitates RB-RBAC implementation since it simplifies plugging in other 

constraints specification language. An example for this is the one proposed by 

Bettini et al. [BJWW2002]. In that work, the authors formalize a rule-based 

policy framework that includes provisions and obligations. They provide a 

mechanism that takes provisions into account when it tries to make the best 

derivation among possibly several that support a policy decision. It is our belief 

that a similar mechanism could be applied regarding constraints to find the rule(s) 

that authorize the user to assume the requested roles while satisfying the smallest 

set of constraints. An RB-RBAC constraint corresponds to a provision-obligation 

PO-formula defined in [BJWW2002]. Using the algorithms provided in that work, 

we can derive the global provisions and obligation (PO) set for the constraints of 

each authorization rule. To illustrate, assume that rs, rt, ru are three roles such that 

rt and ru are prerequisites of rs but not simultaneously, i.e. a user u is required to 

activate either rt or ru in order to activate rs. This requires identifying seniority 

among constraints and generating consumption hierarchy based on the semantic 



  149 
   

 

relations among them as well as on the numerical weights given to them. Then we 

can use the technique discussed in [BJWW2002] to derive the best valid global 

PO set (or BPOS). Intuitively, BPOS is the valid set of constraints that has the 

minimum weight among all valid alternative sets of constraints required to grant 

user u the role rs. We can use BPOS to determine if it is easier for u to satisfy rt or 

ru and, therefore, determine which authorization rule the system that implements 

RB-RBAC should invoke. 

However, this method suffers from the following drawbacks: 

a. The usage of this method to specify invariants, i.e. that apply to all rules, is 

verbose since they must be specified repeatedly in every rule.  

b. As a result of the first point, this method is error-prone especially when adding, 

modifying and removing invariants, and/or adding new rules. It is easy to 

overlook making the necessary changes across the board, or adding this kind of 

constraints to newly added rules.  

c. The fine granularity the method provides could give undesirable results. Consider 

the following set of rules: 

aei ⇒ rg 

aej ⇒ rg ST |a_user*(rg) ∪ d_users (rg)|  ≤ 7 

The second rule, rulej, ensures that no more than seven users are authorized to rg 

at one time. However, the system theoretically allows an infinite number of users 

to be authorized to rg so long as they satisfy rulei. This kind of arrangement is 

acceptable if we aim to limit the number of users authorized to rg because they 

own certain attributes, e.g. they satisfy aej, and at the same time we want to set no 
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restriction on the number of users who are authorized to rg by virtue of being 

associated with another set of attributes, aei. Nonetheless, there is a chance to 

overlook the impact rulei has on the constraint. Every time a user satisfies rulei 

and assumes rg, the number of vacancies available for users satisfying rulej is 

decremented. 
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5.2.2 Method 2: System Attributes 

5.2.2.1 Introduction 

Similar to the previous method, the scope of constraints in this method is limited to the 

authorization rules in which they are specified. However, constraints in this method are 

not treated as a separate entity. Rather, they are merged with the attributes expression in 

the specifying rule. 

5.2.2.2 The ASLC2 Language 

In Model A, the focus was on users’ attributes, which are tested to see if they meet the 

attribute expressions specified in the authorization rules. To specify the above mentioned 

three classes of constraints within the LHS of the authorization rules, new types of 

attributes need to be introduced. These attributes, we call them system attributes, hold 

values related to system information such as conflicting users, conflicting roles, 

prerequisite roles, etc. The language ASLC2 extends ASLA by introducing the constructs 

shown in Figure 33.  

The following discussion explains the meaning of the newly introduced system defined 

attributes:  

a. Current_session: Holds the session in which Current_user wants to activate 

a specific role, say rg. This attribute is maintained by the system that 

implements RB-RBAC. 

b. Other Conflicting Roles(rg), OCR for short: A function, IR→ 2IR, that 

returns all roles in conflict with rg,  = ∪ cr –{rg} where cr is any conflicting 
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role set such that rg ∈ cr. A conflicting roles set is a set that holds roles that 

are identified to be in conflict with each other. 

 

Figure 33: Syntax for ASLC2 Language used for System Attribute Method 
 

c. Stat_card: Holds the static cardinality of rg. 

d. Dyn_card: Holds the dynamic role cardinality of rg. 

e. Prerequisite: A function IR→ 2IR, which takes a role and returns its 

prerequisite role(s). 

Figures 34 and 35 depict the syntax diagram of ASLC2 Language. 

 

Attribute ::= System_defined_a | User_defined_a 
System_defined_a ::=  current_user | current_session | System_defined_s  
User_defined_a::= {specified by the organization} 
Enumerated_Set ::= System_defined_s | User_defined_s 
System_defined_s::= Complex | Function 
Complex::= Function [(||Parameter ||)] 
 | Complex || Set _op || Complex | (||Complex || Set _op || Complex ||) 
Function::= roles |roles* | a_users | d_users | a_users* | d_users* |OCU|OCR | 
prerequisite 
Parameter::= System_defined_s| Role | Number 
Attribute_Value::= Stat_card |Dyn_card | User_defined_s 
Set_op ::= ∪|∩ 
User_defined_s::= {specified by the organization} 
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Figure 34: Syntax Diagrams of ASLC2 Language Used by the System Attribute Method (part A) 
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Figure 35: Syntax Diagrams of ASLC2 Language Used by the System Attribute Method (part B) 
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5.2.2.3  IRH Derivation  

Since the terms that represent system attributes are blended with other attributes 

expression terms, the definition given in Model A to derive IRH stands. However, 

establishing seniority among attributes expressions requires determining seniority among 

terms representing system attributes.   

5.2.2.4 Constraints Specification 

In the following examples, let us assume that we desire to specify a constraint for rulei: 

aei ⇒ rg such that the constraint specified is a term that becomes part of aei using the 

logical operator “∧”.  

5.2.2.4.1 SOD Constraints 

5.2.2.4.1.1 Role-Centric SOD  

a. Static: We add the following to aei: 

¬ (Current_user IN (a_users(OCR(rg)) ∪ d_users(OCR(rg)))) 

OCR(rg) returns all roles in conflict with rg, thus a_users(OCR(rg)) and 

d_users(OCR(rg)), respectively, return active and dormant users in these roles.  

b. Simple dynamic SOD: Add the following:  

 ¬ (Current_user IN a_users(OCR(rg))) 

c. Session-based Dynamic SOD:  

¬(OCR(rg) IN roles(Current_session)) 

The above constraint ensures that no role that is in conflict with the requested 

role, rg, is being activated by the current user in his current session. The function 
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roles(Current_session) returns the roles activated by the current user in the current 

session. 

5.2.2.4.1.2 User-centric SOD 

a. Static: ¬ (OCU(Current_user) IN {a_users(ri) ∪ d_users(ri)})   

b. Dynamic: ¬ (OCU(Current_user) IN {a_users(ri)})  

5.2.2.4.2 Cardinality Constraints 

a. Static: |a_users(rg) ∪ d_users(rg)| ≤ Stat_card(rg) 

b. Dynamic: |a_users(rg)| ≤ Dyn_card(rg) 

5.2.2.4.3 Prerequisite Roles Constraints 

a. Static:  Current_user IN (a_users(prerequisite(rg)) ∪ d_users(prerequisite(rg))) 

b. Dynamic:  Current_user IN (a_users(prerequisite(rg))  

5.2.2.5 Constraints Specification in the Presence of a GRH  

To take seniority among roles represented by GRH into consideration, we modify the 

specifications given in the previous section by replacing the functions a_user and roles 

with a_user* and roles* respectively. Again, we assume that we are to specify a 

constraint for rulei: aei ⇒ rg such that constraints specified below are terms that are 

connected to aei using the “∧” operator.  
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5.2.2.5.1 SOD Constraints 

5.2.2.5.1.1 Role-Centric SOD  

a. Static: We add the following to aei: 

¬ (Current_user IN (a_users*(OCR(rg)) ∪ d_users(OCR(rg)))) 

b. Simple dynamic SOD: Add the following:  

 ¬ (Current_user IN a_users*(OCR(rg))) 

c. Session-based Dynamic SOD:  

¬(OCR(rg) IN role*s(Current_Session)) 

5.2.2.5.1.2 User-centric SOD 

a. Static: ¬ (OCU(Current_user) IN {a_users*(ri) ∪ d_users(ri)})   

b. Dynamic: ¬ (OCU(Current_user) IN {a_users*(ri)})  

5.2.2.5.2 Cardinality Constraints 

Specifying cardinality constraint in the presence of a GRH can be done as follows: 

a. Direct/Static cardinality: Similar to the case of flat roles discussed above. 

b. Direct/Dynamic cardinality: Similar to the case of flat roles discussed above. 

c. Indirect/Static cardinality: To specify this we write:  

|a_users*(rg) ∪ d_users(rg)| ≤ Stat_card(rg) 

This counts users who are active in rg or any of its seniors and those who are 

dormant wrt rg.  

d. Indirect/Dynamic cardinality: To specify this we write: 

|a_users*(rg)| ≤ Dyn_card(rg) 

This counts only those who are active in rg or any of its seniors.  
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5.2.2.5.3 Prerequisite Roles Constraints  

We need the following definition: 

Definition 15 

9. d_users*(rg) {u ∈U| (∃r’≥ rg)[(u, r’) ∈ URD]} which returns the dormant users in 

role rg and all roles senior to it in a GRH. 

To specify the constraint, we write: 

a. Static:   

Current_user IN (a_users*(prerequisite (rg)) ∪ d_users*(prerequisite (rg)))  

Function d_users* is used here to return the dormant user in rg and roles senior to it. 

b. Dynamic:   

Current_user IN (a_users*( prerequisite (rg)) 

5.2.2.6 User State Diagram 

The user state diagram for this method is similar to its counterpart in Model A. 

5.2.2.7 Discussion 

This method has the following advantages: 

a. It provides fine granularity specification of constraints and efficiency in 

implementation as in the rule-specific constraints method.  

b. Model A definition of IRH and user’s state diagram are used unmodified, which 

simplifies the analysis. 

Nonetheless, this method has the following demerits: 

a. If invariants are to be specified using this method, the method is verbose and thus 

error-prone for the same reason discussed in Method 1.  
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b. Since the system attributes that are used to specify constraints are mingled with 

users’ attributes, constraints are not as visible and, thus, the possibility of making 

errors when specifying constraints increases.  

 

c. Lack of clarity also leads to difficulty in mapping the security policy into 

authorization rules.  

d. Also, subtle impact of different rules on constraints specified by other rules may 

cause undesirable results as discussed in Method 1. 

This method bears some resemblance to the scheme suggested by Bacon et al. in OASIS 

[BMY2002]. OASIS aims to enable autonomous management domains to specify their 

own access control policies and interoperate using service level agreements (SLA’s). 

OASIS is rule-based in the sense that role activation is linked to satisfying the rules 

associated with roles. With each role activation rule, there is a companion role 

membership rule. The structure of both types of rules is the same such that each rule has a 

list of conditions in the LHS that are necessary to satisfy in order to activate the role in 

the RHS of the rule. These conditions are of three types: 

a. Prerequisite roles, 

b. Appointment, and 

c. Constraints.  

OASIS regards constraints as atomic propositions but does not provide any syntax to 

specify them. As opposed to OASIS, RB-RBAC allows the specification of a wider range 

of constraints and also provides several methods for doing so.  
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5.2.3 Method 3: Invariants 

5.2.3.1 Introduction 

An invariant is a constraint that holds all of the time. In RB-RBAC, this means that it 

applies to all authorization rules. Traditionally, these are the type of constraints that are 

discussed in the context of RBAC [CS1995], [FK1995], [SCFY1996], [Kuhn1997], 

[Ahn1999]. In the latter reference, Ahn presented RCL2000, a language for specifying 

constraints in RBAC96.   

5.2.3.2 The ASLC3 Language 

The syntax of ASLA is slightly modified to allow writing authorization rules with no 

attributes expression on LHS to indicate that the constraints must hold all of the time. 

Figure 36 shows the modified syntax, which we call ASLC3 language.  

 

 

 

 

 

 

 

 

 

Figure 36: ASLC3 Language for Invariants Method 
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5.2.3.3 IRH Derivation 

Because invariants apply equally to all rules, they have no effect on the derivation of 

IRH. Thus, the definition given in Model A to derive IRH holds.   

 

5.2.3.4 Constraints Specification 

The reader should notice that this method carries great resemblance to Method 1. An 

invariant has the appearance of an authorization rule that has no LHS.  

5.2.3.4.1 SOD Constraints 

In this section, we build on the work of Ahn proposed in [Ahn1999] with the following 

modifications: 

a. We use RB-RBAC definition of function roles and roles*. 

b. We use RB-RBAC function d_roles to determine roles in which a user is dormant. 

This concept is not in RBAC96 which RCL2000 supports. 

We can specify all types of SOD constraints specified by Methods 1 and 2:  

5.2.3.4.1.1 Role-Centric SOD 

a. Static:   

⇒ ST |(roles(sessions(OE(U))) ∪ d_roles (OE(U))) ∩ OE(CR)|≤ 1 

b. Simple dynamic SOD:  

⇒ ST | roles(sessions(OE(U))) ∩ OE(CR)|≤ 1 

c. Session-based Dynamic SOD:  

⇒ ST |roles(OE(sessions(OE(U)))) ∩ OE(CR) | ≤ 1 
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5.2.3.4.1.2 User-centric SOD 

a. Static:  

⇒ ST ((roles(sessions(OE(OE(CU))))  ∩ d_roles(AO(OE(CU)))) =∅ 

∧ (roles(sessions(OE(OE(CU)))) ∩ roles(sessions(AO(OE(CU))))) =∅) 

b. Dynamic: 

⇒ ST roles(sessions(OE(OE(CU)))) ∩ roles(sessions(AO(OE(CU)))) = ∅ 

5.2.3.4.2 Cardinality Constraints 

In order to specify cardinality invariants, we use the functions Stat_card and Dyn_card 

we defined in Method 2. With each role rg, we associate two cardinality values, static and 

dynamic, so to specify cardinality invariants for role rg, we state:  

a. Static cardinality: 

 ⇒ ST |a_users (rg) ∪ d_users (rg)| ≤ Stat_card(rg) 

b. Dynamic cardinality:  

⇒ ST |a_users (rg) | ≤ Dyn_card(rg) 

These constraints apply to every rule that produces rg. 

5.2.3.4.3 Prerequisite Role Constraints 

∀rg, rh ∈ IR, ∀u ∈ U, we can specify the following: 

a. Static prerequisite:  

⇒ ST  (rg ∈ roles(sessions(u)) → (rh ∈ (roles(sessions(u)) ∪ d_roles(u))))   

b. Dynamic prerequisite:  

 ⇒ ST  (rg ∈ roles(sessions(u)) → rh ∈ roles(sessions(u)))  
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5.2.3.5 Constraints Specification in the Presence of a GRH 

This is similar to what we have shown above, but we replace a_users and roles with 

a_users* and roles* respectively.  

5.2.3.6 User States Diagram 

The user state diagram in this method is similar to its counter part in Method 1.  

5.2.3.7 Discussion 

Using this method has the following advantages: 

a. If no local constraints are to be specified, this method is much less verbose 

compared to the other two methods discussed earlier, which makes it less error-

prone. 

b. It is more convenient from an administrative point of view since all applicable 

constraints can be gathered in one distinguished set.  

c. Since constraints apply to all rules, there is little chance to overlook a rule that 

requires specifying a constraint. This makes the method less error-prone. 

So, in general, this method is safer compared to Methods 1 and 2.  

Nonetheless, there are some disadvantages of this method such as: 

a. All constraints have to be evaluated every time a rule is invoked, irrespective of 

whether they apply to that rule or not. This renders the method less efficient than 

the previous two. 

b. The method can become extremely verbose if we try to express constraints that 

apply to specific rules. As an example, assume we want to specify a constraint 

that applies to users who satisfy an attribute expression of a rule. In Method 1, we 
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will put the constraint in the rule after the reserved word “ST”. In Method 3, we 

have to specify an invariant that incorporates the attributes expression of that rule 

and, consequently, applies to the users who satisfy that rule. This can easily 

become an administrative nightmare. Worse yet, this invariant ought to be 

checked every time a rule is invoked. 

So, from implementation and administrative outlooks, this method is inferior to the 

previous two methods. 

5.2.4 Discussion 

We have used the three methods to express the three classes of constraints. This leads to 

the following theorem: 

Theorem 8 

The 3 methods are equivalent in expressing the 3 classes of constraints. 

Proof: We have demonstrated that each of the 3 methods can express all types of 

constraints in the presence/absence of the GRH.                                                                 

� 

5.2.4.1 Using a Hybrid Method 

The three methods discussed above are not mutually exclusive, but rather 

complementary. In fact, using the invariants method along with one of the first two 

methods gives a hybrid method with the following advantages: 

a. Functionality: Methods 1 or 2 provide fine granularity constraints while Method 3 

offers constraints of global applicability. 
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b. Implementation: Evaluating the constraints becomes more efficient since 

constraints pertaining to specific rules will be checked only if the relevant rules 

are invoked. 

c. Security: A prudent design of the mix makes it more secure than merely using 

Method 1 or 2. This is so because the invariants could be specified in such a way 

to close any loopholes that might be overlooked when specifying local 

constraints, i.e. via the first two methods.   

   

5.2.4.2 Conflict among Constraints in a Hybrid Method 

If a hybrid method is used, conflict among invariants and local constraints may arise. For 

example, we might have the following dynamic cardinality constraint specified using 

Method 1 concerning role rg and rh: 

aei ⇒ rg    ST  | a_users (rg)| ≤ 20 

aej ⇒ rh    ST  | a_users (rh)| ≤ 290 

And, at the same time, we have the following invariant:   

⇒ ST   |a_users (rg) | ≤ Dyn_card(rg) 

⇒ ST   |a_users (rh) | ≤ Dyn_card(rh) 

where Dyn_card(rg)= 13 and Dyn_card(rh) = 300. To resolve this conflict, the system that 

implements RB-RBAC may enforce any of the following policies: 

a. Invariant overrides: In case of conflict, an invariant overrides local constraints. So 

in the example above, at any given time, rg and rh will have a maximum of 13 and 

300 active users respectively. Since invariants are heaped in one set and are 

expected to be fewer in number than local constraints, mistakes in specifying 
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them are less likely to happen than in specifying local constraints. Thus, one can 

reasonably argue that this policy could yield a more secure set of constraints.    

b. Local overrides: This policy is the opposite of the one described above. Based on 

this policy, rg and rh can, respectively, have up to 20 and 290 concurrent active 

users. The virtue of this policy is that it allows special handling of users who have 

certain attributes if deemed appropriate by the enterprise. However, the major 

drawback is that this may introduce security loopholes because it is always easy 

for security officers to overlook or fail to foresee all possible ways of exploiting 

such special handling.   

c. Denial takes precedence: To provide maximum security, this policy errs on the 

side of denial, and, therefore, calls for enforcing the more restrictive constraints. 

Accordingly, at any given time, rg and rh will not have more than 13 and 290 

active users respectively 

d. Permission takes precedence: This policy is the opposite of the previous one, and 

hence, it leans towards authorizing roles provided that the weakest constraints 

hold. As a result, rg and rh can, respectively, hold up to 20 and 300 active users 

concurrently. 
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5.2.5 Summary of Model C 

Model C is equivalent to Model A with constraints which can be specified in three 

equivalent methods. We have analyzed each method, provided the formalization 

necessary to specify constrains, discussed the impact of constraints on the derivation of 

IRH, compared it to existing RBAC models (RBAC96 and OASIS), and detailed its pros 

and cons. New semantics were introduced pertaining to cardinality and prerequisite 

constraints.  At the end of the chapter, we discussed a hybrid method, analyzed its value 

and the conflict it might introduce, identified conflict cases and provided conflict 

resolution policies.  

5.3 Model B vs. Model C 

Model B and C provide the means to specify some SOD constraints. Model B has the 

advantage of specifying negative authorization while Model C can specify two types of 

constraints in addition to SOD constraints.  

Theorem 9 

Model C subsumes Model B. 

Proof: 

First: Model C can express Model B 

a. Model B1 (Negative Authorization): 

In Model B1 we write aek ⇒ ┐ ri which means that any user u that satisfies aek 

is prohibited from being authorized role ri. To express this in Model C, we 

specify the following rule such that constraint c1 never holds: 

aek ⇒ ri  ST  c1 
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b. Model B2 (Mutual Exclusion) 

Model B2 syntax allows specifying role-centric SOD constraints only, which 

is a subset of the constraints that Model C allows us to specify. However, of 

particular interest, Model B2 can specify sets of mutually exclusive roles, 

which represent conflicting groups of roles such as: 

aek ⇒{r2, r3} ⊕ { r4, r5} 

To represent this in Model C, we break the above mutually exclusive set of 

roles into the following sets of conflicting roles: 

cr1 = { r2, r4}, cr2 = { r2, r5}, cr3 = { r3, r4}, cr4 = { r3, r5} 

Then, any of the 3 methods of Model C can be used to specify SOD constraint 

among these conflicting sets. 

Second: Model B cannot express some features of Model C 

Model B cannot specify user-centric SODs, cardinality or prerequisite constraints.  

This ends the proof.                                                                                                             

 � 
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5.4 Summary 

Model B and C extend Model A in different ways. Model B supports negative 

authorization and mutual exclusion, which can be used to specify certain types of SOD 

constrains. Model C allows the specification of three types of constraints including 

SODs. We have shown that Model C subsumes Model B. Figure 37 shows how we view 

the syntactic and semantic relations among the members of RB-RBAC family. Choosing 

the model to be implemented depends on the enterprise needs. For example, if only SOD 

constraints and/or negative authorization are to be enforced, an implementation of Model 

B does the job. However, if cardinality and/or prerequisite constraints are important for 

the business practice, then Model C should be used. Figures 37-39 capture the 

formalization of Model C.  

 

 

Figure 37: Syntactic and Semantic View of RB-RBAC Family 
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Model B 
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Figure 38: Model C / Part A 

 

Model C: 
 

1. Model A definition with the following modifications:  
• An authorization rule rulei: aei ⇒ RHS ST Constraints. The syntax is given in by ASLC1 language.
• U_AE = {(u, aei)| (u, aei)∈U×AE ∧ u satisfies aei ∧ applicable constraints hold according to the 

policy enforced} 
2. URAuth in PTP approach:  

a. URAuthPTP= {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei) ∧ ci is true for u} 
Call this A ∧ α 

b. URAuth with can_assume = (A ∧ α) ∨ B  
URAuthPTP with can_assume  = {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] ∧ ci is true for u) 

∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, d ) ∧ 
can_assume has not expired ]} 
 

3. URAuth in DTP approach:: 
a.   URAuthDTP = {(u,r)| (∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

 ∧ (∀rulei)[(u, aei) ∈U_AE] ∧ r ∈RHS(aei) → ci is true for u]} 
Call this A ∧χ 

b. With can_assume: (A ∧χ) ∨ B  
URAuthDTP with can_assume= {(u,r)| ((∃rulei)[(u, aei) ∈U_AE ∧ r ∈RHS(aei)] 

 ∧ (∀rulei)[(u, aei) ∈U_AE] ∧ r ∈RHS(aei) → ci is true for u]) 
∨ (∃rulej) [  (u, aej)∈ U_AE ∧ r’ ∈RHS(aej) ∧ can_assume(r’, r, t, d ) ∧ 
can_assume has not expired ]} 

4. Function d_roles (ui): U → 2IR returns roles in which user ui is dormant 
d_roles(ui) = {r ∈IR| ((ui,r) ∈ URD} 

5. Current_user: Holds the user who satisfies the authorization rule which the system invokes so the 
role(s) in its RHS can be activated by the user. 

6. Other_Conflicting_Users(u), for short,  OCU(u): U → 2U, a function that returns a set that holds all 
users in conflict with u, = ∪ cus– {u} where cus is any conflicting user set such that u ∈ cus and cus ∈ 
CU. 

7. Function a_users  (rg): IR → 2U returns users active wrt role rg 
a_users(rg) = {u ∈U| ((u,rg) ∈ URA} 

8. Function d_users (rg): IR → 2U returns users dormant wrt role rg  
d_users(rg) = {u ∈U| ((u,rg) ∈ URD} 

9. a_users*(rg) = {u ∈U| (∃r’≥GRH rg)[(u, r’) ∈ URA]} which returns the active users in role rg and all 
roles senior to it in a GRH.  

10. d_users*(rg) {u ∈U| (∃r’≥ GRH rg)[(u, r’) ∈ URD]} which returns the dormant users in role rg and all 
roles senior to it in a GRH. 

11. roles*: S → 2R is modified from roles to require roles*( si) = {r ∈ IR | (∃r’≥ r)[ r’ ∈ role(si)]} (which can change 
with time)  
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Figure 39: Model C / Part B 

 

Model C: 
Theorem  

With respect to a specific role in Role-centric SOD, the following holds: 
a. For any set of  conflicting roles:  

Static constraint holds → Simple dynamic constraint holds → Session-based dynamic constraint holds 
b. For two conflicting roles sets, crx and cry, with cx and cy being SOD constraints of the same type on crx 

and cry, respectively, the following holds: 
(crx ⊆ cry) → (cy holds → cx holds) 

Proof: Please see the chapter. 
Theorem  

With respect to a specific role in User-centric SOD, the following holds: 
i. For any set of conflicting roles:  

Static holds → Dynamic holds  
ii. For the 2 conflicting users sets, cux and cuy with cx and cy being user-centric SOD constraints  

on cux and cuy respectively, the following holds: 
(cux ⊆ cuy) → (cy holds → cx holds) 

Proof: Please see the chapter. 

Theorem  

With respect to role r, the following holds among cardinality constraints: 
a. Assume we have two constraints: cx is specifying the static cardinality, while cy is specifying the 

dynamic cardinality. If the static and dynamic cardinality values of r are equal, then cx holds → cy 
holds. 

b. Assume we have two constraints: cx and cy are specifying a cardinality value m and n over of r where n 
≥ m, then, cx holds → cy holds. 

Proof: Please see the chapter. 

Theorem  

With respect to role rk, the following holds among prerequisite roles constraints: 
a. Assume we have these two constraints both specify a single role as a prerequisite role for rk: cx 

specifies rg, while cy specifies rh. If rg ≥GRH rh , then cx holds→ cy holds.  
b. Assume we have these two constraints both specify a set of roles as prerequisite roles for rk: cx 

specifies role-setg, while cy specifies role-seth. If role-setg ⊆ role-seth , then cy holds → cx holds. 
Proof: Please see the chapter. 
 
Theorem  
Methods 1, 2, and 3 are equivalent in expressing SOD, Cardinality and Prerequisite constraints. 
Proof: Please see the chapter. 
 
Theorem  

Model C subsumes Model B. 
Proof: Please see the chapter. 
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6. Chapter 6: Configuring RB-RBAC for other Access 
Control Models 

 
6.1 Introduction 
 

Access control models have traditionally included mandatory access control (MAC) , also 

known as lattice-based access control (LBAC), and discretionary access control (DAC). 

Later, RBAC was introduced, along with claims that its mechanisms are general enough 

to simulate the traditional methods. Osborn et al. has shown how to configure RBAC96 

to enforce MAC and DAC [OSM2000]. Since RB-RBAC modifies and extends 

RBAC96, it makes sense to ask if RB-RBAC retains this feature of RBAC96, i.e. 

provides what is required to enforce MAC and DAC. This is desirable since both models 

are widely implemented in the private and public sectors. This is what we will 

demonstrate in the following sections.  

6.2 Configuring RB-RBAC for MAC 
 

The primary concept of MAC is that the information should flow in one direction in a 

lattice of security labels. MAC can be configured to provide different security services, 

e.g. confidentiality, integrity, or confidentiality and integrity together, depending on the 

way MAC enforces the one directional flow of information [OSM2000].  

MAC recognizes two types of components: objects and subjects, although subjects could 

be treated as objects in certain contexts. A security label, denoted by “λ”, is attached to 
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every object or subject. The label of an object is called a security classification, while a 

label on a subject is called security clearance. A subject could be a process running on 

behalf of a user and it is possible for several subjects with different security clearances to 

run on behalf of the same user. For the purpose of this discussion, we assume that 

security labels, once assigned, cannot be changed. 

Although MAC comes in several variations, the discussion below will be focused on 

MAC with Liberal *-Property, which uses one direction information flow to enforce 

confidentiality.  We will first start with these definitions [San1993]: 

Definition: (Simple Security Property)  

Subject s can read object o only if λ(s) ≥ λ(o). This is also known as the no-read 

up property. 

Definition: (Liberal *-Property)  

Subject s can write object o only if λ(s) ≤ λ(o). This is also known as the write up 

property.  

6.2.1 RB-RBAC Construction to simulate LBAC with 
Liberal *-Property 

 
Consider the lattice in Figure 40. This lattice demonstrates a dual character because the 

subjects with labels higher up in the lattice have more power with respect to read 

operation but have less power with respect to write operation. In RBAC terms, each 

lattice label x is modeled as two roles xR and xW for read and write at label x 

respectively. Accordingly, two dual role hierarchies are needed. The hierarchy for the 

“read” roles has the same partial order as dominance relation (≥LBAC), while the hierarchy 

for the “write” roles has a partial order that is the inverse of dominances (≥LBAC). Since 
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each user in LBAC has a unique security clearance, we have to represent this in RB-

RBAC, where there is no explicit assignment. To do this, we require that each 

authorization rule authorizes the user to mutually exclusive pairs of roles such that each 

pair contains two roles: xR and xW. A user’s clearance is an attribute that he is associated 

with. This attribute, along with other attributes, is used to determine what authorization 

rules the user satisfies and, as a result, what roles he is authorized to assume. The user's 

clearance λ(u) dominates the roles in the right hand side of the rule, i.e. λ(u) ≥LBAC λ(x).   

Since an LBAC user can login at any label dominated by the user’s clearance, this 

requirement is captured in RB-RBAC by requiring that each session have exactly two 

matching roles yR and yW such that the user clearance dominates the session’s level.  

Regarding the operations on LBAC objects, LBAC is enforced via read and write 

operation on objects, each of which has a single sensitivity level. In RBAC96, we express 

this in terms of read and write permissions on individual objects denoted by (o,r) and 

(o,w) respectively such that each permissions pair ((o,r) and (o,w)) is assigned to exactly 

one matching pair of xR and xW roles respectively. This does not apply to RB-RBAC as 

we will discuss shortly. 

In the following, we provide two constructions to prove that RB-RBAC can be 

configured to simulate MAC using Model B2 and Model C. The proofs provided are valid 

for any lattice. 

Construction 1: Simulating MAC using RB-RBAC model B2. 

Suppose we have a security lattice shown in Figure 40 with labels {H, M1, M2, L} and 

partial order ≥LBAC. An equivalent RB-RBAC system using Model B2 is given by: 

a. The set of RB-RBAC roles, IR = {hR, m1R, m2R, lR, hW, m1W, m2W, lW}.  
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Where xR and xW are RB-RBAC read and write roles that correspond to LBAC 

security label x. 

 

Figure 40: Security Lattice 
 

b. The set of permissions, P = {(o,r), (o,w) | o is an object in the system, and r and w 

stand for read and write operations respectively} 

c. Constraints on user authorization: Since no explicit user-role assignment is done 

in RB-RBAC, we require that each authorization rule authorizes the user to 

mutually exclusive pairs of roles such that each pair contains two roles: xR and 

xW. A user’s clearance is an attribute that he is associated with. This attribute, 

along with other attributes, is used to determine what authorization rules the user 

satisfies and, as a result, what roles he is authorized to assume. The user's 

clearance λ(u) dominates the roles in the right hand side of the rule, i.e. λ(u) 

≥LBAC λ(x). The authorization rules set for this case is as follows: 

• User_clearance = H ⇒ Session Dynamic (hR, hW) ⊕ (m1R, m1W) ⊕ 

(m2R, m2W) ⊕ (lR, lW)  

• User_ clearance = M1 ⇒ Session Dynamic (m1R, m1W) ⊕ (lR, lW) 

• User_ clearance = M2 ⇒ Session Dynamic (m2R, m2W) ⊕ (lR, lW) 

• User_ clearance = L ⇒ (lR, lW) 

M2M1

H

L
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d. Constraints on PA:  

• Permission (o,r) allows us to read object “o”. Since we do not have a role 

hierarchy for RB-RBAC roles, we explicitly assign permission (o,r) to 

every role yR such that y ≥LBAC λ(o). So, for example, the permission (om1, 

r) allows us to read object o which has λ(o) = M1. This permission is 

assigned to roles hR and m1R.  

• Similarly, permission (o,w) allows us to write object “o”. Since no  role 

hierarchy exists for RB-RBAC roles, we explicitly assign permission (o,r) 

to every role yW such that λ(o) ≥LBAC y. To continue with our example, 

the permission (om1, w) -which allows us to write object o which has λ(o) 

= M1- is assigned to roles lW and m1W.  

Table 8 shows the permission-role assignment for our example. 

 

Table 8: The permission-role assignment 
 

 

Theorem 10 
An RB-RBAC system defined by Construction 1 satisfies the Simple Security 

Property and the Liberal *-Property.  

Roles Permissions 

 Read Write 

(hR, hW) (oh,r), (om1,r), (om2,r), (ol,r) (oh,w) 

(m1R, m1W)  (om1,r), (ol,r) (oh,w), (om1,w) 

(m2R, m2W)  (om2,r), (o1,r) (oh,w), (om2,w) 

(lR, lW)  (ol,r) (oh,w), (om1,w), (om2,w), (ol,w) 
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Proof:  

 
1. Simple Security Property: According to Construction 1: 

We start by stating that subjects in the LBAC terminology correspond to RB-

RBAC sessions. For subject s to read o, (o,r) must be in the permissions assigned 

to a role, which is among the roles available to session s, which corresponds to 

exactly one user u. For u to be involved in this session, this role must be in the 

right hand side of a rule that u satisfies. A user u satisfies the rules based on his 

clearance. The roles in the right hand side of a rule are dominated by the user's 

clearance. If u satisfies a rule that generates more than one pair, u is authorized to 

activate exactly one pair.  

By the constraints on PA given in Construction 1, (o,r) is assigned directly to role 

xR, where x = λ (o), and to all roles yR such that y ≥LBAC x. For s to be able to 

read o, it must have one of these yR in its session. By the definition of roles in an 

RB-RBAC session, any role junior to zR can be in a session for u where z = λ(u), 

i.e., z ≥LBAC y such that y= λ(s). This means that a session for u can involve one 

reading role yR such that z ≥LBAC y. Consequently, the RB-RBAC system defined 

above allows subject s to read object o if λ(u) ≥LBAC λ(s) and λ(s) ≥LBAC λ(o). 

This is the Simple Security Property. 

 
2. Liberal *-Property: According to Construction 1: 

The authorization rules are such that if a user who is cleared to level x wishes to run 

a session at level y, such that x ≥LBAC y, the session will have the two active roles 

yR and yW. If the yW role is available to a user in a session, the user can write 
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objects for which the permission (o,w) is in yW. Due to the explicit assignment of 

write permissions to roles, yW will also have the permission (o,w) which allow it to 

write to objects at its levels or higher. The write permissions are assigned to write 

roles such that each role in a session s can write to objects of clearance that 

dominates the session's clearance, i.e. λ(o) ≥LBAC λ(s). This is the Liberal *-

Property. 

This completes the proof.   

                                                                                      � 
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Construction 2: Simulating MAC using RB-RBAC Model C1. 

Using the previous example, an equivalent RB-RBAC system using Model C1 is given 

by: 

a. The sets of RB-RBAC roles, permissions, and PA assignment are as in 

Construction 1. 

b. Constraints on user authorization and sessions: We define a collection of disjoint 

sets of companion roles (CRS) = {crs1,.., crsn} such that: 

∀ crsx ∈ CRS, crsx = {xR, xW} such that for any two sets crsi and crsj, crsi ∩ 

crsj = ∅ for any i and j both in [1,n] such that i ≠ j. Set crsx corresponds to label x 

and has 2 companions RB-RBAC roles: a read role xR and a write role xW. In 

our example, we have the following: 

crsh= {hR, hW} 

crsm1= {m1R, m1W} 

crsm2= { m2R, m2W} 

crsl= {lR, lW} 

We restrict the sessions such that a user cannot activate more than one set of 

companion roles in a session. To express this, we use Method 1 described in 

Chapter 5 to write the following constraint on the authorization rules: 

c1 = |roles(Current_session)  ∩ OE(CRS)  | = 0 

 

Based on the discussion above, we specify the authorization rules set for this case 

as follows: 

• User_ clearance = H ⇒ {crsh, crsm1, crsm2, crsl} ST c1 
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• User_ clearance = M1 ⇒ {crsm1, crsl} ST c1 

• User_ clearance = M2 ⇒ {crsm2, crsl} ST c1 

• User_ clearance = L ⇒ {crsl} ST c1 

The rules are specified such that the clearance of any session s is dominated by 

the user's clearance. 

Theorem 11 
An RB-RBAC system defined by Construction 2 satisfies the Simple Security 

Property and the Liberal *-Property.  

  
Proof:  

 
1.  Simple Security Property: According to Construction 2: 

 For subject s to read o, (o,r) must be in the permissions assigned to a role, which 

are among the roles available to session s, which corresponds to exactly one user 

u. For u to be involved in this session, this role must be in the right hand side of a 

rule that u satisfies. Suppose that a user, say u, satisfies some rule by virtue of 

being associated with a specific user clearance. As a result, u is authorized to 

activate sets of companion roles in the right hand sides (side) of the rule. 

However, the constraint c1 limits the user to activating exactly one set.  

By the constraints on PA given in Construction 1, (o,r) is assigned directly to role 

xR, where x = λ (o), and to all roles yR such that y ≥LBAC x. For s to be able to 

read o, it must have one of these yR in its session. Remember that u can have only 

one read role at a session. By the definition of roles in an RB-RBAC session, any 

role junior to zR can be in a session for u, i.e., z ≥LBAC y where z = λ(u) and y= 

λ(s). This means that a session for u can involve one reading role yR such that z 
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≥LBAC y. Consequently, the RB-RBAC system defined above allows subject s to 

read object o if λ(u) ≥LBAC λ(s) and λ(s) ≥LBAC λ(o). This is the Simple Security 

Property. 

 
2.  Liberal *-Property: According to Construction 2: 

Similar to the proof provided for Construction 1 after taking into consideration the 

syntax of Model C1 as we did in the first part of proving this theorem. 

                                                                                      � 

6.2.2 Discussion 
 
We have shown that RB-RBAC can be configured to simulate LBAC. The way RB-

RBAC is configured to achieve that differs from the way we configure RBAC96 in many 

aspects. In RBAC96 we require that each authorization rule authorizes the user to 

mutually exclusive pairs of roles such that each pair contains two roles: xR and xW. A 

user’s clearance is an attribute that he is associated with. This attribute, along with other 

attributes, is used to determine what authorization rules the user satisfies and, as a result, 

what roles he is authorized to activate. The user's clearance λ(u) dominates the roles in 

the right hand side of the rule, i.e. λ(u) ≥LBAC λ(x).  We demonstrated how to express 

LBAC using Model B2 and Model C1.  
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6.3 Configuring RB-RBAC for DAC 
 

DAC enforces a policy of owner-based administration of access rights. An owner of an 

object is usually, but not necessarily, the creator of the object. The owner discretionarily 

determines who else can access the object [OSM2000].  

Similar to MAC, DAC comes in several variations, mostly regarding the delegation and 

revocation of access rights of objects to subjects [SM1998]. In all DAC policies 

discussed, the underlying assumption is that the creator of an object becomes its owner. 

The owner of an object is the only subject capable of destroying that object.  

With respect to granting access to an object, we will simulate the following DAC 

variations: 

a. Strict DAC: This variation mandates the existence of a unique owner for each 

object with absolute authority to grant access to the object.  

b. Liberal DAC: The owner can delegate to other users the discretionary authority 

of granting access to an object. This delegation may apply to different levels 

resulting in several variations of Liberal DAC: 

i. One Level Grant: Delegation is limited to the first level recipients, i.e. a 

delegated user cannot delegate authority of granting access to an object to 

other users. 

ii. Two Level Grant: The first level recipients of delegated authority can further 

delegate it to a second level recipients, who, in turn, can delegate it to a third 

level recipients. Those cannot delegate it to others.  
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c. DAC with Change of Ownership: The owner of an object can transfer 

ownership to another user. This variation can be combined with strict or liberal 

DAC. 

Although DAC allows grant-dependent and grant-independent revocation, we will 

confine the discussion to the latter type for the sake of brevity. 

Since DAC is an owner-centric model, we will show how to simulate it using roles that 

are associated with each object. The main idea in configuring RB-RBAC to simulate 

DAC is that, with the creation of an object, we specify authorization rules which create 

administrative and regular roles such that users in the administrative roles have the 

permissions to grant/revoke attributes to/from users in regular roles. The regular roles are 

the ones that allow access to the object. The following discussion demonstrates how RB-

RBAC can be configured to simulate DAC for object OBJ. 

6.3.1 Strict DAC   
 

With the creation of HP object, simulating strict DAC requires: 

a. Roles: The creation of two roles: 

i. Administrative role, OWN_OBJ, which has a cardinality of one and is assumed 

by the owner of OBJ object. This role has the following permissions: 

a) addReadUser_OBJ: Used by the user in this role to give other users 

the attributes required to satisfy the rule that authorizes them to the 

regular role READ_OBJ. This user’s attribute is 

OBJ_Owner_Approval. 



  184 
   

 

b) deleteReadUser_OBJ: This permission allows the user of this role to 

take back the attribute above. Effectively, this means revoking the 

user in READ_OBJ role. 

c) destroyObject_OBJ: Used to delete OBJ object from the system. 

ii. Regular role, READ_OBJ, with single permission: 

 canRead_OBJ: Authorizes read operation on OBJ object.  

This yields two primitive disjoint roles hierarchies; the first one contains the 

administrative role OWN_OBJ while the other contains READ_OBJ. 

b. Attributes names: We need two attributes of Boolean values:  

 OBJ_Owner  

 OBJ_Owner_Approval.  

The owner of OBJ object, which assumes role OWN_OBJ has “OBJ_Owner” 

attribute. He can assign “OBJ_Owner_Approval” attribute to any user. 

c.  Authorization Rules: We need two authorization rules: 

a) rule1: (OBJ_Owner = True) ⇒ OWN_OBJ 

b) rule2: (OBJ_Owner_Approval = True) ⇒ READ_OBJ 

Assume that ui is the creator of OBJ object. By virtue of that, he has the attribute 

OBJ_Owner = true so according to rule1 he is authorized to role OWN_OBJ. Once ui 

activates the role, he can execute the roles permissions. To authorize user uj to role 

READ_OBJ, ui executes permission addReadUser_OBJ with respect to user uj, thus uj 

obtains attribute OWN_OBJ_Approval. As a result, uj satisfies rule2 and, subsequently, is 

authorized to role READ_OBJ. To revoke user uj authorization to the role, ui executes 
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permission deleteReadUser_OBJ with respect to uj. This takes away the attribute 

OWN_OBJ_Approval from uj.  

6.3.2 Liberal DAC  

6.3.2.1 Liberal DAC with One-Level Grant  

The creation of OBJ object requires: 

a. Roles: The creation of three roles: 

i. Administrative role, OWN_OBJ, which has a cardinality of one, and is 

assumed by the owner of OBJ object. This role has the following 

permissions: 

a) addParent_OBJ: Used by the user in this role to give other users the 

attributes required to satisfy the rule that authorizes them to 

PARENT_OBJ, an administrative role junior to OWN_OBJ. This 

attribute is OBJ_Owner_Apporval. 

b) deleteParent_OBJ: Used to revoke the attribute above. 

c) destroyObject_OBJ: As in static DAC.  

ii. Administrative role, PARENT_OBJ: The user who is authorized to this role 

has the power to authorize other users to READ_OBJ role. PARENT_OBJ 

role has the following permissions: 

a. addReadUser_OBJ: Used to give other users the attributes required to 

satisfy the rule that authorizes them to READ_OBJ role. This attribute 

is OBJ_Parent_Apporal. 

b. deleteReadUser_OBJ: Used to revoke from other users the approval to 

use READ_OBJ role. 
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iii. Regular role, READ_OBJ as in strict DAC 

b. Attributes names: Beside the two attributes in strict DAC, we need one more 

attribute: OBJ_Parent_Approval. We consider attribute OBJ_Owner senior to 

attribute OBJ_Owner_Approval. 

c. Authorization Rules: Three authorization rules are required: 

a) rule1: (OBJ_Owner = True) ⇒ OWN_OBJ 

b) rule2: (OBJ_Owner_Approval = True) ⇒ PARENT_OBJ 

c) rule3: (OBJ_Parent_Approval = True) ⇒ READ_OBJ 

Note that rule1→ rule2 because OBJ_Owner ≥ OBJ_Owner_Approval. This produces two 

disjoint role hierarchies shown in Figure 41. Since ui is the creator of OBJ object, he can 

assume the role OWN_OBJ, and thus, he can use permission addParent_OBJ  to issue 

attribute “OBJ_Owner_Approval” to other users, say uj. Consequently, uj is authorized to 

PARENT _OBJ role and as such, can execute permission addReadUser_OBJ with respect 

to user uk to authorize the latter to role READ_OBJ by granting him attribute 

“OBJ_Parent_Approval”.  Revocation works in a way similar to the method described in 

strict DAC with the additional role taken into consideration.   

 

 

 

Figure 41: Role Hierarchies for One-Level Grant Liberal DAC 

6.3.2.2 Liberal DAC with Two-Level Grant 

The creation of OBJ object requires: 

OWN_OBJ  

PARENT_OBJ  

READ_HP  

Hierarchy of Administration Roles Hierarchy of Regular Roles 
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a.  Roles: In addition to the above three roles, we create 

PARENTwithGRANT_OBJ as an intermediate role between OWN_OBJ and 

PARENT_OBJ. Similar to what we did in the One-Level DAC, we assign 

permissions to OWN_OBJ and PARENTwithGRANT_OBJ roles so that each 

role can grant/revoke access to its junior.  

b. Attributes names: We need an extra attribute: 

OBJ_ParentWithGrant_Approval. The attributes have the following seniority:   

OBJ_Owner ≥ OBJ_ParentWithGrant_Approval ≥ OBJ_Owner_Approval. 

c.  Authorization Rules: Four authorization rules are required: 

a) rule1: (OBJ_Owner = True) ⇒ OWN_OBJ 

b) rule2: (OBJ_Owner_Approval = True) ⇒ PARENTwithGRANT_OBJ 

c) rule3: (OBJ_ParentWithGrant_Approval = True) ⇒ PARENT_OBJ 

d) rule4: (OBJ_Parent_Approval = True) ⇒ READ_OBJ 

Note that rule1≥ rule2 ≥ rule3. The relations among authorization rules give us the 

hierarchies shown in Figure 42. To show the usage of the administrative roles hierarchy, 

assume user u has attribute “OBJ_Owner_Approval” so u satisfies rule2 and is authorized 

to PARENTwithGRANT_OBJ role. If u activates this role, he is capable of 

granting/revoking attribute “OBJ_ParentWithGrant_Approval”, i.e. effectively 

granting/revoking membership in role PARENT_OBJ. If u wants to grant/revoke 

membership of READ_OBJ, and since rule2 ≥ rule3, he can activate role PARENT_OBJ. 

Alternatively, u as a member of PARENTwithGRANT_OBJ role, can activate any role 

junior to its current role, which allows u to execute the permissions of PARENT_OBJ. 
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Figure 42: Role Hierarchies for Two-Level Grant Liberal DAC 

6.3.3 Change in Ownership 

Some DAC variations allow transfer of ownership. Role OWN_OBJ is assigned a new 

permission to allow its user to transfer ownership, call this permission add_Owner_OBJ. 

The current owner, say u, of the object can execute this new permission to give special 

attribute, say Legitimate_Owner, to another user, say v. RB-RBAC supports two 

variations of change of ownership: 

a. Temporary: The OWN_OBJ role is assigned a dynamic cardinality value of one. 

Since v satisfies the rule below, he is authorized to role OWN_OBJ. If u is not 

active wrt that role, v can activate it and, as a result, u loses his membership to 

role OWN_OBJ, which effectively transfers ownership to v. The authorization 

rule rule1 is modified as follows: 

rule1: (OBJ_Owner = True ∨ Legitimate _Owner = True) ⇒ OWN_OBJ 

If v becomes dormant, u can activate role OWN_OBJ and resume ownership. 

b. Permanent: To achieve this, static cardinality is used instead of dynamic 

cardinality along with attribute Legitimate_Owner. The authorization rule above 

is modified as follows: 

PARENT_OBJ  

Hierarchy of Administration Roles Hierarchy of Regular Roles 

PARENTwithGRANT_OBJ 

OWN_OBJ  

READ_HP  
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rule1: Legitimate_Owner = True ⇒ OWN_OBJ 

Initially, u has OBJ_Owner = True and so he can activate role OWN-OBJ and 

grant attribute Legitimate_Owner to another user v. Then we modify the 

authorization rules as discussed above. Now, v satisfies rule1 and thus becomes 

the owner. 

 

6.3.4 Multiple Ownership 
 

We can use the same procedure applied in ownership change to apply multiple 

ownership. The only modification we make is to remove the cardinality constraint on role 

OWN_OBJ.  

 

6.3.5 Discussion 
 
We demonstrated how to configure RB-RBAC to simulate DAC. However, we must 

admit that the number of roles (both administrative and regular) in the system could grow 

rapidly since each of the objects created requires generating several roles. 

6.4 Summary 
 

We have shown that RB-RBAC can be configured to express MAC and several variations 

of DAC. This is in harmony with the nature of RBAC models, which are policy-neutral.   
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7. Chapter 7: RB-RBAC Administration 

7.1 Introduction 

The administration of systems that implement conventional RBAC is extensively 

discussed in the literature; see for example [Ker2002], [KKSM2002], [KKSM2002], 

[SB1999], [SBM1999] and [OSZ2003]. However, administering systems that implement 

RB-RBAC requires taking into consideration that administrators do not directly assign 

users to roles. Instead, this process is automated based on authorization rules which 

authorize users to roles according to the attributes with which they are associated. The 

issue now becomes how to determine who has the power to administer these attributes 

and on what basis this power should be distributed if a decentralized approach is sought. 

From a user perspective, this means that changes made to the attributes of a user, say u, 

may change the set of rules relevant to u by causing u to satisfy new rules. By the same 

token, these changes could cause him to fail to satisfy some rules that used to be relevant, 

hence, revoke him from roles to which he used to be authorized. 

Similarly, authorized individuals need to modify authorization rules to reflect changes in 

the security policy or business practices of the enterprise. Changes made to authorization 

rules have results similar to the ones caused by changes to users’ attributes but on a wider 

scope. The changes made to rules affect all users who satisfy the set of rules that was 

subject to the change.   
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On another front, there are some real world situations that require authorizing certain 

users to specific roles, which they are not authorized to activate under the current policy. 

This can be done by changing the authorization rules or users’ attributes in order to 

authorize certain types of users to these roles. This is not always the most prudent course 

of action as will be discussed later. Instead, we introduced a new concept, can_assume 

relation, which permits attaining the same goal in a controlled manner without the need to 

make changes to the attributes or the rules. 

The model should also allow users to delegate their roles to other users in a controlled 

way. This concept has been discussed in the context of RBAC, see for example 

[Barka2001] and [ZAC2003], however, we have modified it to fit RB-RBAC.  

In this chapter, we introduce the RB-RBAC administrative model, which we call ARB-

RBAC. The model specification includes administering the following:  

a. Users’ attributes, 

b. Authorization rules,  

c. can_assume relation, and 

d. can_delegate relation. 

In all of the above, we will take a decentralized approach to RB-RBAC administration. 

The justification for this includes: 

a. As has been stated in Chapter 1, we assume that RB-RBAC will be used to 

provide access control to enterprises with a huge customer base which requires a 

decentralized administration of their attributes [KSM2003].  
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b. The new Internet landscape witnesses increasing numbers of enterprises that 

provide their services to highly diversified customer bases which are 

geographically scattered, another reason for decentralizing the administration.  

We assume that administrators are explicitly assigned to administrative roles, which is a 

reasonable assumption since the numbers of users who are assigned to these roles are 

usually low. 

7.2 Administering Users’ Attributes  

Administering users’ attributes determines what roles they are authorized to activate. 

Changes made to a user’s attributes affect the set of rules relevant to that user. The new 

set of relevant rules may: 

• Authorize him to activate new roles,  

• Revoke him from roles that he used to be authorized to activate,  

• Give/take away from him negative authorization, 

• Authorize/revoke him to/from mutually exclusive roles. 

• Subject him to new constraints. 

In this section we introduce several methods of administering users’ attributes. The 

fundamental issue is how the attributes are divided into sets that are independently 

administered.    

7.2.1 Type-centric Administration  

The set of attributes of all users is divided into smaller subsets according to attribute 

types, e.g. personal info, academic, financial, health, etc. The authority of administering 

them is assigned to: the human resources, trusted academic institutions, banks, and 
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HMOs, in that order. In brief, each attribute is administered by the entity specialized in 

that type of attribute. The advantages of this approach are: 

a. This type of administration has been actually implemented in the context of 

conventional RBAC [KSM2003]. 

b. It authorizes the specialists to administer the type of data with which they are 

familiar. 

c. It fits the natural workflow in organizations.  

7.2.2 Organization-centric Administration  

The set of attributes of all users is divided into smaller subsets according to the 

organization units to which users belong. For example, in a manufacturing company,   the 

manufacturing department administers the attributes of its employees; the marketing 

department does the same with respect to its employees, and so on. For a bank, each 

branch administers the attributes of its employees and clients.  This approach has been 

implemented in the context of conventional RBAC [KSM2003]. One disadvantage of this 

method is the complex effect of transferring employees among different departments. 

7.2.3 Location-centric Administration  

The assumption that users’ attributes should be stored under RB-RBAC control is not 

practical in many circumstances. Instead they may be stored in secure databases that are 

independently administered. RB-RBAC can retrieve with high assurance the users’ 

attributes it needs to make authorization decisions. The set of attributes of all users is 

divided into subsets according to the data repository in which they reside. As such, the 
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authority to administer a set of attributes in a participating database is delegated to 

individuals in charge of that database. 

7.2.4 Security-label Administration 

We assign security labels to the attributes used in the system and then divide the 

attributes into groups according to their security labels. Individuals with appropriate 

clearance administer the attributes with labels that correspond to the individuals' 

clearance. The downside of this method is that changes in attributes' labels cause 

transferring the reasonability of administering these attributes to other administrators.  

 

7.2.5 Role-centric Administration 

The concept of role hierarchy is utilized to divide up the attributes into sets, each of 

which is assigned to an authorized administrator. The sets are not necessarily mutually 

disjoint. In the next section, we present a thorough analysis of this method. This method 

has the following advantages: 

a. Formal models have been fully developed to support this kind of administration in 

the context of conventional RBAC. Examples for these models are ARBAC97 

and ARBAC02 which are formally specified in [SB1999], [SBM1999] and 

[OSZ2003]. 

b. Practical examples to show how to use some of these models have been presented 

for database management systems, URA97 as discussed in [SB1999], and for a 

legacy access control system, ERBAC as presented in [M2002]. 



  195 
   

 

c. This method is consistent with the nature of RBAC because it is based on using 

RBAC to administer RBAC. 

For these reasons, our attention will be focused on this method although similar analysis 

could be developed for the rest of the methods. 



  196 
   

 

7.3 Role-centric Administration 

7.3.1 Introduction 
  
Among the models suggested to administer RBAC, two are of interest to us: ARBAC97 

and its successor ARBAC02. Although a powerful model, ARBAC97 introduces 

unnecessary coupling between user pools and prerequisite roles, which lead to some 

undesirable consequences. ARBAC02 presented by OH et al. recognizes the need to 

remove this coupling by making the pool of users include organizational structure besides 

the roles [OSZ2003].  The discussion presented here is focused on the parts of these two 

models that deal with user-assignment. Both ARBAC97 and ARBAC02 models assume 

that there is a System Security Officer (SSO) who has supreme authority over user-role 

assignment. However, to decentralize that task, the SSO delegates some authority to one 

or more junior security officer(s) (JSO) which allows them to assign or revoke users 

within some designated role range. For this purpose, both models have two sub-models, 

one for assigning users and the other for revoking them:  

a. A grant model: In their respective grant models, both ARBAC97 and ARBAC02 

impose restrictions on which of the users can be added to a role by whom. Both 

models control user-role assignment by means of the relation 

can_assign ⊆ AR × CR × 2R  

AR, CR, and 2R are the set of administrative roles, the set of prerequisite 

conditions, and the superset of regular roles, in that order. The meaning of 

can_assign (x, c, role-range) is that a member of the administrative role x (or a 

member of an administrative role that is senior to x) can assign a user who 
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satisfies the prerequisite condition c to be a member of regular roles in the role-

range. They differ however, in defining the prerequisite condition.  

b. A revoke model: This is built on the relation 

can_revoke ⊆ AR × 2R 

This relation gives the JSO the authority to revoke users who are assigned to roles 

that fall in his role range. 

7.3.2 How RB-RBAC is different 
 
In RB-RBAC, no explicit assignment is performed, but instead, the assignment is rule-

based such that the rules are attributes-driven. Obviously, this makes the question of who 

administers the attributes central. This is what semantically sets ARB-RBAC apart from 

ARBAC97 and ARBAC02. The difference boils down to the following: 

a. The explicit assignment does not generate any side effects other than the 

inheritance of roles, which is made possible by the role hierarchy. Also, revoking 

a user from a role is done explicitly. The decision to assign/revoke a user to/from 

a role is done by humans based on some input. The SSO or JSO role is to execute 

the actual assignment/revocation. This makes it easy to specify the administrative 

model in order to impose proper restrictions on the SSO and JSOs. 

b. In RB-RBAC, the assignment/revocation is done automatically based on changes 

that users’ attributes witness. These changes could be done by individuals who 

may not be aware of the impact of the changes they make on users’ 

authorizations. ARB-RBAC is specified such that the authorized individuals are 

able to make the proper changes provided that the impact of these changes does 

not go past their designated areas of responsibility. This area of responsibility is 
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defined using the concept of role ranges adopted from [SB1999]. Changes that go 

beyond JSO designated areas of responsibility have to be made by a higher 

security officer whose role range encompasses the desired attributes changes.  

So, instead of imposing restrictions on a delegated JSO using role hierarchy or user pools 

as in the two models above, ARB-RBAC uses a mixture of users’ attributes and 

prerequisite roles. This mixture constitutes a prerequisite condition that allows the SSO to 

confine the JSO to a designated set of users’ attributes that the JSO is authorized to 

administer.  

7.3.3 ARB-RBAC X Model 
 
An SSO can use can_administer_attributes relation to delegate to a JSO the authority of 

administering users’ attributes. The relation is as follows:  

can_administer_attributes ⊆ AR × 2Att × CR × 2R 

The semantic of the relation can_administer_attributes (x, y, c, rr) is that a member of 

administrative role x (or a member of an administrative role that is senior to x) is 

authorized to administer a user’s attributes such that: 

a. The modified user’s attributes ⊆ attribute set y specified in the relation. 

b. The user must be a member/not a member of the role specified in the prerequisite 

condition c. 

c. ∀aei such that aei is satisfied by the resulting attributes the following holds:  

•  The roles the user becomes authorized to because of the changes in the 

attributes must be within the role range rr. The concept of role range is 

adopted from [SB1999]. 
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• The changes that the JSO makes have no side effects that may cause a 

change in the user’s state wrt roles outside the role range rr.  

Using the above relation, the SSO may delegate the authority of administrating users’ 

attributes to one or more JSO, each of whom is given the authority to administer the 

attributes of users who are authorized to roles that fall in that JSO role range. Note that 

when a JSO changes a user’s attributes this may result in authorizing the user to more 

roles, which means promoting him within the allowed role range. Conversely, the 

changes could revoke a previously given authorization over some roles in the range 

which results in demoting the user within the range. Also, notice that the specification 

allows a JSO to change multiple attributes in a single atomic operation. 

Definition 16   

1. The following is imported from RBAC96: AR and ARH, which are the set of 

administrative roles and the administrative role hierarchy. We assume that user-

role assignment wrt administrative roles is explicitly performed.  

2. The notion of role range, rr for short, is imported from ARBAC97. 

3. 2Att is the power set of all possible attributes. 

4. A prerequisite condition is a Boolean expression using the usual ∧ and ∨ 

operators on terms of the form x and x′ where x is a regular role (i.e., x ∈ R). A 

prerequisite condition is evaluated for a user u by interpreting x to be true if: 

• x ∈ R: ( ∃ x’ ≥GRH x) . (u, x’) ∈ URAuth 

and x′ to be true if: 
• x ∈ R: ( ∀ x’ ≥ GRH x) . (u, x’) ∉ URAuth 

5. CR is the set of all possible prerequisite conditions  
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6. r ∈ rr as defined in ARBAC97. This means that the roles that represent the end 

point of the range may or may not be within the range. 

7. AuthorizationOutsideRoleRange or AORR(u,rr) = {(u,r)| (u, r) ∈ URAuth ∧ r 

∉rr}. AORR returns the sets of roles outside rr to which u is authorized to 

activate.  

8. Administrating an attribute means the following: 

a. Adding a new attribute to the user’s attributes 

b. Modifying the values of an existing attribute 

c. Deleting an attribute 

9. ARB-RBAC X model authorizes administering users’ attributes via the relation 

can_administer_attributes ⊆ AR × 2Att × CR × 2R 

The semantic of the relation can_administer_attributes (x, y, c, rr) is that a 

member of administrative role x (or a member of an administrative role that is 

senior to x) can administer the attributes of a user u provided that:  

a. The modified u ’s attributes ⊆ y,  

b. u satisfies prerequisite condition c, and  

c. ∀aei that is satisfied by the resulting attributes the following holds:  

RHS(aei) ∈ rr ∧ AORR (u,rr)= AORR ′(u,rr). 

AORR (u,rr) and AORR ′(u,rr) are the sets of roles outside rr to which u is 

authorized to activate before and after the changes made by the JSO, 

respectively. This specification is required to ensure that the changes that a 

security officer makes may not cause a change in the user’s authorization 

wrt roles outside the designated role range.  
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7.3.3.1 Example for X Model  
 
Suppose we have the authorization rules shown in Table 9. To illustrate how to read the 

table, take the fourth entry, which is read as:  

 (Has id = T ∧ Deg= Eng ∧ Proj=1  ∧ Specialty=Prod) forms attribute expression ae4, 

which constitutes the LHS of the following rule: ae4  ⇒ PE1 where PE1 is a role in the 

role hierarchy given in Figure 43, extracted from [SBM1999] . 

Table 9: Example to Show How ARB-RBAC Works 
 

 
 
 
 

 

 

 

 

 

 

 

 

Figure 43: Example Hierarchy 

 
 

 Attributes Corresponding 
ae 

Authorization 
Rules 

Entry no. Has id Degree Project Specialty   
1 Y - - - ae1 ae1 ⇒ E 
2 Y Eng - - ae2 ae2  ⇒ ED 
3 Y Eng 1 - ae3 ae3  ⇒ E1 
4 Y Eng 1 Production ae4 ae4  ⇒ PE1 
5 Y Eng 1 Quality ae5 ae5  ⇒ QE1 
6 Y Eng 1 All ae6 ae6  ⇒ PL1 

Production  
Engineer 1  

PE1 

Quality  
Engineer 1  

QE1 

Project Leader 1  PL1

Engineer E1 

Production 
Engineer 2 

PE2 

Quality  
Engineer 2  

QE2 

Project Leader 2  PL2

Engineer E2

Director DIR

Engineering 
Department ED 

Employee E 
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We want the JSO who is in the administrative role PSO1, to be able to administer the 

attributes of the users whose attributes initially make them authorized to the roles in the 

role range [E1,PL1) which are shown in boldface in the figure. The 

can_administer_attributes relation is represented in Table 10. 

 
 

Table 10: can_administer Relation 
 

 

 

So suppose the PSO1 modified u’s attributes as in the following scenarios: 

a. Attributes set before: {had id=y, Degree= Eng} 

 Attributes set after   : {had id=y, Degree= Eng, project =1} 

Based on the relation in entry 1 of Table 10, and since user u attributes satisfies 

ae3, u will be authorized to E1∈[E1,E1] which is in the designated role range. 

Neither entry 2 nor 3 can be used since E1 ∉ rr. 

b. Attributes set before: {had id=y, Degree= Eng} 

Attributes set after   : {had id=y, Degree= Eng, project =1, Specialty= Quality} 

Based on the relation in entry 3 of Table 10, and since user u attributes satisfies 

ae5, and PE1′= True holds, u will be authorized to QE1∈[QE1,QE1] which is in 

the designated role range.  

 Elements of can_administer_attributes relation 

 Admin. Role:x Attribute set: y Prerequisite role: c Role range:rr 

1 PSO1  {project, specialty} - [E1,E1] 

2 PSO1 {project, specialty} QE1′ [PE1,PE1] 

3 PSO1 {project, specialty} PE1′ [QE1,QE1] 
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c. Attributes set before: {had id=y, Degree= Eng, project =1, Specialty= Prod.} 

Attributes set after  : {had id=y, Degree= Eng, project =1, Specialty= -} 

Based on the relation in entry 1 of Table 10, since user u attributes satisfies ae3, u 

will be authorized to E1∈[E1,E1]. In this case, the user is being revoked from 

PE1.  

d. Attributes set before: {had id=y, Degree= Eng, project =1, Specialty= Prod.} 

Attributes set after  : {had id=y, Degree= Eng, project = -, Specialty= -} 

The changes are rejected because the resulting attributes satisfies ae2 which 

authorizes u ED ∉[E1,PL1). To this, the JSO must use Y model. 

In all above scenarios, we assume that AORR (u,rr)= AORR ′(u,rr). 
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7.3.4 ARB-RBAC Y Model 
 
The Y model authorizes a JSO to change the user’s attributes such that he is no longer 

authorized to any role in the range designated to that JSO. Since there is no prerequisite 

condition, the specification must prevent the JSO from using Y model to illegally 

authorize a user to roles junior to the role range. To illustrate, assume u is authorized to 

role E in Figure 43. We want to prevent the JSO from changing the attributes of u so that 

u becomes authorized to ED. However, the JSO should be capable of modifying the 

attributes such that user v - who is authorized to a role within the role range designated to 

the JSO - is revoked from all his roles in the range. This is achieved via can_revoke 

relation defined below. 

Definition 17 

10. ARB-RBAC Y model authorizes administering users’ attributes via the relation 

can_revoke ⊆ AR × 2Att × 2R 

The semantic of can_revoke (x, y, rr) is that a member of administrative role x (or 

a member of an administrative role that is senior to x) can administer the 

attributes set of a user u if the following holds:  

1. α ⊆ y, where α is u ’s attributes before the modification such that α 

satisfies aei ∧ RHS(aei) ∈ rr. 

2. If β is the set of resulting attributes, then ∀aej that is satisfied by the β, the 

following holds:  

β satisfies aej → RHS(aej) ∉ rr 

3. AORR (u,rr)= AORR ′(u,rr) 
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Part (a) ensures that the user affected is within the users in the designated role 

range. Parts (b) and (c) together guarantee that the JSO can revoke users from all 

the roles within the designated role range but cannot make changes that affect 

user’s authorization wrt roles outside the role range designated to that JSO. 

7.3.4.1 Example for Y Model 
 
Consider the can_revoke relation in Table 11, it permits a user in the administrative role 

PSO1 to make modification to users attributes that result in revoking users from roles in 

the range [E1,PL1). 

 

Table 11: can_revoke Relation 
 

 

 

 

Suppose the attributes set before PSO1 action was: {had id=y, Degree= Eng, project =1, 

Specialty= Prod.}. After the action, it became: {had id=y, Degree= Eng, project = -, 

Specialty= -}. This is actually case (d) in the example given for the X model. The 

changes are accepted because the resulting attributes set satisfies ae2 which authorizes u 

to role ED to which he is already authorized. 

 

 Elements of can_revoke relation 

 Admin. Role:x Attribute set: y Role range:rr 

1 PSO1  {project, specialty} [E1,PL1) 
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7.4 Administering Authorization Rules 

7.4.1 Introduction 

Authorization rules are the formal expression of the security policy, which is supposed to 

govern the business practices of the enterprise. Both the security policy and business 

practices of the enterprise are subject to changes due to organizational restructuring, the 

introduction of new business practices or new technologies, etc. The authorization rules 

must be modified to reflect these changes in the policy or practices. These changes are 

made through administering the rules, which include: 

• Adding new rules 

• Modifying existing rules via:  

o Modifying LHS and/or RHS of existing rules by adding/deleting 

attributes/roles, and changing the stated values required for attributes 

o Adding new constrains 

o Modifying/ Deleting existing constrains 

• Deleting existing rules 

Changes made to the authorization rules affect all users who satisfy the modified rules. 

The need to decentralize the administration of the rules is not as pressing as it is in the 

case of users’ attributes. If the number of rules is small, they can be administered 

centrally.  However, in situations where the number of attributes is large, and/or the 

ways of authorizing roles are very diverse, the number of rules could be very large. In 

such case, decentralization is appropriate, and hence, each delegated JSO will be 

authorized to administer a subset of the authorization rules set. organization-centric 
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method can be applied to group the rules into independently administered subsets where 

roles are mapped to organizational units such that each unit administers the rules that 

produce the roles that belong to it. A down side of this method is that it is not resilient to 

changes in role hierarchy due to organizational up-scaling, down-scaling, restructuring, 

etc, which might necessitate regrouping the rules. 

Another alternative is the role-centric method, where the role hierarchy is divided into 

role ranges. Subsequently, all the rules whose RHS roles fall in the same role range are 

grouped in one set. The method is preferred since it facilitates dividing the authority of 

administering the rules in a way that is compatible with the distribution of power within 

the organization. Also, this method is resilient to changes in role hierarchy as long as the 

range is intact. As such, this method is discussed in more detail below. 

7.4.2 Specification 

Specifying the set of rules over which a JSO is allowed to operate involves specifying 

these activities: 

a. Adding new rules. The roles at the RHS of the new rules must be in the specified 

role range. 

b. Modifying existing rules which involves: 

i. Adding roles to the RHS such that the new roles must be in the specified 

role range. 

ii. Modifying the expression at the LHS or a rule. 

c. Deleting rules. 

Definition 18 

11. RB-RBAC model authorizes administering users’ attributes via the relation 
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can_administer_rule ⊆ AR × 2R 

The relation can_administer_rule(x, rr) authorizes a member of administrative role x (or 

a member of an administrative role that is senior to x) to administer a set of rules SR 

provided the following holds:  

a. (∀aei) [((aei ⇒ rg ) ∈ SR) → (rg ∈ rr)] i.e. The rule set that the JSO works on 

yields roles that are within his designated role range. 

b. The resulting set of rules SR′ yields roles that are within his designated role range 

i.e. (∀aej) [((aej ⇒ rh) ∈ SR′) → (rh ∈ rr)].   
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7.5 Administering can_assume relation 

7.5.1 Introduction 

In RBAC literature there is some discussion regarding role delegation, see for example 

[BS2000a], [BS2000b], and [ZAC2003]. One way of doing this is detailed in [Bar2001] 

where delegation is enabled by the SSO adding the following relation to the RBAC 

model: 

can_delegate (rg, rh) 

This means that user u who is assigned to role rg is allowed to delegate his membership in 

rg to user v who is assigned to role rh. However, v is not assigned to the role, and thus 

cannot activate the role, until u actively delegates his membership in rg to v. So, merely 

adding a pair of roles to can_delegate relation does not guarantee that the potential 

recipient of the delegation will actually be able to assume the delegated role. Instead, the 

actual delegation is left to the discretion of the delegating party. This notion of delegation 

might be beneficial in certain circumstances but, in a sense, it is not in compliance with 

the general theme of RBAC where actions are not left to the discretion of individual 

users.  

We suggest that authorized individuals such as the SSO should be given the power to 

authorized users who meet certain criteria, specified by the security policy, to roles. This 

explicit authorization allows the enterprise to respond to situations where it might not be 

desirable to allow this authorization via modifying the authorization rules. This is 

achieved via can_assume relation, which represents a novel concept in RBAC world. In a 

sense, this is a departure from the monotheistic approach of RB-RBAC where user-role 
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assignment is totally implicit, i.e. no human intervention allowed, however it is a 

justifiable one, as we will argue below.    

7.5.2 Motivation 

To motivate the concept of can_assume relation, consider the following two examples: 

7.5.2.1  Company C 

Company C wants to promote certain merchandise or services by providing its clients 

with a limited-time offer. It gives the clients who have been trading with the enterprise 

for two or more years and have purchased at least $2000 worth of goods all of the 

benefits provided to the clients who have been trading with the enterprise for three or 

more years and have purchased at least $2500 worth of goods. This change in the 

marketing policy is planned to last for two weeks. The change must be reflected in the 

security policy. From an RB-RBAC standpoint, the benefits that both sets of clients are 

authorized to are roles. The current security policy includes the following two rules: 

rulei: (trading period ≥ 2) ∧ (purchased ≥ $2000) ⇒ Silver_client 

rulej: (trading period ≥ 3) ∧ (purchased ≥ $2500) ⇒ Golden_client 

There is more than one way to modify the security policy to allow this limited-time offer: 

i. Modify the current attributes of clients of the first group so they can satisfy 

the rulej. 

ii. Modify the authorization rules such that rulei yields role Golden_client.  

In both cases, this change in the security policy is temporary and after the 2-week period, 

the attributes or the rules, depending on the way used, should be modified back to what 

they were before the promotional period. These two solutions work, but with 

disadvantages. Both require two-step human intervention: one to modify the security 
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policy to reflect the required changes, and a second step to change the policy back to its 

initial state. Overlooking step two is always possible. Also, modifying clients attributes 

may make them authorized to roles other than ones intended, Golden_client in this case, 

and may result in a breach of the security policy. On the other hand, modifying the 

authorization rules blurs the distinction between genuine members and non- genuine 

members of roles. In our example, the genuine members are those who are authorized to 

role Golden_client by virtue of satisfying rulej in the original policy, while the non- 

genuine members are those who are temporarily authorized to the role due to the 

temporary change in the policy. This distinction is important in some situations such as 

when the security policy requires being a genuine member of Golden_client a 

prerequisite for being authorized to another role, say Platinum_client.  

7.5.2.2 Hospital H 

Hospital H has a policy that permits residents who are in their first year of residency to 

work as interns. However, it forbids them from working in the emergency room, where 

only senior residents (i.e. those in their second or third year of residency) or fully-trained 

doctors work. This is embodied in the following authorization rules: 

rule1: No. of years in residency ≤ 1 ⇒ intern  

rule2: No. of years in residency ≤ 1 ⇒ ¬ ER_doctor  

Naturally, during the holiday season large numbers of the medical staff take their yearly 

vacation. However, this period of the year witnesses a surge in the number of people 

admitted to the emergency room. Clearly, more medical staff is needed to handle this 

surge in demand of medical care. One way to handle this is to change the hospital policy 

by deleting rule2. Alternatively, if PTP policy is enforced, we may add another rule that 
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authorizes interns to work as ER physicians. Similar to the first example, this course of 

action is not preferred for analogous reasons.  

A better solution is to use can_assume relation. To illustrate, consider the second 

example, the SSO can add the following: 

can_assume(intern, ER_doctor, t, d) 

This authorizes interns to activate the role ER_doctor, i.e. to work in the emergency 

rooms starting at time t for a period d.  

Using can_assume relation has the following merits: 

a. It is a neat solution and easy to map elegantly to managerial decisions. 

b. It allows overriding of the system implementing RB-RBAC but in a controlled 

manner to meet the needs posed by circumstances like the two examples given 

above. 

c. When can_assume relation expires, users' authorization automatically reverts 

back to its original state before can_assume was specified by the SSO.  

7.5.3 Specification  

To enrich the RB-RBAC administrative model, we allow two forms of can_assume that 

provide two forms of granularity which authorize specific users to an attribute expression 

or a role. This authorization is temporary in nature and the system implementing RB-

RBAC should be able to distinguish it from the authorization obtained by satisfying 

authorization rules. This results in two types of authorization: 

a. Genuine authorization: Assuming we have the rule: rulei ⇒rg, original 

membership of rg is acquired either via satisfying rulei, or via satisfying a rule, 

rulek, such that rulek ≥ rulei. 



  213 
   

 

b. Non-genuine authorization: This membership is acquired when a user is 

authorized to a role via can_assume relation. 

Clearly, this affects the value of URAuth as we have discussed in Chapter 3.  

7.5.3.1 Coarse-granularity Form 

This form allows temporary authorization of an attribute expression, say aei, to all the 

users who satisfy another attribute expression, say aej. The security officers could use this 

to make wholesale authorization of roles to a specific set of users who meet certain 

criteria. 

Definition 19 

can_assume ⊆ AE × AE × T × D  

where AE, T, and D are attributes expressions set, time set, and duration set 

respectively. We leave specifying the units of time and duration to the 

implementation. The semantic of can_assume(aei, aej, t, d) is that any user u such 

that (u,aei) ∈ U_AE is authorized to any role rg such that rg ∈ RHS(aej) starting at 

time t for a period d. 

  

Let’s modify the hospital example given earlier. Suppose we have the following 

situation: 

• Five roles exist:  

a. In-floor: r1 

b. In-Clinic: r2 

c. ER-doctor: r3  

d. Attending-doctor: r4 
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e. Consultant: r5 

• Authorization rules: 

a. Let ae1 be: number_of_years_in_residency ≤ 1. Assume that ae1 ⇒ { r1, r2}  

b. Let ae2 be: number_of_years_in_residency > 1. Assume that ae2 ⇒ { r1, r2 , r3, 

r4} 

c. Let ae3 be: (fellow = True ∨ number_of_years_in_residency > 2). Assume that 

ae3 ⇒ { r3, r4, r5} 

If we want to authorize those who spent less that 1 year in residency all the roles of those 

who spent more than 1 year in residency, can_assume comes in handy. 
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Figure 44: Users/Attribute Expressions/Roles Mapping 

 

We specify can_assume(ae1, ae2, t, d). This results in authorizing users {u1, u2, u3} 

(Figure 44) to ae2 and, consequently, causes them to become members of the following 

roles: 

a. Genuine membership: {r1 , r2} 

b. Non-genuine membership: {r3, r4} 
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7.5.3.2 Fine-granularity Form  

This form of the relation gives the users, who are authorized to a specific role, a 

temporary authority over another role.  This permits the security officer to make fine-

granularity authorization when needed. 

Definition 20 

can_assume ⊆ IR × IR × T × D  

where IR, T, and D are roles set, time set, and duration set respectively 

The semantics of can_assume (rg, rh, t, d) means that any user u such that (u, rg) 

∈URAuth (i.e. u is authorized to rg) is authorized to role rh starting at time t for a 

period d.  As a result, u has the following membership: 

a. Genuine membership: {rg} 

b. Non-genuine membership: {rh} 

7.5.3.3 Fine-granularity Form with Cascade 

Assume we have the following fine-granularity can_assume relations,  

can_assume (Silver_client, Golden_client, t1, d1) 

can_assume (Golden _client, Platinum_client, t2, d2)  

Suppose that u and v are two users that are authorized to Silver_client and Golden_client 

respectively, i.e. (u, Silver_client) ∈URAuth and (v, Golden_client) ∈URAuth. Due to 

the relations above, u and v are non- genuine members of Golden _client and 

Platinum_client respectively. However, u is not authorized to Platinum_client because he 

is a non- genuine member of Golden _client. There are situations where it will be 
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desirable to cascade authorization where the authorization gained via a can_assume 

relation could be used as an input to another relation allowing further authorization. For 

this purpose, we introduce can_assume_with_cascade relation defined below.  

Definition 21  

can_assume_with_cascade ⊆ IR × IR × T × D  

where IR, T, and D are roles set, time set, and duration set respectively 

The semeantics of can_assume_with_cascade (rg, rh, t, d) means that any user u 

such that (u, rg) ∈URAuthwit can_assume (Definition 7) is authorized to role rh starting 

at time t for a period d.  As a result, u has the following membership: 

a. Genuine membership: {rg} 

b. Non-genuine membership: {rh} 

 

Suppose we have the following: 

• can_assume (rk, rg, t, d)  

• can_assume_with_cascade (rg, rh, t, d)  

The users who are authorized to rk are authorized to rg by virtue of the first relation. They 

are also authorized to rh because of can_assume_with_cascade.   

7.5.3.4 can_assume Revocation 

can_assume is revoked in the following ways: 

a. By expiration: All authorizations obtained by a can_assume relation expire when 

the relation expires, i.e. when current time ≥ ( t + d) specified in the relation.  
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b. By SSO action: If the SSO deletes the relation, then all authorizations specified by 

that relation are revoked. 

c. The authorization given to u over role rh via relation can_assume(rg, rh, t, d)  is 

revoked if his authorization to rg is revoked. Obviously, other beneficiaries of the 

relation are not affected. 

d. The authorization given to u over role rh ∈RHS(aej) via relation can_assume(aei, 

aej, t, d) is revoked if changes in authorization rules resulted in rh ∉RHS(aej).  

e. If a change in authorization rules or users’ attributes results in making a user 

unable to satisfy expression aei in relation can_assume(aei, aej, t, d). 

7.5.4 can_assume and IRH 

Assume we have the following fine-granularity can_assume relation: 

can_assume (rg, rh, t1, d1) 

According to  definition 4, (rg, rh) ∈IRH means that  (u, rg) ∈ URAuth → (u, rh) ∈ 

URAuth.  

Assume that the two roles are incomparable. Due to the above relation, rh inherits all 

users of rg. This flow of users’ inheritance among the roles is the underlining semantics of 

IRH and based on that, we can say that rg ≥ rh in the IRH. We have discussed this in 

Chapter 3. Moreover, this relation affects IRH. To show this, suppose that in the original 

IRH, we have the rh ≥ rg. The above relation resulted in rg ≥ rh. It makes IRH a quasi-

order. Since rg and rh are mutually senior to each other, they introduce a new class to 

which they belong and, consequently, the IRH is modified.  

Coarse-granularity can_assume also affects the IRH. Consider Figure 45 and the 

following relation:  
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can_assume(ae2, ae3, t, d) 

Accordingly, ∀ u such that  (u, ae2) ∈ U_AE who is authorized to ∀ rg ∈ RHS(ae2),  i.e. 

r2 in Figure 45, will be authorized to ∀ rh ∈ RHS(ae3), i.e. r3 in the figure. As such, the 

following holds:  

(u, r2) ∈ URAuth → (u, r3) ∈ URAuth 

This means that can_assume relation makes r2 ≥ r3 in the new IRH. However, consider 

the following relation: 

can_assume (ae3, ae2, t, d) 

For this relation, (u, r2) ∈ URAuth does not imply that (u, r3) ∈ URAuth. This is so 

because of the rule4: ae4⇒ r3.  

 

 

 

 

Figure 45: can_assume  and IRH 

 

 Definition 22 

IRH= {(rg ,rh) |  (u, rg) ∈URAuth  → (u, rh) ∈URAuth ] 

∨ ( (can_assume (rg, rh, t, d) ) ∨  (can_assume_with_cascade(rg, rh, t, d) ) 

∨ (can_assume(aei, aej, t, d)  Λ  rg∈RHS(aei) Λ rh ∈RHS(aej) Λ  

¬ (∃aek) [¬(aei→ aek) ∧ rh ∈RHS(aek)] ))  

Λ can_assume/can_assume_with_cascade has not expired} 
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7.5.5 can_assume and GRH 

Changes incurred by can_assume  relation to the IRH might create discrepancy between 

IRH and GRH. The relation creates an artificial seniority among roles due to users’ 

inheritance that is not accompanied by a matching permission inheritance. This 

discrepancy is hard to reconcile because the users’ inheritance is not genuine and does 

not reflect a business practice that can reshape permissions inheritance among roles, 

which is the basis of the GRH. 
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7.6 Delegation 

7.6.1 Introduction 

Roles delegation is discussed in RBAC literature, where user u, who is assigned to role rg, 

is allowed to delegate his membership in rg to a specific user, say v, who is a member of 

role rh. However, the recipient, in this case v, is not assigned to the role, and thus cannot 

activate the role, until the delegating user, u in this case, actively delegates his 

membership in rg to v. So, merely adding a pair of roles to can_delegate relation does not 

guarantee that the potential recipient of the delegation will actually be able to assume the 

delegated role. Instead, the actual delegation is left to the discretion of the delegating 

party. This notion of delegation might be beneficial in certain circumstances, such as if 

one of an enterprise staff is leaving on a vacation and wants to delegate his role to his 

assistant.   

Role delegation is an issue that has been strongly motivated in the literature [BS2000], 

[Bar2002], and [ZAC2003].  Our work is cast within the framework laid down by Barka 

[Bar2002] which was devised for the explicit user-role assignment of RBAC. We modify 

Barka’s model to suit the requirement of the implicit user-role assignment specified using 

RB-RBAC. 

7.6.2 Specification 

7.6.2.1 can_delegate Relation 

In this form of can_delegate, we modify the definition of can_delegate presented in 

RBDM0 where the unit of delegation is the role. This type is useful when it is desired to 
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allow individual users to delegate their membership in a specific role to other users who 

are members of another specific role. We differentiate between two types of 

membership: 

i. Original membership: Assuming that rg∈RHS(aei), original membership of 

rg is acquired via either satisfying rulei, or satisfying a rule, rulek, such that 

rulek ≥ rulei. 

ii. Delegated membership: This membership is acquired when a user is 

delegated membership to a role. 

Definition 23 

can_delegate ⊆ IR × IR × T × D  

where IR, T, and D are roles set, time set, and duration set respectively. 

For two users u and v, (u, v) ∈U, can_delegate (rg , rh, t, d) means that user u such 

that (u, rg) ∈URAuth can delegate his membership in role rg to (v, rh) ∈URAuth,  

starting at time t and for the duration d. Note that (u, rg) ∈URAuth means that u is 

an original members of rg, which, by definition, confines the privilege of 

delegating a role to its original members. 

 

7.6.2.2 can_delegate_with_cascade Relation 

The recipient of a delegated membership to a role is authorized to further delegate it to 

other users. This type provides more flexibility than the one discussed above. 
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 Definition 24 

can_delegate_with_cascade ⊆ IR × IR × T × D 

where IR, T, and D are roles set, time set, and duration set respectively. 

So for two users u and v, (u, v) ∈U, can_delegate_with_cascade (rg , rh, t, d)  

means that u such that(u, rg) ∈ URAuth,  i.e. u who is authorized to rg, can 

delegate his membership in role rg to v such that  (v, rh) ∈ URAuth   i.e. v who is 

authorized to rh starting at time t and for the duration d. Furthermore, v can 

delegate his delegated membership of rg to another user w, who is authorized to rk 

provided either/both of the following holds: 

a. can_delegate (rh , rk, t, d) 

b. can_delegate_with_cascade (rh , rk, t, d)  

7.6.2.3 Revocation of can_delegate 

can_delegate is revoked in the following ways: 

a. By expiration: All authorizations obtained by a can_delegate relation expire when 

the relation expires, i.e. when current time ≥ (t + d) specified in the relation.  

b. By SSO action: If the SSO deletes the relation, then all authorizations specified by 

that relation are revoked. 

c. The authorization given to a recipient of delegation is revoked if the authorization 

of the delegating user is revoked.  

d. The authorization given to a recipient of delegation is revoked if the authorization 

he has over his own role is revoked. 
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7.6.3 Delegation Semantics and Users States 

In recognizing various states of users, RB-RBAC gives a plethora of semantics to the 

can_delegate relation since a delegating user can be in P, D, or Act state wrt delegating 

role. Similarly, the recipient can be in P, D, or Act state wrt delegated role. For example, 

a user v who is in D state wrt rh may receive delegation for role rg membership from user 

u who is in P state wrt rg but is in Act state wrt another role, rk. This enriches the 

semantics of can_delegate by making it possible to specify different variations of 

can_delegate, each has a very specific semantics. To illustrate, assume that the policy 

prohibits any user authorized to a role rg from delegating his membership to another user 

unless the original user has activated the delegated role at least once. This can be 

achieved by the following specification:  

(rg, rh, t, d) ∈ can_delegateactivated once so that (∀u,v) [(u,v) ∈U, can_delegateactivated once 

(rg, rh, t, d) means that a user u such that (u, rg) ∈ URA ∪ URD can delegate his 

membership in role rg to v such that (v,rh) ∈URAuth]. 

 

7.7 Summary 

In this chapter, we have presented ARB-RBAC, a rich model that provides administration 

of systems that implements RB-RBAC. Besides showing how to use ARB-RBAC for 

specifying traditional services provided by administrative models discussed in RBAC 

literature, new concepts such as can_assume have been introduced and analyzed. Figure 

46 presents a summary of ARB-RBAC formal model. 
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Figure 46: ARB-RBAC Formal Model 
 

 

 

1. The following is imported from RBAC96: AR and ARH, which are the set of administrative roles and the 
administrative role hierarchy. We assume that user-role assignment wrt administrative roles is explicitly performed.  

2. The notion of role range, rr for short, is imported from ARBAC97. 
3. 2Att is the power set of all possible attributes. 
4. A prerequisite condition is a Boolean expression using the usual ∧ and ∨ operators on terms of the form x and x′ 

where x is a regular role (i.e., x ∈ R). A prerequisite condition is evaluated for a user u by interpreting x to be true if: 
• x ∈ R: ( ∃ x’ ≥GRH x) . (u, x’) ∈ URAuth 

and x′ to be true if: 
• x ∈ R: ( ∀ x’ ≥ GRH x) . (u, x’) ∉ URAuth 

5. CR is the set of all possible prerequisite conditions  
6. r ∈ rr as defined in ARBAC97. This means that the roles that represent the end point of the range may or may not be 

within the range. 
7. AuthorizationOutsideRoleRange or AORR(u,rr) = {(u,r)| (u, r) ∈ URAuth ∧ r ∉rr}. AORR returns the sets of roles 

outside rr to which u is authorized to activate. 
8. Administrating an attribute means the following: 

a. Adding a new attribute to the user’s attributes 
b. Modifying the values of an existing attribute 
c. Deleting an attribute 

9. ARB-RBAC X model authorizes administering users’ attributes via the relation 
can_administer_attributes ⊆ AR × 2Att × CR × 2R 

The semantic of the relation can_administer_attributes (x, y, c, rr) is that a member of administrative role x (or a 
member of an administrative role that is senior to x) can administer the attributes of a user u provided that:  

a. The modified u ’s attributes ⊆ y,  
b. u satisfies prerequisite condition c, and  
c. ∀aei that is satisfied by the resulting attributes the following holds:  

RHS(aei) ∈ rr ∧ AORR (u,rr)= AORR ′(u,rr). 
AORR (u,rr) and AORR ′(u,rr) are the sets of roles outside rr to which u is authorized to activate before and 
after the changes made by the JSO, respectively. This specification is required to ensure that the changes 
that a security officer makes may not cause a change in the user’s authorization wrt roles outside the 
designated role range.  

10. ARB-RBAC Y model authorizes administering users’ attributes via the relation 
can_revoke ⊆ AR × 2Att × 2R 

The semantic of can_revoke (x, y, rr) is that a member of administrative role x (or a member of an administrative role 
that is senior to x) can administer the attributes set of a user u if the following holds:  

1. α ⊆ y, where α is u ’s attributes before the modification such that α satisfies aei ∧ RHS(aei) ∈ rr. 
2. If β is the set of resulting attributes, then ∀aej that is satisfied by the β, the following holds:  

β satisfies aej → RHS(aej) ∉ rr 
3. AORR (u,rr)= AORR ′(u,rr) 

11. RB-RBAC model authorizes administering users’ attributes via the relation can_administer_rule ⊆ AR × 2R 

12. Coarse-Granularity can_assume is specified using the following: can_assume ⊆ AE × AE × T × D  
13. Fine-Granularity can_assume is specified using the following: can_assume ⊆ IR × IR × T × D  

14. can_assume_with_cascade is specified using the following: can_assume_with_cascade ⊆ IR × IR × T × D  
15. IRH= {(rg ,rh) |  (u, rg) ∈URAuth  → (u, rh) ∈URAuth ] 

∨ ( (can_assume (rg, rh, t, d) ) ∨  (can_assume_with_cascade(rg, rh, t, d) ) 
∨ (can_assume(aei, aej, t, d)  Λ  rg∈RHS(aei) Λ rh ∈RHS(aej) Λ ¬ (∃aek) [¬(aei→ aek) ∧ rh 
∈RHS(aek)] )) Λ can_assume/can_assume_with_cascade has not expired} 

16. can_delegate is specified using the following: can_delegate ⊆ IR × IR × T × D  

17. can_ delegate_with_cascade is specified using the following: can_ delegate_with_cascade ⊆ IR × IR × T × D  
18.  
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8. Chapter 8: Conclusion 
 
 
 

This chapter lists the main contributions of this dissertation and discusses future work.  

8.1 Contributions 
 
The principal contributions of this dissertation are: 

a. The formalization of a new family of models to automate user-role assignment 

based on a set of authorization rules. This family of models provides languages to 

express the authorization rules. 

b. The identification of seniority relations that might hold among authorization rules.  

c. Introducing and formalizing the concept of Induced Role Hierarchies (IRH) which 

is extracted from the seniority relations to represent the formal security policy of 

the enterprise. 

d. The identification and analysis of possible discrepancies between the IRH which 

represent the formal security policy of the enterprise, and GRH which is the de 

facto security policy. Our work also provides insight about their probable reasons 

of discrepancy and how to reconcile them.   

e. The introduction of negative authorization into RBAC context with the suitable 

syntax and semantics accompanied by the identification and analysis of possible 
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conflict among authorization rules and suggesting policies to resolve the conflict. 

Moreover, new conflict resolution policies are discussed. 

f. Analysis of 3 classes of prohibition constraints, their semantics in RB-RBAC 

context, and their impact on IRH. New types of constraints were introduced.  

g. Allowing specifying both local (rule-specific) and global constraints (invariants) 

in the same model which improves functionality, implementation and security of 

the system that implements RB-RBAC. Three methods to specify constraints 

within RB-RBAC are presented, compared and contrasted to determine their 

relative strengths and weaknesses. Policies to resolve conflict that might rise 

among the three methods of specifying constraints are suggested.    

h. The suggestion of new semantics for the cardinality semantics in the presence of 

GRH  

i. The formalization of a companion administrative model, namely ARB-RBAC, 

whose specifications are based on users’ attributes. It allows the authorized 

individuals to perform administrative tasks, such as the administration of the 

users’ attributes, authorization rules, and delegation.  

j. Introducing novel concepts to RBAC administration such as can_assume relation 

which gives security officers a new scope of authority over the user-role 

assignment process. 

k. Specifying can_delegate relation that allows users to delegate roles if permitted 

by the security policy. Our work allows new semantics for delegation based on 

users’ states. 
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8.2 Future Work 

RB-RBAC model can be extended in several different directions: 

8.2.1 Cross-domain RB-RBAC  

RB-RBAC is designed to provide access control for a single domain which we define as a 

collection of resources and services under a single point of access control. However, RB-

RBAC could be extended to provide access control to multi-domains, which requires 

among other things:  

i. Integrating RB-RBAC with emerging technologies such as SAML and XML 

to facilitate the communication among interacting RB-RBAC 

implementations. 

ii. Utilizing trust management protocols such as the work in the area of 

Automated Trust Negotiation to help in trust negotiation among interacting 

RB-RBAC implementations. 

8.2.2 Enforcement architectures  

Several possible enforcement architectures could be built to support RB-RBAC. We may 

start by a basic architecture to support Model A, and then extend this architecture to 

support models B and C. The analysis we provided gives some insight to factors that need 

to be considered when weighing different architectural alternatives. 

8.2.3 Role parameterization 

To reduce the number of roles which, as a result, reduces the administrative overhead, 

RB-RBAC could be extended to allow role parameterization.  
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