
Engineering of Role/Permission Assignments

by

Pete A. Epstein
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
in Partial Fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Information Technology

Committee:

__________________________ Ravi Sandhu, Director

__________________________ Edgar Sibley

__________________________ Richard Baum

__________________________ Stephen Nash

__________________________ Stephen Nash, Associate Dean for
 Graduate Studies and Research

__________________________ Lloyd J. Griffiths, Dean, School of

Information Technology and Engineering

Date: _____________________ Spring Semester 2002
 George Mason University
 Fairfax, VA

Engineering of Role/Permission Assignments

A dissertation submitted in partial fulfillment of the requirements for the degree of Ph.D.
at George Mason University

By

Pete A. Epstein
M.B.A

Marymount University, 1984
Bachelor of Science

University of Maryland, 1980

Director: Ravi Sandhu, Professor
Department of Information System

Spring Semester 2002
George Mason University

Fairfax, VA

 ii

Copyright 2002 Pete A. Epstein
All Rights Reserved

 iii

DEDICATION

In memory to my father, John Epstein, who provided me with the vision that I should
continue to grow through education and that I should never stop growing.

In dedication to my beautiful wife, Mary Ann, who continued to support me and listen to
my repeated discussion about my educational journey, even though she had edited my
dissertation more times than there are stars in the sky.

To my children, Jennifer, Jeremy and Justin, please accept your grandfather’s advice.

 iv

ACKNOWLEDGEMENTS

I wish to thank all of the educators of all my classes throughout public school, college, and universities that
in one way or another had a part in teaching me the essentials to allow me to write this dissertation.

I wish to thank my dissertation director and committee chair, Prof. Ravi Sandhu for spending hundreds if
not thousands of hours supporting me through the Ph.D. program. He allowed me to attend an advanced
Computer Security class at GMU as my first class at George Mason University and my first class in
computer security. After following Prof. Sandhu to San Diego, he accepted my request to be my
committee chair and dissertation director. He allowed me to conduct research in an area of Information
Technology (as long the subject area was related to RBAC).

I wish to thank Prof. Sibley for his forceful advice. He was always willing to allow me to drop by and talk
with him about my progress. His advice was always a golden nugget that helped me learn. I will strive to
learn as much as he has.

I wish to thank Prof. Baum. He has the spirit of a true educator. I asked Prof. Baum to be on my
committee and brought him the committee form after his class on a raining and winding night. He told me
I could have just mailed him the form. I told him out of respect, I felt I should have brought the paper to
him in person. He told me the acceptance of my request was part of his job.

I wish to thank Prof. Nash for being on my committee even though I have never taken a class by him.
After Prof. Nash became Dean he remained on my committee and supported my work.

I wish to thank Dave Roberts who continued to remind me of the importance of completing my work. If
my progress was not sufficient, he made sure everyone else knew. I also wish to thank Mike Joyce for his
excellent support and valuable advice.

I wish to thank ACSAC conference for allowing me to attend and present my work. I started my Ph.D.
research at the San Diego conference by receiving a commitment by Prof. Sandhu and finalized the
research by presenting my last paper in New Orleans. I also wish to thank ACM for publishing my first
RBAC paper.

I wish to thank the wonderful GMU staff that supported my efforts, especially, Karen Alarie, Robert Vay,
and Jonathan Goldman.

I wish to thank my company and my customer for supporting my efforts over the last several years, during
school, conferences, and research.

I wish to thank Ed Amorso for his early advice that my Ph.D. was a journey and that my dissertation
director was an exceptional adviser. His advice was precise.

I wish to thank all the people I have not named who assisted me by allowing me to work on my research
and complete my journey. What an educational journey it has been!

 v

TABLES OF CONTENTS

 Page

ABSTRACT ... ix

1.0 INTRODUCTION.. 1
1.1 Problem Statement .. 1
1.2 Approach ... 2
1.3 Organization of the Dissertation.. 4

2.0 RELATED WORK ... 5
2.1 A Role-Finding Approach ... 9
2.2 The Napoleon Approach.. 10
2.3 Access Control for a Healthcare Information System ... 11

3.0 RPAM01 ... 13
3.1 Background ... 15
3.2 Scope ... 17
3.3 RBAC Extension ... 18
3.4 Model Example ... 29

4.0 DECOMPOSITION... 32
4.1 Roles to Jobs.. 34
4.2 Jobs to Workpatterns ... 41
4.3 Workpatterns to Tasks... 47
4.4 Tasks to Permissions ... 51
4.5 Summary Methodology... 55

5.0 AGGREGATION ... 58
5.1 Permissions to Tasks ... 60
5.2 Tasks to Workpatterns... 63
5.3 Workpatterns to Jobs ... 66
5.4 Jobs to Roles.. 70
5.5 Summary Methodology... 74

6.0 CASE STUDIES .. 76
6.1 Process-Oriented Approach for Role-Finding to implement Role-Based Security
Administration in a Large Industrial Organization ... 77
6.2 Napoleon Network Application Policy Environment & Role Based Access Control Framework
for Network Enterprises .. 86
6.3 Summary of RPAM01 vs. Role/Finding and Napoleon Models ... 94

7.0 CONCLUSION.. 96
7.1 Summary ... 96
7.2 RPAM01 Contributions... 97
7.3 Future Research... 99

 vi

8.0 REFERENCES .. 102

 vii

LIST OF FIGURES

Figure Page
FIGURE 1: RPAM01.. 13
FIGURE 2: RBAC96 .. 16
FIGURE 3: RBAC96’S PERMISSION/ROLE ASSIGNMENT ... 17
FIGURE 4: RBAC96 EXTENDED.. 18
FIGURE 5: DECOMPOSING ROLES TO PERMISSION ... 32
FIGURE 6: ROLES TO PERMISSION MAPPINGS .. 34
FIGURE 7: ROLE TO JOB LAYER... 34
FIGURE 8: ROLE-TO-JOBS EXAMPLE ... 40
FIGURE 9: JOBS TO WORKPATTERN LAYER ... 41
FIGURE 10: ONE TO MANY JOBS TO WORKPATTERN EXAMPLE .. 42
FIGURE 11: JOBS-TO-WORKPATTERN EXAMPLE ... 47
FIGURE 12: WORKPATTERN TO TASK PHASE .. 48
FIGURE 13: PERMISSION-EQUIVALENT WORKPATTERN EXAMPLE .. 49
FIGURE 14: WORKPATTERN-TO-TASK PHASE EXAMPLE ... 51
FIGURE 15: TASKS-TO-PERMISSION LAYER .. 52
FIGURE 16: MAPPING TASKS TO PERMISSIONS... 53
FIGURE 17: TASKS-TO-PERMISSION PHASE EXAMPLE ... 54
FIGURE 18: AGGREGATING PERMISSIONS TO ROLES ... 58
FIGURE 19: PERMISSIONS TO ROLES MAPPING.. 60
FIGURE 20: PERMISSIONS TO TASKS PHASE .. 60
FIGURE 21: PERMISSION TO TASK EXAMPLE ... 63
FIGURE 22: TASKS TO WORKPATTERN PHASE... 64
FIGURE 23: TASKS TO WORKPATTERN EXAMPLE.. 66
FIGURE 24: WORKPATTERNS TO JOBS PHASE.. 66
FIGURE 25: WORKPATTERN TO JOB EXAMPLE .. 70
FIGURE 26: JOBS TO ROLES PHASE.. 71
FIGURE 27: JOBS TO ROLES PHASE EXAMPLE ... 73
FIGURE 28: CLASSIFICATION OF ROLES... 78
FIGURE 29: THE PROCESS OF SECURITY ADMINISTRATION ... 80
FIGURE 30: META MODEL FOR PROCESS-ORIENTED ROLE-FINDING .. 80
FIGURE 31: REVISED NAPOLEON MODEL SHOWING THE GENERAL TREND FROM STATIC APPLICATION

POLICIES TO DYNAMIC LOCAL POLICIES ... 87
FIGURE 32: INTERFACE BETWEEN SEMANTIC LAYERS .. 88

 viii

LIST OF TABLES

Table Page
TABLE 1: DECOMPOSITION TABLE OF PROPERTIES ... 26
TABLE 2: AGGREGATION TABLE OF PROPERTIES .. 26
TABLE 3: DOCTOR EXAMPLE .. 30
TABLE 4: ROLE/PERMISSION SYNTAX EXAMPLE... 31
TABLE 5: FOCUS APPROACHES.. 36
TABLE 6: APPROACHES FOR DEFINING ROLE’S RESPONSIBILITIES.. 39
TABLE 7: WORKPATTERN DEFINITION .. 46
TABLE 8: LAYERS: ROLE-FINDING VS. ROLE/PERMISSION.. 84
TABLE 9: LAYERS: NAPOLEON VS. ROLE/PERMISSION.. 92

ABSTRACT

ENGINEERING OF ROLE/PERMISSION ASSIGNMENTS

Pete A. Epstein, Ph.D.

George Mason University, 2002

Dissertation Director: Dr. Ravi Sandhu

No longer should any person be allowed to simply sit down and start working with a

computer; only authorized personnel should be allowed to use the computer and its

applications. Traditionally, an administrator would assign each person accesses to the

applications. In assigning the accesses, the administrator would then grant all of the

necessary permissions needed for the person to complete his/her work, while preventing

that person from performing any unauthorized work.

Using an access model such as Discretionary Access Control (DAC), the

permissions are granted to each individual user. Granting permissions to several users

over many applications, DAC quickly became cumbersome, difficult, and costly to

administer. An alternative access model that resolves these issues is Role Based Access

Control (RBAC). RBAC is a proven technique to assign permissions to users via roles.

A core aspect of RBAC is the Role/Permission Relation. Previous research has applied

RBAC models to create roles. In addition, application developers have accepted the

definition of RBAC permissions; however, the research has not detailed a systematic

model for determining the assignment of permission to roles. To evolve the RBAC

model, and to align permissions with role responsibilities, an approach must be developed

to ensure that all, and only those, permissions that are required by a role are assigned.

One solution is to further define the granularity of a role by studying the work that

is being conducted by that role. My goal was to define a layered model that served as a

basis for detailing an effective methodology to assign permissions to roles. This model

concentrated on the assignment of flat roles to permissions. The model also required that

the roles and permissions be defined. The methodology defined the layer-to-layer

mappings, an aggregation approach, a decomposition approach, and model properties.

After defining the methodology, I determined the benefits of the model by comparing it

against other “decomposition” and “aggregation” models.

 1

1.0 INTRODUCTION

1.1 Problem Statement

Role Based Access Control (RBAC) simplifies the administration of assigning

permissions to users based on their job responsibilities and qualifications. Instead of

directly assigning permissions to users for each application, users are assigned to roles

and roles are mapped to permissions for each application. If the user needs to change

his/her role, the administrator simply assigns a new role containing the appropriate

permissions, rather than updating the user access to each application.

 The well-known RBAC96’s [SCFY96] Permission Assignment (PA) is a many-

to-many permission to role relation. Using RBAC, it is possible to ensure that the

necessary application accesses required to perform the work of an organization are

mapped to a role.

 The effectiveness of implementing the RBAC model lies in the administrator’s

ability to assign permissions correctly to a role. Currently, there is no formal framework

for decomposing roles to permissions; or in the reverse, for aggregating permissions to

roles. Starting from either a role or from the permissions, we need to develop an

extensible, reusable framework that accurately defines the application accesses of a role.

2

1.2 Approach

In this research dissertation, I present a comprehensive approach to role engineering. I

extend the Permission Assignment relation [SCFY96] of RBAC96 by creating a new

model called Role Permission Assignment Model 2001 (RPAM01). RPAM01 supports a

methodology to either decompose roles to permissions or aggregate permissions to roles,

using either a role-focus, permission-focus or application-focus approach. When a role is

decomposed, I answer the question: Which application’s permissions are required for an

agent to perform the role’s work? Analogously, when I aggregate permissions, I answer

the question: Which permissions need to be assigned to the roles to ensure that all of the

work of the application can be effectively performed? In addition, there are other related

issues, which need to be considered, such as minimization, reuse, and completeness.

These are important factors for improving the effectiveness of the role/permission

assignment.

My approach is to extend the permission assignment of the RBAC96 model

between the roles and permissions. The extension does not require the modification of

the end-points (i.e., roles or permissions) or defining the elements within these end-

points. I concentrate on defining the mappings and the creation of the elements between

the end-points, not the role and permission end-points themselves. I can allow the

definitions of roles to be created by previously defined work such as “Role-finding”

[RSW00] and the creation of permissions by the developers of those applications. As

such, the definition of roles, permissions, and role hierarchy are not discussed within this

dissertation.

3

RPAM01 provides a foundation for both the decomposition and aggregation of

role/permission assignment. It introduces the concept of jobs, workpatterns, and tasks as

intermediaries between roles and permissions. These intermediaries form a sequence:

role, job, workpattern, task and permission. I also refer to these as layers. Each layer of

RPAM01 and its relation to adjacent layers are formally defined. By these definitions, I

provide further clarity and scope to the problem, following the well-known principle of

divide and conquer.

I further enhance RPAM01 by applying properties to the framework. The

properties: equivalence, uniqueness, minimization, reuse, and completeness assist the role

engineer in defining PA.

 Next, I define the decomposition methodology. I use the framework as a means

to define the functional approach. The decomposition methodology begins by selecting

a focus approach and then proceeds through each of the phases: role-to-jobs, jobs-to-

workpatterns, workpatterns-to-tasks, and tasks-to-permissions. Each phase includes: 1)

the development of the current layer and 2) the mapping from the current layer to the next

layer.

 Following the definition of the decomposition methodology, I use the

role/permission framework to define the aggregation of roles to permission methodology.

In contrast to decomposition, aggregation groups elements and map that group into a

single element at the next higher layer (i.e., a group of permissions are mapped to a task,

a group of tasks are mapped to a workpattern, etc.). Similar to decomposition,

4

aggregation defines its focus and then proceeds through the layers in a reverse order:

permissions-to-tasks, tasks-to-workpatterns, workpatterns-to-jobs, and jobs-to-roles.

In either methodology, I do not redefine permissions. I consider a permission as

the ability for an agent to access an application. I understand that the applications will

process data and each set of data may have its own permissions.

In summary, I will show that it is possible to develop a model that can be used to

engineer effectively the RBAC96’s Permission Assignment (PA) relation.

 1.3 Organization of the Dissertation

I begin the dissertation with a review of prior work, which was performed to examine the

role/permission relation in Section 2. Next in Section 3, I formally define RPAM01. I

then review the two methodologies of RPAM01: with the decomposition of roles to

permissions, as discussed in Section 4, and the aggregation of permission to roles as

discussed in Section 5. In Section 6, I validate these methodologies using three case

studies. Finally, in Section 7, I summarize the conclusions and work for future research.

 5

2.0 RELATED WORK

The work of roles did not start with the need to access computers but under another

discipline, sociology for organizational theory [TB79], where a role is “set of rights and

duties associated with a position, which are assigned to a person who occupies that

position.”1 Even before Sandhu’s work [SCFY96] in developing the RBAC model, a

concept of roles was evolving; Ting [T88] researched a data security approach based on

User-roles.

Prior to the creation of a central forum to present RBAC work, papers were

introduced in publications such as Database Security, IEEE Computer Symposium on

Research in Security and Privacy [B90], and NIST/NSA on Role Based Access Control

[FK92]. Not until 1995, was the Association for Computer Machinery (ACM) Workshop

on Role-Based Access Control created in the Washington, D.C. area.

During the first ACM RBAC workshop in 1995, there was a need to discuss

fundamental concepts and to provide a standard definition for RBAC. Other discussions

concentrated on the prioritization of RBAC features, roles versus Groups, issues, and

future direction in RBAC [CY95]. There was even the first glimpse of Role Engineering

1 [M98]

6

[C95], where Coyne’s defines role engineering as “an approach to defining roles and

assigning permissions to the roles.”2 He provides a simplistic seven-step approach for

identifying roles. However, the paper does not provide details on how to assign

permission to roles.

Since the initial RBAC conference in 1995, there have been five subsequent

workshops, the latest in 2001, which broadened the scope of RBAC to include all Access

Control Models and technologies.

 RBAC papers have not been limited to the ACM conferences; there have also

been papers published at the IEEE Applied Computer Security Applications Conference

(ACSAC) such as “A New Model for Role Based Access Control” [G95] and “RBAC:

Features and Motivations” [FCK95]. In addition, in the Sigmod Record, a paper was

published on “Role-based Security Object Oriented Database and Separation of Duties”

as early as 1993 [NO93].

 Early research required RBAC to prove its benefits in the area of access control.

This was accomplished by comparing RBAC against other security policies and access

models. One such model is the famous Bell-La Padula (BLP) access model to Mandatory

Access Control (MAC) [BLP75]. Nyanchama and Osborn compared the two models by

interacting MAC with RBAC [NO95]. Later Osborn used a graphical mapping tool

called a role graph [O97] to aid in determining when a single role or edge violated the

conditions required by MAC. Analogously, Sandhu [S96] showed how RBAC

2 [C95]

7

components could be configured to enforce lattice-based mandatory access controls. He

demonstrated how lattice-based *-properties could be presented using RBAC terms.

 RBAC research is not limited to theory; there have been implementations by

Notargiacomo using Oracle 7 [N95], by Myers using Trusted DG/UX [M97], and by

Giuri [G98] using Java.

 The ORACLE 7.0 relational database management system also allowed for the

definition of RBAC application specific policies. Oracle RBAC implementation is

consistent with Sandhu’s RBAC96 model. As a result of their efforts, Oracle submitted

and received acceptance from the ANSI/ISO X3H2 SQL standards committee for their

role functionality into the SQL3 specifications.

 Within DG/UX, Myers suggested that there were mechanisms, which were

flexible enough to support RBAC capabilities in different applications. The three

mechanisms were DG/UX B2 Security Option Capability Access Control (CAC),

creation of a user-created DG/UX B2 Security Option session initiator, or a user-

developed, presentation layer. The low-cost, high-assurance, and application solution

would be the CAC solution.

 Giuri studies the security features of the Java platform to determine if they can be

improved by implementing a role-based access control mechanism. He concluded that

the Java Development Kit provided a framework that could be modified to implement

RBAC policies and that further work was needed to consider explicit denials of

authorization and the activation of roles within privileged security regions.

8

By reading RBAC and related materials I realized that the assignment of roles to

permissions was not explained, rather, it was left to the reader to determine the method.

There were many examples, but few explanations on how permissions were decomposed

from the roles [G95] [B98] [GH00], and aggregated into roles.

 Of particular interest were four papers that delved into role engineering. Coyne

[C95] is the first to define the concept of role engineering, a preliminary approach, and its

relationship to the RBAC96 model [SCFY96]. Three of the papers, Chandromuli [C99]

[C01], Thomsen et al [TOP99], Roeckle, et al. [RSW00] provided details on how to

perform role engineering. In fact, these three articles became a basis for my research and

are further discussed in this section; and the latter two articles are analyzed in detail in

chapter six. As with RPAM01, these efforts defined an approach, which assigns

permissions to roles.

Chandramouli [C99] [C01] discussed a decomposition approach for identifying

roles in a Healthcare Information System. Chandramolli had created the roles and their

hierarchy from his years of experience working with the well-defined roles and structures

of the healthcare system; however, as with the RPAM01 model, permissions must still be

defined by the application developers. Thomsen, et al. [TOP99] presented an

aggregation-layered methodology called Napolean. They define keys and key chains as

opposed to roles and hierarchies. As with RPAM01, permissions are grouped into

objects and are defined by the application developer. Roeckle, et al. [RSW00] describe

their decomposition experience in role-permission engineering in a large corporate

environment. Roeckle defined roles by using a process-oriented approach for “Role-

9

Finding.” Once the roles are found, they can be aligned with the hierarchical

organizational positions to create a role hierarchy. Similar to the stated research,

permissions are defined by the application developers.

In addition to the research in role engineering, there is related work that can be

used to support the definition and maintenance of roles and their assignments. After the

PA has been defined, Barkley and Cinotta [BC98] and Perwaiz and Sommerville [PS01]

provided a method for managing the assignments. Tidswell and Jaeger [TJ00] discussed

further rules that may could to be incorporated into RPAM01 such as mutual exclusion

and conflict of interest. Kang, Park, and Roscher [KPF01] discussed inter-organizational

workflow. Nyanchama [N94] [NO94] [NO95] presented a role graph that is beneficial

when depicting the relationship of decomposed hierarchical roles and for ensuring that

the parent role does not contain a permission that is contained in its child’s role.

2.1 A Role-Finding Approach

The most compelling related work for engineering of Role/Permission Assignment is the

paper [RSW00]. Roeckle, Schimpf, and Weidinger use a process-oriented approach to

find roles. They begin by defining the set of all roles by classifying roles. They deduce

from their classification, that functional roles require a process-oriented role-finding

approach. They use a meta-model that is composed of three layers: process, role, and

access rights.

This decomposition approach starts with roles and works towards the rights and

process required by the roles. It is a formal approach that can benefit from eliminating

duplicate elements and from reusing existing elements of their meta-model. The Role-

10

Finding approach can further benefit by decomposing the role from the steps required to

perform the components defined in the process layer: Job Position, Job Function, Security

System Application, and Attribute Occurrences. The Role-Finding Approach, however,

does not define an aggregation approach from permissions to roles.

 In the following dissertation, I will discuss reuse and minimization properties,

process definition, aggregation and decomposition.

 In summary, while the existing models structure the identification of roles and

permissions, the relations are insufficient. The models do not fully exploit aggregation

and decomposition between roles and permissions. Furthermore, the existing approaches

do not consider many role engineering efficiency alternatives. At best, they may consider

reuse of components, but they do not consider other efficiencies such as eliminating

redundancy.

2.2 The Napoleon Approach

The Napoleon work by Thomsen et al. encompasses two papers. The first paper [TOB98]

describes the responsibilities of the application developer and the local system

administrator in a seven-layer model. The second [TOP99] extends the Napoleon model

by supporting workflows and policies in semantic layers.

The Napolean Model aggregates permissions to roles by using layers as building

blocks to map permissions to roles. The layering is divided into three groups: Local

Policy, Semantic Policy, and Application Policy. The authors state, “The Napoleon

approach is that distinct sets of users maintain different parts of the policy based on their

11

understanding and their responsibilities.”3 Users are assigned to roles at the local policy

layers. The purpose of the application “is to encapsulate application specific information

so that it can be incorporated into the higher layers in a uniform manner.” The middle

layer, combines keys, key chains, policy, and constraints into semantic layers.

The layering concept provided several benefits, such as reusing previously

defined layers and the ability to define policy. Introducing properties to the layers in

order to reduce the number of duplicate elements can assist in the definition of the

Napolean model. In addition, I will introduce a detailed approach on how to perform the

aggregation of permissions to roles. Another enhancement is the ability to decompose

from roles to permissions.

2.3 Access Control for a Healthcare Information System

Chandramouli [C99] describes a five-step methodology for defining an Access Control

Service for a Healthcare Information System.

Step1: For a given Healthcare Information System, identify:

(a) Supported Business Processes and

(b) Information Domains associated with Business Processes;

Step 2: Identify Information Objects and Methods to support Business Processes;

Step 3: Identify mapping policy requirements to derive protection requirements

for objects and their methods;

Step 4: Define roles and determine business processes to be assigned to Roles

based on Protection Requirements; and

3 [TOP99] page 146

12

Step 5: Determine access decision variables for each of the methods for a given

access instance to determine effective rights.

Chandramouli later [C01] defined a framework, called DAFMAT (Dynamic

Authorization Framework for Multiple Authorization Types), for multiple authorization

types in a healthcare application framework. He joined RBAC with a Dynamic Type

Enforcement (DTE), which was then combined with a logic-driven authorization engine

in the DAFMAT model. The DAFMAT model provided a dynamic authorization

framework.

Chandramouli’s work can benefit from a detailed decomposition methodology.

Chandramouli defined his DAFMAT components based on his pre-existing knowledge of

the healthcare industry. For another organization where the pre-existing roles

responsibilities are not known, RPAM01 can be used to decompose the roles. Another

benefit of RPAM01 is that it allows the reuse of elements by decomposing the process

into detailed steps. Further efficiency can be accomplished by eliminating unnecessary,

unused, and equivalent elements. Although Chandramouli’s approach provided a detailed

decomposition methodology, it cannot aggregate the elements into roles.

 13

3.0 RPAM01

The RBAC96’s PA assignment can be considered to be a layered model, I call RPAM01.

Instead of mapping roles to permission directly, I add three new layers: Jobs,

Workpatterns, and Tasks. Each layer of RPAM01 (See Figure 1) is independent to all

other layers.

RPAM01 describes a model that can be followed as either top down by assigning

roles to permissions or bottom-up by assigning permissions to roles. If I start from the

top I decompose roles into permissions. When I start from the bottom I aggregate

permissions into roles.

Figure 1: RPAM01

Workpatterns
<steps>

Roles

Jobs

Tasks

Permissions

D
e
c
o
m
p
o
s
i
t
i
o
n

A
g
g
r
e
g
a
t
i
o
n

14

At the top of RPAM01 is the role layer. A role may be responsible to perform

more than one type of work. Each type of work is defined as a job. The agent

performing the role will follow some sequence of steps to complete an aspect of the job.

The steps need not be in any sequence; but for organizational purposes, I group all the

steps that may be performed by a job into a set I call a workpattern. Each workpattern

may require one or more permissions to access applications. Instead of mapping directly

to permissions, I realize that there is a benefit of grouping permissions into a set that

other workpatterns can also use rather than re-identifying individual permissions every

time a workpattern is defined. I start the grouping with the concept of a step. Each

unique workpattern step is assigned to a task. The workpattern in turn is mapped to these

tasks. I do not know until I decompose tasks into workpatterns if the tasks will map to a

set of permissions. If the task does not map to a set of permissions, I label the task as

permission-free.

A quick example of the layered RPAM01 is the role of a professor who performs

the jobs of a teacher and a researcher. In the example, I will underline the steps that will

map to tasks. These tasks will be mapped to permissions. In the workpattern of a

teacher, the steps: create lecture, test mid-term exam, record mid-term grades, lecture,

test final exam, and record final grades are performed. In the workpattern of a researcher,

the steps: hypothesize, research hypothesis, document hypothesis, research solution,

document solution, and lecture are performed. From the first workpattern, I have lecture

and record, while the second workpattern document and lecture that require permissions

to access applications. So I map the first workpattern to the tasks lecture and record, and

15

I map the second workpattern to a new task called document, and reuse the task called

lecture from the first workpattern. I then map the tasks to the permissions that grant

accesses to the needed applications.

This chapter details the background, scope, definition, aggregation, and

decomposition of RPAM01.

3.1 Background

The Engineering of Role/Permission Assignments research is derived from RBAC96

[SCFY96]. There are three components of RBAC96 that I use for the RPAM01

extension: users (U), roles (R), and permissions (P).

The RBAC96 model, illustrated in Figure 2, defined the components of

role/permission assignment by PA. It also defined a role hierarchy RH. It does not,

however, state how to engineer a role/permission assignment.

In Figure 2 and later in Figure 3, the double-headed line means “many.” A

single-headed line represents “one.” A double-headed arrow represents a many-to-many

relation between the sets.

16

.

Figure 2: RBAC96

This dissertation concentrates on the permission assignment (PA) of roles to

permissions. Figure 3 illustrates the roles, permissions, and PA. The PA aspect of the

RBAC96 model is expanded to create an approach to engineer roles to permissions and

permission to roles.

R
Roles

AR
Admin.
Roles

P
Perm.

AP
Admin.
Perm.

U
User .

.

Constraints

UA

User
Assignment

RH

Role
Hierarchy

PA

Permission
Assignment

S
Sessions

APA

Administrative
Permission
Assignment

ARH

Administrative
Role

Hierarchy

AUA

Administrative
User

Assignment

user roles

17

Figure 3: RBAC96’s Permission/Role Assignment

The notational syntax that I use for my extension from the RBAC96 model requires that:

• R is a set of roles;

• P is a set of permissions; and

• PA ⊆ P x R is a many-to-many permission to role assignment and

administrative permission to administrative role assignment relations.

3.2 Scope

In this dissertation, I research the design of role/permission assignment prior to the

deployment of the system.

RPAM01 uses a subset of the RBAC96 model that does not include constraints,

any administrative components, or user/role assignments. It does include roles,

permissions, and role/permission assignment. I assume the users, roles, and application

permissions pre-exist.

R
Roles

P
Perm.

PA

Permission
Assignment

18

I investigate two approaches: decomposition and aggregation. In both approaches,

the organization administrator identifies roles and the application developer defined

permissions.

3.3 RBAC Extension

I have modified the RBAC96 model as depicted in Figure 4 by adding three sets: Jobs,

Workpatterns, and Tasks.

Figure 4: RBAC96 Extended

The notational syntax and the terms that are used in this extension follows:

• R is a set of Roles;

• J is a set of Jobs;

• T is a set of Tasks;

• P is a set of Permissions;

• RJ ⊆ R x J is a many-to-many role to job assignment relation;

RJ TP

WT

R
Roles

P
Permissions

PA

Permission
Assignment

Users

J
Jobs

T
Tasks

UA

User
Assignment

JW

W
Work

Patterns

19

• JW ⊆ J x W is a many-to-one job to workpattern assignment relation;

• WT ⊆ W x T is a many to many workpattern to task assignment relation; and

• TP ⊆ T x P is a many-to-many task to permission assignment relation;

As with the RBAC96 model, the double-headed line means “many.” A single-headed

line represents “one.” A double-headed arrow represents a many-to-many relation

between the sets. In the case of jobs-to-workpattern, a double-headed arrow points to

jobs and a single-headed arrow points to workpatterns, so jobs-to-workpattern is a many-

to-one relation.

The many-to-one relation restricts the JW mapping to a single solution for each job,

which eventually will be mapped to a set of permissions. If I allow JW to be a many-to-

many mapping, a job will be able to be mapped to multiple solutions or different sets of

permissions. The PA needs only one solution for a role to have the needed permissions

to access the applications to perform its work, since multiple solutions provide limited

benefit. In fact, there will be RPAM01 inefficiencies because:

§ Additional solutions require additional resources to create those solutions;

§ Additional solutions require additional maintenance resources to maintain

the additional solutions;

§ Any changes or review of jobs will require the analysis of all solutions;

§ Each different solution is another set of permissions that provided a

different access path to the applications;

§ Restricting access to the work performed by a job cannot be denied simply

by a single job (each solution must be restricted); and

20

§ Analysis for unauthorized access is required for each solution.

One of the goals of this dissertation is to detail a methodology to increase

efficiency when performing the role/permission assignments. Each phase has two major

portions: the definitions of the elements within a layer, and the mapping of the elements

from one layer to the next. I can improve the engineering of roles by reducing the

number of elements in a layer to the exact elements required by the mappings. This can

be accomplished by deleting duplicate elements that map to all of the same elements that

are contained in a lower layer or by not defining new elements by reusing existing

elements. To work towards these goals, I introduce properties that can be applied to the

elements within a layer and the mapping between layers. These properties are:

equivalence, uniqueness, minimization, reuse, and completeness. They will be defined

later in greater detail.

I strive to minimize the number of jobs, workpatterns, and tasks that will be used

to perform the role/permissions assignments. Ideally, each element is unique and

therefore each set will not contain duplicate entries. I can determine if an element is

unique if there is not another element that is equivalent to that element. My real interest

in equivalence is that, when I finish mapping the elements of a layer to permissions, I

want to know if the layered elements map to the same set of permissions. If the elements

are equivalent, then the element will grant exact, same permissions to the application; and

there may not be a benefit to have more than one element mapping to the same set of

permissions. To continue with this line of thought, I may not need to define another

element if I can reuse an existing element if it maps to the desired element(s). Once I

21

finish with the approach, I verify that all the pre-defined elements (i.e., roles and

permissions) have been mapped. I check the completeness of PA by mapping each role

to at least one permission and each permission to at least one role. As I stated earlier, I

strive to minimize the number of elements; however, there may be a benefit in not

eliminating duplicate unique elements. I will discuss these potential benefits later in this

dissertation.

 For each of the following properties, there is a formal definition. These

definitions are based on the following terms:

• X is a set of layered elements;

• Y is a set of layered elements;

• ƒ(x) = y;

• ƒ−1(y) = x ;

• If ƒ is a function from X to Y, then ƒ is onto if for each y in Y there is an x in

X such that ƒ(x) = y;

• ƒ (x:X) → 2Y the mapping of set of X layered elements to a set of Y layered

elements; and

• P is a set of Permissions.

22

 The equivalence property is applicable to the J, W, and T layers. Two sets, within

the same layer, are equivalent if they contain the exact same elements. Permission

equivalence available only in the W layer is a special case of equivalence and is defined

as two sets that map to the same set of permissions. Permission equivalent sets need not

be identical, but equivalent sets are permission equivalent. For example, workpattern A

may require three tasks: a task to logon to the computer, another to make a phone call,

and a third to check e-mail. Workpattern B will perform the same tasks such as logon to

the computer and check e-mail, and require a third task of fax documents. The two tasks

-- making a phone call and faxing documents -- do not require special permissions.

Workpatterns A and B map to the same permissions, even though they map to slightly

different tasks; consequently, workpatterns A and B are permission equivalent

workpatterns.

Property 3: Uniqueness –

xa , xb ∈ X
If xa is not equivalent to xb then xa is unique.

Property 1: Equivalence –

ƒ (xa:X) → Yc

ƒ (xb:X) → Yd
If {Yc} = {Yd} then I say xa is equivalent to xb in the set X, which is denoted as
xa ≅ xb

Property 2: Permission Equivalence –

ƒ (xa:X) → Pc

ƒ (xb:X) → Py

If { Pc } = { Pd } then I say xa is permission equivalent to xb in the set X, which is
denoted as xa ≅p xb

23

Uniqueness, applicable at all layers, checks if two or more elements are

equivalent. If they are, I may be able to minimize the number of elements. For example,

the Information Technology and Psychology Departments require the same set of

permissions to logon into the university registration applications. Both departments do

not need to create their own version of a logon task; one unique task can be used for both

departments. I work towards uniqueness when I: 1) minimize duplicate elements or 2)

reuse a unique element. I need to be careful that I do not minimize an element that is

needed for role-permission completeness (completeness is defined later in this section).

The minimization property, only available in J, W, and T layers, merges copies of

equivalent elements. As stated earlier, minimization is a goal but not a requirement.

Equivalent elements can be minimized into one element to eliminate the need to

administer multiple copies of elements that map to the same tasks. I can also minimize

permission equivalence workpatterns, by either including some, all or none of the

permission-free tasks in the minimized element. This decision is left to the role engineer

in determining the needs of the workpattern with respect to future permission

implementation. In the previous paragraph, minimization was performed on the

Property 4: Minimization –

x , xi ∈ X
ƒ (x:X) → Y

ƒ (xi:X) → Yj
∀ xi that are equivalent, I can say x is the minimization of the xis and
{Y} = ∪i=1, …, n {Yi }.

24

workpattern layer that contained equivalent workpatterns A & B by eliminating

workpattern B.

Instead of inefficiently creating a new element every time it (e.g., element A) is

mapped to exactly the same element in another layer (e.g., element X), I can reuse the

element in the destination layer. For example, element A already maps to element C in

the destination layer, and I create a new element B that can also be mapped to an existing

element C. There is no reason to create another element in the destination layer called D;

I can simply reuse element C. The reuse property permits two elements from one layer to

reuse the same element from an adjacent layer. Using the previous Information

Technology example, when the Psychology Department wants to create a workpattern,

they find that a pre-existing task has been defined to access student records. Instead of

creating a new task, they reuse the task that has been defined by the Information

Technology Department. Reuse of elements occurs for workpatterns, tasks, permissions,

and jobs, except for the aggregation of workpatterns to jobs. (Note: recall that the

mapping from workpatterns to jobs is a many-to-one relation.).

Property 5: Reuse –

ƒ (xa:X) → Yc

ƒ (xb:X) → Yd

If y ∈ {Yc} ∩ {Yd} then I say workpatterns xa and xb in the set X are reusing y

25

A final property to define is completeness. A layer is complete if all the elements

of its layer are mapped to an element in the same destination layer. There is

completeness of roles, jobs, workpatterns, and jobs; but they are all subservient to

completeness of permissions. I can also consider role-to-permission completeness,

completeness of permission to roles, and roles to permission. This property is important

because, if a permission is not assigned to at least one role, then the application being

granted access by the unassigned permission is inaccessible; and, thus, the work

performed by that application cannot be accomplished. For example, the human resource

application has a permission to backup human resource data; and if the backup

permission is not granted to a role, a backup cannot be performed on the resource

application. Analogously, if there exists a role that is not assigned to a permission, the

role will not perform any work because it will not have any permissions that grant access

to any applications.

In summary, there are equivalence, uniqueness, minimization, reuse, and

completeness properties that apply to RPAM01. Not all of the properties apply to each

layer. Table 1 shows the applicable property by an “X” in the relevant layer for the

decomposition approach, and Table 2 shows the aggregation approach. The completeness

verification starts from the reverse direction. In the case of decomposition, the

verification starts at the permission layers while for aggregation it begins at the role layer.

Property 6: Completeness –

If ƒ (x) and ƒ (y)-1 are “onto” then I say X is complete to Y.

26

The only difference between the two tables is in the reuse and completeness

columns. The first reuse property difference is caused by the many-to-one mapping

restriction. I am restricted from decomposing one job into multiple workpatterns and

from aggregating many workpatterns into one job. In addition, I can not reuse the

elements of the layer in which I begin the approach (i.e., in the decomposition approach I

do not reuse roles). The completeness property is important when I map to the next layer.

With respect to the decomposition algorithm I map to the next lower layer. With respects

to the aggregation algorithm, I point to the layer above it. The decomposition approach

does not have a layer below permission and, similarly, there is no layer above role when I

use the aggregation approach. Therefore, an “X” is not indicated in the Completeness

column for the final layer of each approach.

Table 1: Decomposition Table of Properties

 Uniqueness Equivalence Minimization Reuse Completeness

 Permission

Role X X X
Job X X X X X

Workpattern X X X X X X
Task X X X X X

Permission X X X

Table 2: Aggregation Table of Properties

 Uniqueness Equivalence Minimization Reuse Completeness

 Permission

Role X X X
Job X X X X

Workpattern X X X X X X
Task X X X X X

Permission X X X

27

Before I illustrate an example, I want to exemplify the importance of a

workpattern. The workpattern layer is different from the other layers because it: 1) is a

subset of another set I call steps, 2) adheres to the permission equivalence and

equivalence properties, and 3) has a JW many-to-one relation.

A workpattern is created to assist the role engineer in identifying permissions. It

assists in translating conceptual work into an organized, related set of steps. Although

the steps may be related, they do not have to be in sequence. One step can occur

repeatedly in a workpattern; however, only one occurrence of the task that represents the

permission required by that step is mapped to the workpattern. If a workpattern does not

contain at least one step, I will consider the workpattern meaningless and delete it. For

example, there is no benefit of having a workpattern that performs no work.

Permission equivalence is based on the concept of permission-free tasks. The

difference between equivalence workpatterns and permission equivalence workpatterns is

the addition of permission-free tasks mapped to by the workpatterns. This leads to the

understanding that two separate jobs mapping to two distinct permission equivalent

workpatterns may not be equivalent because their workpatterns may map to different

permission-free tasks. As a corollary, two equivalent workpatterns must be permission-

equivalent.

The benefit of a permission-free task is that it can be used as a placeholder for a

future defined property. By means of the minimization property, a role engineer chooses

to delete or retain a permission-free task. For example, there may be a task to place a

28

telephone call from your workstation. Currently, there is no special permission required

to access the telephone; later, there may be a need to use an access code to dial a phone

number. I know in the future, that the special permission will be required. I do not want

to forget about the future access needs, so I insert a placeholder in the workpattern to

remind me about future enhancements.

The generalized six properties discussed earlier can be tailored to the workpattern.

They are listed below along with the additional definitions of steps and the permission-

free task.

• S is a set of Steps;

• W is a set of Workpatterns, W ⊆ 2S;

• Workpattern_tasks(w:W) → 2T the mapping of workpattern w to a set of tasks;

• Task_permissions(t:T) → 2P the mapping of task t to a set of permissions; and

• TP ⊆ T x P is a many-to-many permission to task assignment relation.

Equivalence
Workpattern_tasks(wa:W) → Tx

Workpattern_tasks(wb:W) → Ty

If {Tx} = {Ty} then I say wa is equivalent to wb in the set W, which is denoted as wa ≅
wb.

Permission Equivalence
Workpattern_tasks(wa:W) → Tx

Workpattern_tasks(wb:W) → Ty

Task_permissions(tx:T) → Pc

Task_permissions(t y:T) → Pd
If { Pc } = { Pd } then I say wa is permission equivalent to wb in the set W, which is
denoted as wa ≅p wb.

Permission-free task:
Permission_free(t) = {p ∈ P  (t,p) ∉ tp}

29

Uniqueness:
wa , wb ∈ W
If wa is not equivalent to wb then wa is unique.

Minimization
w , wi ∈ W
Workpattern_tasks(w:W) → T

Workpattern_tasks(wi:W) → Tj

∀ wi that are equivalent, I can say w is the minimization of all wis and {T} = ∪i=1, …, n

{Ti }.

Reuse
Workpattern_tasks(wa:W) → Tx

Workpattern_tasks(wb:W) → Ty

If t ∈ {Tx} ∩ {Ty}, then I say t is being reused by workpatterns wa and wb in the set W.

Completeness

If Workpattern_tasks and Workpattern_tasks-1 are “onto”, then I say W is complete to T.

3.4 Model Example

Before I present RPAM01, I consider a design example (See Table 3.): Mary, in the role

of a doctor, is caring for her patient at the hospital. She needs to be able to perform the

jobs: 1) gathering information about her patients, 2) operating medical equipment, 3)

researching nationally to diagnose ailments, and 4) annotating the patient’s hospital

record. To perform the first job of gathering patient information, Mary needs to review

hospital records, her own office records, the referring doctor’s records, and the patient’s

long-term history.

Doctor is a role in R. The doctor role can perform four jobs: Job J1 - Gathers

information about her patients; Job J2 - Operates medical equipment; Job J3 – Researches

nationally to diagnose ailments; and Job J4 - Annotates the patient’s hospital record.

30

For Job J1, the Workpattern WA is the following sequence of tasks: Task T1 is to

review hospital records; Task T2 is to review the doctor’s (Mary’s) office records; Task

T3 is to refer the doctor’s records; and Task T4 is to review the patient’s long-term

history.

Task T1 requires a permission to review the hospital database (P1). Task T2

requires a permission to review the doctor’s office record (P2). Task T3 requires

permissions to the three referring doctors’ records (P3); and Task T4 requires two

permissions: the doctor’s record (P2) and the patient’s record (P6).

The set of Roles = {R1 (doctor)},
There is a set of Jobs = {J1, J2, J3, J4 },
There is a set of Tasks = { T1, T2, T3, T4 },
There is a set of Permissions = { P1, P2, P3, P4, P5, P6 }

Table 3: Doctor Example
Role Job Workpatterns

Steps

Tasks

Permission

R1 J1 WA S1, S2,
S3, S4

T1, T2,
T3, T4

P1, P2, P3, P4,
P6

I can show the agility of using the notational syntax by a more complex abstract example.

The example is:

There is a set of Roles = {R1, R2, R3 }
There is a set of Jobs = {J1, J2, J3, J4 }
There is a set of Workpatterns = {WA, WB, WC, WD}
There is a set of Steps = { S1, S2, S3, S4, S7 }
There is a set of Tasks = { T1, T2, T3, T4, T7 }
There is a set of Permissions = { P1, P2, P3, P4, P5 }

31

For this example, I am given the following information:
J1 = WA that contains = { S1, S2, S1, S1 } that requires tasks { T1, T2}
J2 = WB that contains = { S2, S7 } that requires tasks { T2, T7 }
J3 = WC that contains = { S3, S4, S3} that requires tasks { T3, T4 }
J4 = WD that contain = { S3 } that requires task { T3 }

Tasks T1 requires permission = { P1, P2, P3}
Tasks T2 requires permission = { P2, P4 }
Tasks T3 requires permission = { P2}
Tasks T4 requires permission = { P3, P5}
Tasks T7 requires permission = { P2, P5}
R1 = {J1}
R2 = {J2, J3}
R3 = {J4}

Table 4: Role/Permission Syntax Example

Role Job Workpatterns

Steps

Tasks

Permission

R1 J1 WA S1, S2, S1,
S1

T1, T2 P1, P2, P3, P4

R2 J2,
J3

WB, WC S2, S7,
S3, S4, S3

T2,T3,
T4,T7

P2, P4, P3, P5

R3 J4 WD S3 T3 P2

Table 4, shows the data from the example. The stated syntax is used in chapters 4 and

5 to discuss RPAM01. Specifically, I minimize equivalent tasks and permissions, reuse

tasks and permission, and identify minimal unique sets.

 32

4.0 DECOMPOSITION

The RBAC96 model is extended to create a methodology to map roles to permissions,

(See Figure 5.). There are four phases: Roles-to-Jobs, Jobs-to-Workpatterns,

Workpatterns-to-Tasks, and Tasks-to-Permissions. Each phase will be discussed in detail

in its own section. The final section summarizes the entire methodology.

Figure 5: Decomposing Roles to Permission

P R

J

T

W

 33

Each section is discussed in detail by describing:

§ the layer’s objectives;

§ the issues to be resolved;

§ an approach to resolve the issues;

§ an example; and

§ the consequences of not implementing the layer.

Before I begin, I highlight a few important characteristics of the decomposition

approach that are addressed later in the following sections. I observe the following in

Figure 6:

§ The many-to-one relation of jobs to workpatterns, with J1 and J2, both map to

WA (a many-to-one mapping, the reverse mapping of many workpatterns to a

single job is not allowed);

§ Two different workpatterns, WA and WB, map to the same task T8 (the task is

being reused);

§ Two different tasks map to the same permission T1 and T8 to P1, and T1, T4

and T8 to P5 (the permissions are being reused); and

§ T2 is a permission-free task.

 34

Figure 6: Roles to Permission Mappings

4.1 Roles to Jobs

The first phase of the approach is to decompose roles into jobs. I map pre-existing roles

to jobs as a many-to-many relation (See Figure 7).

Figure 7: Role to Job Layer

R
Roles

J
Jobs

RJ

R1

J1

J2

J3

WA

WB

T2

 T4

T8

T1

T7

T8

P1

P5

P5

P5

P3

P12

P2

P1

 35

 The challenge is to create a methodology to decompose an element from the

current layer into elements of the next layer. I do not want to arbitrarily decompose an

element but rather develop the decomposition based on sound decision criteria. To assist

in the decision process, I introduce a concept called “focus-based.” I focus my

engineering decisions based on a set of pre-determined criteria.

Focus-based requires the definition of two components. I first define my focus

for the future role engineering decisions and then choose the criteria that will be used as a

basis for these decisions. For this dissertation, I select one of three focuses: role,

application, or permission. Then I choose the attributes that will be used as the decision

criteria.

As one may expect, a “focus-based” role involves making decisions based on the

characteristics of the pre-defined role; “focus-based” application involves making

decisions on the characteristics of the applications that are being accessed; and “focus-

based” permission involves making decisions on the characteristics of the pre-defined

permissions.

After choosing the focus, I select the focus attributes that can best guide my role

engineering decisions. Table 5 suggests how to define the attributes.

 36

Table 5: Focus Approaches

Role Application Permission
§ Learn about each role
§ Determine key information

about the work of the role
§ Define role attributes

§ Learn about each
application’s functionality

§ Analyze the interrelations
between functionality

§ Define application attributes

§ Learn about each application
§ Identify the permissions for

each application
§ Learn the access capabilities

of each permission
§ Analyze how the access

capabilities may interrelate
§ Define permission attributes

I can identify focus attributes for

§ Roles as skill sets, educational level, abilities, experience;

§ Applications as functionality, manageability, interoperability; and

§ Permissions as operating system, access type, application type, and capability.

For example, I realize I have a set of university roles. I determine from the roles that the

important attributes are education, experience, and discipline. If I wanted to focus on

application, I may choose the attributes of functionality (i.e., human resource, accounting,

etc.), type (i.e., mail, database, etc.), and interoperability (i.e., applications that will

communicate to another application via the internet).

After choosing the criteria, I learn more about the role’s responsibilities by

categorizing each role into one of the following groups where:

1. the responsibilities of a role have been documented,

2. the responsibilities of a role have not been documented but where the

role has been defined, and

3. neither a role nor the responsibilities have been defined.

 37

For roles that fall in the first group, I divide a role’s responsibilities into sets

based on the criterion defined from the focus-based approach. Related responsibilities

that can be part of the same job set are merged into “like job” sets, J1, … Jn. Unless there

is a special need to have a non-unique job, a job is reused and each Ji is unique. For

example, the responsibilities of the office administrator role can be to 1) maintain the

records for all Ph.D. students, 2) maintain the calendar for the dean, and 3) schedule

meetings with the professor.

In the second group, each role exists and its responsibilities have not been

documented. Extra effort is required to determine the responsibilities from the

undocumented roles. This is accomplished by monitoring and then by documenting the

activities performed when a user has activated a role. From the documentation and my

knowledge of the chosen approach and its attributes, I analyze the responsibilities

required to perform a role’s activities similar to the earlier sets, J1, … Jn. Unless required

by the organization, jobs are reused and each Ji is unique.

For example, I have a role for a computer administrator. The computer

administrator has not had time to create her list of responsibilities; however, a role

engineer can follow the computer administrator while she performs her role to record her

activities. The approach is application focus-based and the attributes are functionality and

manageability. The jobs are chosen based on the attributes of application functionality

and manageability. By observing the work of the role, I determine that the computer

administrator performs archiving, software maintenance, and password management of

application servers. Subsequently, I map the computer administrator role to the jobs of:

 38

Application Server Archiving, Application Server Software Maintenance, and

Application Server Password Management.

The final group is for a role that has been identified, but has not been defined or

documented. I need to deduce the role’s expected responsibilities by interviewing the

designer of the organization. I then document each role’s responsibility based on the

focus approach criterion. Related responsibilities that can be part of the same job set are

merged into like job sets, J1, … Jn. Unless required by the organization, a job is reused

and each Ji is unique. For example, if the government agency ABC.gov has a new

position for a Chief Information Officer (CIO) that is required by the Clinger-Cohen

Act4, I need to create the jobs that perform the responsibilities of a CIO role. For many

government agencies this is a new role, although it does exist in some agencies and

certainly is commonplace in industry.

I need to determine from management what the responsibilities are of the CIO

role. The approach is role-focus and the attributes are skill sets and experience. After

talking with the Chief Financial Officer, Chief of the Agency, and the Chief of

Operations, I determine that the jobs are Program Oversight, Technical Management, and

Budget Review. Although a role has the skill set to understand technological

information, it does not have the experience to perform in-depth technical review.

Fortunately, the CIO can hire a person to perform a role that contains the job of in-depth

technical reviewer.

4 “The Clinger-Cohen Act of 1996 was previously called the Information Technology Management Reform
Act (ITMRA or, PL.104-106.). It establishes the role of a Chief Information Officers in the government,
and forms the interagency Chief Information Officers’ Council.” Documented on the NSF Clinger-Cohen
Act Page by the National Science Foundation Office of Information and Resource Management.

 39

The benefit of this layer is beginning with a comprehensive approach to assign

permissions to roles. A role is complex; and without knowing its responsibilities, there

may not be permission completeness to a role. Table 6 is a summary of the approaches.

Table 6: Approaches for Defining Role’s Responsibilities

Documented Existing Undefined
§ Read the write-up of the

roles
§ Identify responsibilities
§ Categorize

responsibilities by job

§ Monitor a User
performing a role

§ Document a role’s
responsibilities

§ Categorize
responsibilities by job

§ Interview a role’s
designer

§ Deduce responsibilities
§ Document a role’s

responsibilities.
§ Verify responsibilities

by simulating a role
§ Categorize

responsibilities by job

A role-job phase begins by detailing a role. Through decomposition, I learn the

responsibilities of each role. These responsibilities are the jobs that identify the work that

can be performed by a role.

As each subsequent role is decomposed into jobs, I may find that one of the jobs

exists as part of another role. Rather than create a non-unique job, I can map a role to the

same job that was previously defined. By reusing jobs, I obtain the benefit of saving

development, administration, and maintenance resources.

 Rather than solve the harder problem of assigning roles to permissions, I use the

divide and conquer principle to subjugate the roles into categories of jobs. This phase

lays the foundation to decompose the job into steps by using a process flow. Without

this phase, I could not decompose the more complex role into steps by using a process

 40

flow. For a simple, intuitive role, this phase may not be needed; however, for a multi-

faceted role I may miss work responsibilities that could prevent the role permission

assignment from complying with the completeness property. In addition, without this

phase, each role will need to be entirely decomposed, and I will not have the benefit of

reusing previously defined jobs.

An example of applying the above stated methodology is shown in Figure 8. A

role-focus approach was used to define the jobs of three roles: R1, R2, and R3. R1

performed the jobs of J1, J6, and J3; R2 performed the jobs of J1, J9, and J72; and R3 only

performed the jobs of J72. Fortunately, I can reuse jobs J1 and J72 because the former was

defined during the decomposition of R1, and the latter for R2.

Figure 8: Role-to-Jobs Example

R1

J1

J6

J3

RJ

R2

R3
J9

J72

 41

4.2 Jobs to Workpatterns

My next objective is to identify the set of steps that is required to perform the work of the

job. The job to workpattern phase is the only mapping that is not many-to-many, but is a

many-to-one relation (See Figure 9.). The reason for this limitation is described later in

this section.

Figure 9: Jobs to Workpattern Layer

In this phase, each job is mapped only to one workpattern and the steps contained

in the workpattern are defined. The workpattern provided an engineering aid to explicitly

detail the steps that are required to perform all of the job’s activities. If there are

disjointed activities in a job, each group of activities can be split into its own distinct job.

The many-to-one mapping introduces the following limitations:

§ There is only one unique workpattern for each job. One job cannot be mapped to

two distinct workpatterns, as depicted in Figure 10;

J
Jobs

W
Work

Patterns
 JW

 42

§ All steps required to perform the work of the job must be contained in the same

workpattern; and

§ There is only one set of permissions that is required to perform the work of the

job.

Figure 10: One to Many Jobs to Workpattern Example

The benefits of the many-to-one relation include:

§ There cannot be two sets of permissions that can perform the same work. This

condition increases the security risk by allowing more than one way of

performing the same work. From Figure 10, I see that J2 maps to WA and WB.

The difference is that WA contains P1 and P5, as opposed to WB’s P8, P3, and P11;

§ All of the steps of the job can be identified in one set: the workpattern;

R1

 J2

WA

WB

T8

P8

P2

P11

T1

P1

P5

T2

P3

P10

 43

§ The complexity and resources needed to maintain multiple sets of jobs is reduced;

and

§ There are no duplicate workpatterns.

If there are two jobs that map to the same workpattern, then both jobs require the

same permissions. For minimization, I prefer to minimize jobs that are equivalent. This

may not be possible because

1. Two jobs within two different organizations may desire to maintain a name

distinction for their jobs although the work required by the jobs is equivalent,

or

2. I choose to maintain the uniqueness of permission equivalent workpatterns so

that I can allow for future permission growth.

The current phase begins by mapping jobs to workpatterns. Jobs are simply either

mapped to new or to existing workpatterns. I determine the mapping by reviewing the

work performed by the job. If the work of the job does not match, I create a new

workpattern. If they do match, I determine if there is a need to map to a separate

workpattern by the two criteria stated earlier: 1) there is a need by the organization or 2)

for future permission growth. The latter cannot be determined until the tasks-to-

permission phase has been defined.

The second part of this phase is to list all of the steps contained in the workpattern

that are required to perform the work of the job. These steps do not have to be followed

sequentially; but each step is required to define the work of the job. Ambiguity of jobs

increases the difficulty of defining all of the steps; however, if I can identify the step’s

 44

logical sequence as a process, I have an engineering aid to reduce the complexity of the

workpattern definition. I begin by categorizing the job in one of three groups:

1. The steps are part of a single process that is entirely defined within one

workpattern. All of the steps can finish without waiting for another step

outside of the workpattern to finish; or

2. The steps are part of multiple processes. At least one step is not in the same

workpattern and the workpattern must wait for another step that is outside of

the workpattern to finish; or

3. The steps cannot be defined as a process.

Single process is a set of steps that must be derived from the job. I know that the

steps are formulated, as a process so there is some semblance of sequence. I define the

process within the criteria of the focus approaches. For example, if there is a role-focus

approach for a role of Professor for the job of Teaching within the criteria of Educational

Level and Skill Sets, I determine that the process steps that are required to satisfy the

work of a role are:

§ Investigate Information,
§ Prepare Lectures,
§ Lecture,
§ Prepare Exam,
§ Administer Exam,
§ Grade Exam, and
§ Record Exam.

For multi-process, I need to identify the steps within the external process that the

workpattern satisfies. Ideally, the master process has been created and the steps have

been defined. Thus, I determine the job that performs the work, and then include the

 45

steps as part of the workpattern. If the steps of the master process are not known, but I

am aware that a job is part of the external process, then I define the steps. As with single

process, I know that the steps are formulated as a process, so there is some semblance of

sequence that is done to satisfy the work of a role. I define the process within the guides

of the focus approaches discussed earlier.

For example, if the job is for a mortgage collection clearing house, I need to

understand that the job is part of a larger process that includes other jobs such as the

mortgagee (the person paying the mortgage) and mortgagor (the company receiving the

money). I determine from the information that I obtained when I defined a job that the

steps are: <Send out list of mortgagee (mortgagor)>, <Send out notice (clearing house)>,

<Send out payment (mortgagee)>, <Post payment (clearing house)>, <Pay bank (clearing

house)>, and <Send out notice of payment receipt (mortgagor)>.

The last suggested method is an ad-hoc set of steps that may not be related. I

cannot use the aid of a process to logically define the steps. All that is known is that

there is a job that has been created as part of the approaches defined earlier. I must

deduce from the present information what steps are required by the workpattern. For

example, I may determine from the documented role of a computer administrator that a

set of responsibilities did not fit into another job. They were combined into a job of an

office manager and require the steps: 1) update employee payroll, 2) add employees to

the company gym, and 3) obtain parking permits.

After creating the steps, I need to review my work. I check for completeness. If

there is a missing step, I need to add it to the workpattern. I can also divide large

 46

workpatterns that contain too many steps into multiple jobs. Each new job will map to its

own workpattern. Table 7 is a summary of the three approaches for defining the steps.

Table 7: Workpattern Definition

Single-process Multi-process Ad-hoc
§ Identify the process.
§ Identify the steps within the

process.

§ Identify the different
processes.

§ Identify the number of
workpatterns.

§ Identify the workpattern
steps within the process.

§ Deduce existing capabilities
and document or use the
workpattern as a holder for
remaining tasks to ensure
that all work can be
performed.

§ Determine if steps need to be
combined. Determine if the
workpatterns need to be
subdivided; if so, divide
them into more than one job.

After all the steps have been defined, I create one task to represent all occurrences

of each step in a workpattern. The workpattern is then mapped to that task. Then, in the

next section, I map the tasks to permissions.

The job-workpattern mapping provide two benefits: 1) the reuse of workpatterns

and 2) the capability for defining permission in a logical method of a process that reflects

the work of a business. Thus, instead of saying what application permissions I need to

perform a role, I can consider the question, “What are the steps the job needs to perform

the work of a role?” The answer further describes the logical flow of decomposing,

enabling me to research my ultimate goal of assigning permissions to roles. I try to

determine the purpose and the process that is performed by a role. A final benefit of a

 47

job-to-workpattern mapping is that the ad-hoc set can contain all other jobs that are

required to ensure role-permission completeness.

If I do not have the job-permission phase, I assign jobs to tasks without trying to

deduce a logical method of determining all the steps that are required to perform the work

of the job. As such, steps may be missed, and I may not have a role/permission mapping

that is complete.

An example of the above stated methodology is a role-focus approach used to

define the job J1. J1 steps are defined as a process contained in a single workpattern (See

Figure 11.). The steps required for workpattern WA are S1, S2, S4, S3, and S7.

Figure 11: Jobs-to-Workpattern Example

4.3 Workpatterns to Tasks

My next phase is simply to assign each step to a task so that I can lay the “ground work”

to assign permissions to a task. Mapping workpatterns to tasks is a continuation of the

J1 WA

• S1
• S2
• S4
• S3
• S7

 48

previous phase. Earlier, I identified the steps required to perform the work of a job in a

workpattern; however, I did not consider minimization or permission assignment. By

assigning steps to tasks, I mapped the workpatterns to the tasks. In so doing, I minimize

the amount of redundancy and reuse tasks. I begin distinguishing between tasks that are

mapped to a permission rather than to tasks that will not be mapped to a permission.

Figure 12 shows the mapping from workpatterns to tasks.

There is a many-to-many mapping from workpatterns to tasks. In this phase, steps

are assigned to tasks; consequently, the workpattern of the steps are mapped to the

assigned tasks.

Figure 12: Workpattern to Task Phase

T
Tasks

W
Work

Patterns
 WT

 49

I start considering the concept of permission/permission-free tasks. If it does not

map to a permission, I can still maintain the task as a placeholder, so that in the future if

there is a permission required by that task, I can map it to that permission.

In the previous section, I identified the steps of a workpattern. For each step of a

workpattern, it was assigned to a task. To minimize the number of tasks, I can reuse

existing tasks by assigning steps that perform the same work to a pre-existing task.

Figure 13 shows an example of permission equivalent workpatterns. Two

workpatterns --Teaching and Teacher Support-- contain a list of steps that are mapped to

tasks.

Figure 13: Permission-Equivalent Workpattern Example

Combined
Teaching

Work
Pattern

Teaching

• Investigate Information
• Prepare Lectures
• Lecture
• Prepare Exam
• Administer Exam
• Grade Exam
• Record Exam

Teacher
Support

• Investigate Information
• Prepare Lectures
• Print Lecture
• Copy Slides
• Prepare Exam
• Administer Exam
• Grade Homework
• Record Exam

 50

 After mapping tasks to permissions, I determined that the underlined tasks in

Figure 13 require permissions; consequently, the Teaching and Teacher Support

workpatterns are permission-equivalent workpatterns. These two workpatterns can be

minimized into one workpattern. If at a later time a permission-free task needs to be

mapped to permissions, I can split the combined workpatterns into separate workpatterns

and map each workpattern to its own job.

One of the benefits of the WT phase is that I started concentrating on permissions

in order to minimize the amount of redundancy. In addition, by defining a task that can

be mapped to many workpatterns, tasks can be reused.

The steps within the workpatterns detail the work that is accomplished by the

workpatterns. Without this phase, the workpattern is mapped to permissions. Each

workpattern must be defined in its entirety, without the savings of reusing previously

defined sets of permissions. Furthermore, there is benefit to considering the

minimization and future growth of permission-equivalent workpatterns. Later, if

permissions are added, I only need to re-evaluate the workpatterns, rather than evaluate

the tasks.

Figure 14 depicts an example of mapping of workpatterns to tasks.

 51

Figure 14: Workpattern-to-Task Phase Example

Workpattern WA is mapped to task T4, and workpattern WB is mapped to tasks T1,

T4, and T7. Until the next phase, I do not know the tasks that are permission tasks. If T1

and T4 are permission-free tasks, then WA and WB are permission-equivalent

workpatterns.

4.4 Tasks to Permissions

In the final phase of decomposition, I map the permissions to tasks (See Figure 15).

Through the decomposition methodology, I have a clear understanding of the accesses

required by the defined tasks. After finishing this phase, I check for completeness of

permissions, uniqueness, and minimization of jobs, workpatterns, and tasks.

WB

T4

T7

T1

WA

 52

Figure 15: Tasks-to-Permission Layer

By the original assumption, the permissions have been predefined. I want to

match the accesses required to perform the work of the task with the accesses granted by

the permissions.

As defined by the steps of the workpatterns, I know the work that will be

performed by the task. However, if I did not choose the application-focus or permission-

focus approach, I may not have defined the purpose of the applications and the

permissions that would provide the accesses to each application.

For each task, I decided the permissions the task needs to perform its work. I

mapped the task to the permissions that granted the required accesses. If the work of a

task does not match a permission, I tried to gather additional information from the

previous layers. If I still cannot find a match, I marked the task as permission-free.

Figure 16 shows an example of mapping one of the tasks of the Teaching

workpattern from the previous section.

P
Permissions

T
Tasks

TP

 53

Figure 16: Mapping tasks to permissions

From the Record Exam task, I determined from its history and the available

applications that the permissions required to complete the work of the task are:

Workstation, University Student Records, Class Records, and E-Mail.

After the mappings, I finished the approach by checking for minimization and

completeness. For minimization, I needed to minimize duplicate tasks and workpatterns

and then determine if permission-equivalent workpatterns need to be minimized. Once

finished, I needed to determine if equivalent jobs should also be minimized.

Next, I check for role-permission completeness by mapping back, from layer to

layer, each permission to a role. If I find that there is a permission that is not mapped to a

role, per the scope of the dissertation, the best I could do is to recommend that:

§ Either another role needs to be created, or

§ The responsibilities of a role need to be expanded, or

Record
Exam

Workstation

University
Student
Records

Class
Records

E-Mail

 54

§ The unmapped permission should be deleted.

Otherwise, there are capabilities of the applications that will not be able to be accessed by

user.

The benefit of mapping tasks to permissions is that it provides the ability to reuse

tasks. The tasks to permissions are defined once and I no longer have to determine the

permissions required by the task. If the task exists, I do not need to rethink which tasks

need to be assigned; I simply choose from the tasks that are available.

Without this phase, there would be mapping from the workpatterns to the

permissions. I would not know which task is a permission task or a permission-free task.

Thus, there can be an increase to the number of workpatterns that need to be created. In

addition, I do not have the benefits of reusing tasks.

Figure 17: Tasks-to-Permission Phase Example

T4

T7

T1
 P10

P1

P4

P6

 55

Figure 17 depicts an example of mapping tasks to permissions. A workpattern

maps to three tasks. They are: T1, which maps to P1, P6, and P10; T4, which maps to P4

and P10; and T7, which maps to P4 and P6. By inference, the workpattern is mapped to

the permissions: P1, P6, P10, P4, P10, P4 and P6. There is no benefit of duplicating

permissions, so eliminating one of the P4’s, one of the P6’s and one of the P10’s I could

minimize the number of permissions. First, by eliminating duplicate permissions, and

then by determining the least number of tasks that map to all of the permissions, I could

also minimize the number of tasks. In this example, the task, the workpattern, does not

need to map to T4 because the permission P4 is mapped to by T7, and T1 is mapped to by

P10.

In summary, the decomposition phases are: Role -> Jobs -> Workpatterns ->

Tasks -> Permissions, thus Roles -> Permissions.

4.5 Summary Methodology

A role engineer is responsible for following a role/permission methodology but may need

assistance from the administrators and developers. The methodology is a sequence of

activities to decompose a role into permissions.

Role to Jobs:

1. Review the roles to learn about the roles and their associated criteria.

2. Choose a decomposition target approach: Role-focus, Application-focus, or

Permission-focus; define the attributes.

3. Determine if a role is: Documented, Existing, or Undefined.

4. Identify the jobs of a role, and if possible, reuse jobs.

 56

5. For all jobs not inherited, map a role to those jobs.

Jobs to Workpatterns:

6. For all jobs, map the job to a workpattern.

Perform the next two steps if the workpattern cannot be reused.

7. Determine if the Workpattern is Single process, Multi-process, or Ad-hoc.

8. Create the steps: either by Single process, Multi-process, or Ad-hoc.

Workpatterns to Tasks:

9. Assign each step to a task, and map the step’s workpattern to the task.

10. Create a new task, if the task cannot be reused.

11. Validate that all the necessary steps required to perform the work of the job

has been identified in the workpattern.

Tasks to Permission:

12. Determine the accesses required by the task.

13. Map each task to the permissions.

14. If a task cannot be mapped to an existing permission, then label the task as

permission-free.

Minimization:

15. Maintain uniqueness by minimizing equivalent tasks and reusing tasks.

16. Maintain uniqueness by minimizing equivalent workpatterns and reusing

workpatterns.

 57

17. Identify permission-equivalent workpatterns, and determine if permission

equivalent workpatterns should be minimized. If so, minimize those

workpatterns.

18. As desired, minimize equivalent jobs.

Completeness:

19. Map all of the permissions back to the roles.

20. Check for role-permission completeness by ensuring that all pre-defined

permissions that have not been mapped to a role have been assigned.

 58

5.0 AGGREGATION

In the previous chapter, I discussed the decomposition of a role into permissions. I

started with a role; and through four layers of RPAM01, I decomposed a role into

permissions. The reverse is also possible. I can aggregate a pre-defined set of

permissions into roles using the framework of RPAM01 (See Figure 18.)

Figure 18: Aggregating Permissions to Roles

As before, there are four phases in this methodology: Permissions-to-Tasks,

Tasks-to-Workpatterns, Workpatterns-to-Jobs, and Jobs-to-Roles. Each phase will be

discussed in detail in its own section by describing:

R

P

J

T

W

 59

§ the layer’s objectives;

§ the issues to be resolved;

§ an approach to resolve the issues;

§ an example; and

§ the consequences of not implementing the layer.

Before I begin, I highlight a few important characteristics of the decomposition

approach that are addressed later in the following sections. I observe the following in

Figure 19:

§ A permission can be mapped to more than one task;

§ A task can be mapped to more than one workpattern;

§ A workpattern is mapped to (e.g., observe the direction of the arrow for T3) a

permission task before creating the steps of the workpattern;

§ A workpattern can only be mapped to (e.g., observe the direction of the arrow

for T2) a permission-free task after creating the steps of workpattern; and

§ The many-to-one relation of jobs to workpatterns provided the ability of two

different workpatterns to map to the same job.

These highlights are discussed in more detail later in this chapter.

 60

Figure 19: Permissions to Roles Mapping

5.1 Permissions to Tasks

Permission aggregation to roles begins with the assignment of permission to tasks (See

Figure 20.). I am given the permissions and I strive towards completeness by mapping

all of the permissions to tasks.

Figure 20: Permissions to Tasks Phase

P
Permissions

T
Tasks

TP

P6

P3

P12

R1

J1

J2

Work
Patter

n

Work
Patter

n

T2

 T4

T8

T1

T7

 T8

P1
P5

P92

P2

J3

P70

 61

I consider three approaches to assign permissions to task assignment based on the:

1. attributes of the permissions (Permission-focus),

2. attributes of the applications (Application-focus), and

3. needs of a role (Role-focus).

Starting with the first approach, I group the permissions into a bucket according to

similar capabilities that are based on the permission-focus attributes. To ensure

completeness, each permission has to be a member of at least one bucket. A bucket that

represents multiple tasks must be subdivided into additional buckets. For example, all

the data file updates are defined into one group. In the bucket are permissions to update

database files, router scripts, and operating systems programs. I further categorize the

group by data type. Now I have three buckets.

Using the second approach, I identify the attributes of the application, and then

choose the permissions based on the criteria set by the application-focus. I begin by

learning about the permissions required to perform the functionality of the application.

Then I place all permissions of similar functionality into the same bucket. For example, I

may have a bucket that provided a system backup; another bucket that provided the status

of applications; and a third that searches the application for a list of software revisions.

To ensure completeness of the permissions, I verify that all of the permissions are

placed into at least one bucket. I then check the buckets for permissions that may

constitute distinct tasks and I subdivide the distinct tasks into separate buckets. For

example, in the bucket for “system backup,” I may have permissions to access the

network for a remote backup, permission for backing up the system on tape, and

 62

permission for backing up the system on CD-ROM. I place the network access for a

remote backup permission in a separate bucket than the other two permissions.

The final approach, role-focus, may be the most prevalent used approach. It

benefits role engineering by concentrating the aggregation decisions based on the final

layer, roles.

To perform the final approach, I need to learn the responsibilities of the roles.

Following a role-focus approach, I use the attributes to identify the target work that can

be accomplished by a role. A bucket is created for each targeted work area. Next, I place

each permission into all the buckets requiring that permission, ensuring that all

permissions have been placed into at least one bucket. I then review the buckets and

subdivide a bucket if it contains more than one unique task.

For example, if I have an attribute of “skill set,” I compare the attributes against

my two roles of Professor and System Administrator. I determine from my researched

knowledge of the roles that two buckets are needed: one is needed for user account

maintenance and another bucket is needed for teaching. After these buckets have been

created, each is mapped to only one task.

The benefit of mapping permission to tasks is that I start to group permissions into

like accesses. I do not have to continually rethink about the creation of new tasks and

their related permission assignment; I can reuse existing tasks.

 If I do not have a permission-to-task assignment, I would not have tasks and I

map permissions straight to workpatterns. Further, I would not be able to list the

workpatterns as a grouping of tasks because I would be mapping disparate permissions to

 63

a workpattern. As such, I no longer have the benefit of using a process flow to validate

that all required steps have been identified in the workpattern. Furthermore, I lose the

benefits of reusing a previously defined set of permissions in the form of tasks.

Figure 21 illustrates mapping permissions to tasks. There is a blue bucket

containing permissions P1, P2, and P6, and red buckets that contain permissions P2, P3, P4,

and P6. The blue bucket is mapped to task T1 and the red bucket is mapped to task T2. As

I see from Figure 21, P2 and P6 exist in both buckets.

Figure 21: Permission to Task Example

5.2 Tasks to Workpatterns

After defining the tasks, the next step is to map the tasks to workpatterns (See

Figure 22.). Before this can occur, the tasks are grouped, based on the focus attributes, in

anticipation of the processes that are defined in the next phase. After mapping the tasks-

to-workpattern, I validate task completeness.

T2

T1
 P6

P1

P2

 P6

P4

P2

P3

BLUE

RED

 64

Figure 22: Tasks to Workpattern Phase

Within each of the three approaches stated in the previous section -- Role-focus,

Application-focus, and Permission-focus -- I group the tasks into buckets so that they can

later be used to define a workpattern. This phase represents the beginning of creating a

grouping of work that is finished by a job. Aggregating tasks into jobs requires two

passes: the first pass involves identifying the tasks for each workpattern and the second

pass ensures that all the tasks are identified, which may include the creation of

permission-free tasks.

By the Permission-focus approach, all tasks are grouped into buckets. I begin by

reviewing the tasks and identifying the different types of buckets that can be created

under the guides of the attributes. Next, I identify the tasks that are placed in each

bucket. I remember that one task can be assigned to more than one bucket. After all the

tasks are assigned, I check to ensure that all tasks perform an activity that supports the

goal of the bucket.

Application-focus studies the applications and creates buckets by functions under

the guides of the Application-focus attributes. The approach focuses on the individual

T
Tasks

W
Work

Patterns
 WT

 65

applications as well as the interrelations of more than one application. I may find that a

bucket encompasses the work of a system of applications. As with Permission-focus, I

identify the tasks that are placed in each bucket and then check to ensure that all tasks

that are required to perform the workpattern exist within the bucket.

 Role-focus directs the aggregation engineering from both top-down and bottom-

up directions and provided a distinct advantage in this phase and in the next phase. I

begin by reviewing a role under the guides of the attributes and determine the types of

buckets that can finish activities. With this knowledge, I assign tasks to the buckets. I

then check to ensure that all buckets have been assigned to a task. After the buckets have

been assigned, I map each task to a workpattern and I minimize equivalent tasks.

 The benefit of this phase is that it provides me with the ability to start defining

the job using reusable tasks. At this point I do not consider completeness or

minimization. I provide three approaches that can assist me in determining the logical

flow of tasks to roles.

 If I do not have this phase, I map tasks straight to jobs, and there will not be an

understanding of the purpose or the structure of the tasks that are used. I cannot use the

benefits of a process to assist in ensuring that all the necessary permissions that are

required by a job have been identified, thus there may not be completeness.

Figure 23 illustrates mapping tasks to workpatterns. There is a blue bucket

containing tasks T1, T2, and T6; red buckets that contain tasks T2, T3, T4, and T6; and a

green bucket that contains the exact same tasks as the blue bucket. The red bucket is

mapped to task W7; the blue bucket is mapped to task W1; and the green bucket is mapped

 66

to W4. As I can see Figure 23, W1 and W4 are equivalent workpatterns; but they are not

minimized in this layer.

Figure 23: Tasks to Workpattern Example

5.3 Workpatterns to Jobs

Now I map workpatterns to jobs (See Figure 24.). In the other phases, there could be

aggregation of elements from the previous layer into elements of the current layer (i.e.,

many permissions can comprise one task and many tasks can comprise one workpattern).

Figure 24: Workpatterns to Jobs Phase

J
Jobs

W
Work

Patterns
 JW

W1

 T6

T2

T1

W7

T6

T3
 T2

T4

W4

T6
 T1

T2

Blue

Red

Green

 67

 In this section, I need to: 1) identify the steps that may be needed to identify the

work of a job, 2) decide if there is completeness, and 3) decide if a permission-free task

needs to be mapped to the workpattern.

I begin the aggregation by identifying the workpattern steps. I use the three

guides stated in Section 4.2: single process, member of another process, or ad-hoc, as a

support tool to find missing steps.

The decisions to engineer the steps are guided by the focus approaches: Role-

focus, Application-focus, and Permission-focus. For each approach, the procedures are

similar. First, I decide to create the workpattern into one of the three guides. Once

accomplished, I start with the single process workpattern. The tasks are placed in a

sequence based on the focus of the approach. Each task is assigned to a step. If there

appears to be a missing step, I determine if there is an existing permission task that

should be assigned to that step; if not, I add a permission task by the methodology that I

previously defined in Sections 4.3 and 4.4. A step that cannot map to a permission is

assigned to a permission-free task. In all cases, the task is mapped to the workpattern.

For the workpatterns that are members of a process outside of their workpattern, I

determine if there is a sequence that relates the steps of all of the workpatterns. From the

sequence, I determine if there are any missing steps and then the workpattern will contain

the missing steps. If needed, I will create a new workpattern. For each missing step, I

determine if there is an existing permission task that should be assigned to that step; if

not, I add a permission task by the methodology that I previously defined in Sections 4.3

and 4.4. A step that cannot map to a permission is assigned to a permission-free task.

 68

Alternatively, if a multi-workpattern process has not been predefined, I may be

able to engineer a process that is contrived only of workpatterns, since I have no

knowledge of the steps that are not contained in a workpattern. I can review the

workpatterns and attempt to create a process from a sequence of tasks that are mapped to

the workpatterns. I assign each task to a step. After sequencing the tasks of the

workpatterns, I determine if the workpatterns are missing steps. If they are, I follow the

approach stated in the first option for missing steps.

There is neither additional engineering nor steps required for an ad-hoc

workpattern. The tasks assigned to these steps were created in the previous layer. I

simply map the ad-hoc workpattern to the job. There is no need to create Permission-free

tasks.

Equivalent workpatterns can be minimized in this phase; however, permission

equivalent workpatterns should not be minimized without considering the work

requirements of the role. I have already determined that all the necessary steps required

to perform the work of the job have been identified in the workpattern. Next, I need to

map the workpatterns to the jobs. A role may dictate the need to map one workpattern to

many jobs. For Role-focus, I may be able decide if I need to map a workpattern to more

than one job or minimize permission-equivalent workpatterns.

The benefit of this section, workpatterns-to-jobs, is that it provided me with a tool

to determine if the job has all the permission it requires to perform its work. I can also

minimize equivalent/permission-equivalent workpatterns and I now have the ability to

reuse a workpattern that may be required by more than one job. Finally, the ad-hoc

 69

workpattern can be used as a set of tasks that map to unassigned permissions so that there

is role-permission completeness.

 If I do not have this phase, I map workpatterns straight to roles without knowing

if a role has all the permissions required to finish its work. Figure 25 illustrates mapping

workpatterns-to-jobs. The first example shows a straight mapping of workpattern WC to

job J5; however, in the next phase, I determine that it is necessary to map two roles to

distinct jobs. I have role R1 mapped to job J6 and role R2 mapping to job J5, both of which

map to workpattern WC. The dash lines indicate the mapping that is created in the next

phase.

In the second example, where workpattern WB is mapped to job J3, I realize that,

after checking the steps, there is an additional step that requires the creation of a new

permission task T8.

The final example starts with two distinct workpatterns, WA and WD. After

checking the steps, I see that there are additional steps that require the creation of a new,

permission-free task T2 and the need to reuse the permission task T5. After performing

the new mapping, I realize that workpatterns WA and WD are now permission equivalent.

In the next phase, I may minimize these workpatterns.

 70

Figure 25: Workpattern to Job Example

5.4 Jobs to Roles

In the final phase, I define roles, map the jobs to roles, and consider minimizing

permission equivalent workpatterns (See Figure 26.). Unlike the prior phases where I

defined the elements of the next higher layer, I now map from a known job to a known

role.

T5

J1

J2

Work
PatternD

T2

T4

Work
PatternA

J3

Work
PatternB T8

T3

P5

P2

P1

Work
PatternC

J5

J6 R1

R2
P9

P8

P11

 71

Figure 26: Jobs to Roles Phase

Before jobs can be assigned to roles, I need to learn about the work that is

performed by a role. As in Section 4.1, I can categorize roles into three groups

(documented, existing, and undefined roles); and then I determine their responsibilities

within the scope of the chosen focus approach.

After roles have been defined, I can map jobs to roles. For each job, I compare the

job’s capabilities against a role’s responsibilities, and determine the best fit of each job to

a role. Once found, I map the job to a role. One job can be assigned to more than one

role, unless the organization desires a unique job for a role. In that case, I do not reuse a

job; but I create a new job and map it to the same workpattern as the previously mapped

job. For any role not mapped to a job, I recommend to the organization administrator to

eliminate that role or to define an additional role’s responsibilities so that the role can be

mapped to a job.

R
Roles

J
Jobs

RJ

 72

After the aggregation of permissions to roles, I determine, from the organization

administrator, if there is a reason to minimize jobs that map to permission equivalent

workpatterns. If there is a reason to keep these jobs (i.e., anticipate future mapping of

future permissions to permission-free tasks), then no change is required. If jobs must be

minimized, then I need to join the tasks that map to all workpatterns and map them to a

single workpattern. Next I map this workpattern to the job, which, in turn, will be

mapped to a role.

To finalize the aggregation, I need to check for role-permission completeness.

Although all of the jobs have not been mapped, it does not necessarily mean that there is

not role-permission completeness. I map back each role to permissions and determine if

all permissions have been mapped to a role. After checking for completeness, I find that

there is a permission that must be mapped to a role and a role does not exist. Per the

scope of the dissertation, I recommend that either more roles be created to be

decomposed to these unaggregated permissions or that the responsibilities of a role be

expanded so that the permissions can be aggregated to the new jobs that have been

formed from the new responsibilities. Otherwise, there are capabilities of the

applications that will not be accessible to any user.

The benefit of this phase is that I assign roles to permissions and I potentially

reuse jobs. In addition, I have checked role-permission completeness; and if necessary, I

have recommended to the role engineer to either add more roles or expand the existing

responsibilities of the roles.

 73

If I do not map jobs to roles, then I map jobs to users, which defeats the purpose

of using roles in the RBAC Model.

Figure 27 illustrates mapping jobs-to-roles. The first example depicts a straight

mapping of job J5 to role R2. The second example depicts the mappings of job J5 to roles

R2 and R1; however, the organizations desire unique jobs so job J5 is mapped to role R2

and job J6 is mapped to role R1. In the final example, workpatterns WC and WD are

permission equivalent. The organization wants to minimize the jobs J5 and J6, so the

unique tasks mapping to workpatterns WC and WD are minimized to workpattern WF. WF

maps to a new job J7; and, in turn, job J7 is mapped to roles R1 and R2.

Figure 27: Jobs to Roles Phase Example

In summary, the aggregation phases are: Permissions -> Tasks -> Workpatterns ->

Jobs -> Roles, thus Permissions -> Roles.

J5 R2

J5

J6 R1

R2

Work
Pattern

J5

J6 R1

R2

Work
Pattern

Work
Pattern

J7

 74

5.5 Summary Methodology

A role engineer is responsible for following a role/permission methodology, but may

need assistance from the administrators and developers. The methodology is a sequence

of activities to aggregate permissions to roles.

Permission to Tasks:

1. Review the permissions to learn about the applications and their associated

authorizations; choose an aggregation target methodology: role-focus,

application-focus, or permission-focus; and define the attributes.

2. Group permissions into buckets that can be assigned to a task.

3. Map the permissions to tasks (Note: If all permissions have not been mapped,

then there is no completeness.).

Tasks to Workpatterns:

4. Group the tasks into potential workpatterns.

5. Map the tasks to a workpattern (Note: If all tasks have not been mapped, there

may not be role-permission completeness.).

Workpatterns to Jobs:

6. Determine if the workpattern is: Single Process, Multi-process, or Ad-hoc.

7. Create a logical sequence of the tasks as a set of steps in sequence to check if

all the necessary steps required to perform the work of the job have been

identified in the workpattern using Single Process, Multi-process, or Ad-hoc.

8. Check Workpattern completeness.

 75

9. From the set of tasks for the workpattern, assign a task to each step. If a step is

not assigned to an existing task, create a new task; if the new task cannot be

mapped to at least one permission, then it is a permission-free task.

10. Minimized equivalent workpatterns.

11. Map each workpattern to a new job.

Jobs to Roles:

12. For each role, determine if it is: Documented, Existing, or Undefined.

13. Identify a role that should perform the work of each job.

14. Determine if two jobs that map to permission equivalent workpatterns should

be minimized. If so, minimize the workpatterns.

15. Make sure each role is assigned to at least one job.

16. Notify the organization administrator of unassigned roles.

Role-permission completeness:

17. Create a set of permissions by mapping roles back to permissions.

18. Compare role permissions against the pre-defined set of permission.

19. Ensure that all pre-defined permissions that have not been mapped to a role

have not been assigned.

 76

6.0 CASE STUDIES

 I have developed but have not yet validated the theoretical approach for decomposition

and aggregation of roles and permissions. To do so, I analyze other approaches and

compare them to RPAM01. Earlier, I identified three related models. I will analyze the

first and second models. They are most closely related to the two approaches,

decomposition and aggregation. The first article, “Process-Oriented Approach for Role-

Finding to Implement Role-Based Security Administration in a Large Industrial

Organization” creates a process for defining roles and is related to the decomposition

approach. The second article, “Napoleon Network Application Policy Environment,”

defines policies; this approach depicts concepts similar to the aggregation approach. The

third article, “Access Control for a Healthcare Information System”, is also a

decomposition approach and could be analyzed similar to the Role-Finding Model.

For each approach, I perform comparative analysis between the approaches of

RPAM01 and this dissertation. Intertwined within the comparative analysis, I provide the

following types of information:

§ Purpose: a statement on why the model was created and what the objectives

are for using this approach;

§ Results: a listing of the capabilities that was produced;

§ Approach: a high-level description of the model’s architecture;

 77

§ Methodology: a summary of the logical sequence of the approach;

§ Model Benefit: the advantages that the proposed model has over

RPAM01;RPAM01 Benefit: the advantages that RPAM01 has over the

proposed model in six areas: Layers, Properties, Target based Decisions, Role

Identification, Workpattern Decomposition, and Workpattern aggregation; and

§ Conclusion: Summary of the above stated information and the benefits of

adding the stated dissertation approach to the proposed methodologies.

Using this information, I analyze the models, the Process Oriented Approach and the

Napoleon, in Section 6.1 and Section 6.2.

6.1 Process-Oriented Approach for Role-Finding to implement Role-

Based Security Administration in a Large Industrial Organization

RBAC was considered as a response to the need to centrally administer security accesses

for a trusted network across platforms. The challenge was not in the integration of a

trusted network and a single point of administration, it was with the identification of

roles. To solve this challenge, Roeckle, Schimpf, and Weidinger, proposed a process-

oriented approach for role finding.

 78

Figure 28: Classification of Roles

Initially, Roeckle, Schimpf, and Weidinger studied the classification of roles that

existed within their company (See Figure 28). Access rights required by individuals were

based on job function, temporary specialist tasks, position, status within the company,

and organization association. Each of these roles can be categorized into five role

classes: Functional, Special, Hierarchical, Basic, and Organizational. The paper states

that “basic role,” “hierarchical role,” and “organizational roles” were easily determined

and the definition of these roles was not discussed. The fourth role category, “special

role,” is a group of temporary roles that are defined when needed. The remaining role,

“functional,” is too complex to readily define. The approach, “Role-Finding,” was

Class of
Organization Roles

• Developer
• Web
Publisher
• ...

Class of
Functional Roles

•
InternalEmployees
• Business Partners
• ...

Class of
Basic Roles

• Service
Manager
• Management
• ...

Class of
Hierarchical

Roles

• dept.A
• dept. B
• ...

• Project Mgr. Pay
• Bus. Adm. Controller
• ...

Class of
Special Roles

Access Rights
Based on Temp. Specialist Tasks

Status
within

Company

Organ.
Association Position

Job Functions

 79

researched as a solution for identifying functional roles. A Role-Finding Model is

created from three areas: Security Administration, Meta Model, and Procedural Model.

Three subprocesses perform Security Administration: User Administration, Role

Administration, and System Administration. Whereas, User Administration is the

assignment of users to roles, Role Administration is the identification and implementation

of roles, and System Administration is the creation and maintenance of application

permissions. A process-oriented approach is then used to show the flow between the three

administrators (See Figure 29).

Each administrator starts by defining basic information. For the user

administrator, it is users; for a role administrator, it is roles; and for the system

administrator, it is permissions. Once roles are created and the required rights identified,

the system administrator provides bundles of rights. A role administrator creates a role

with the bundle of rights. The roles are then available for the user administrator to assign

users to roles.

 80

Figure 29: The Process of Security Administration

 The process-oriented approach integrates the Meta Model with the procedural

model and uses three views as an interface to a process model (See Figure 30).

Figure 30: Meta Model for Process-Oriented Role-Finding

Process Layer

Role Layer

Access Right Layer

Job
Position

Role Subrole

User Group
• System(s)
• Occ of Attr

Job
Function

Bundle of Rights
• System(s)
• Attributes

Res Group
• System(s)
• Occ Of Attr

Sec. System
Application

Attribute
• Occurrence

User Administration Role Administration System Administration

Create
User

Assign User
to Roles

Create Role
Assigning Bundles

Installation of
Services &

Apps.

Role
Definition

Bundles of
Rights is

Requested

Bundles of
Rights is
Created

Create Bundles
of Rights

Role
is Created

User
is

created

 81

The process layer is the interface to a business process model. A role layer is a

central location for the cross-platform business roles, and the access layer is the

organization of the elements that permits the execution of the business roles.

 The approach permits a role layer to be inferred from the process layer and the

access layer from a role layer. Using the process layer “entities” as “job function,” “job

position,” “organization unit,” “information system,” “security system,” and “attributes,”

I can determine the job functions and their assignment to job positions. From this, I can

deduce a role. As seen from Figure 30, roles can be derived from job positions and a

function; subroles can be derived from job function and bundles of rights can be obtained

from a job function. This leads to determining the needed access rights.

 Finally, the procedural layer is where the procedures and steps are identified.

These procedures are used to define a role layer from the process layer, and then the

access layer from a role layer. Using these procedures on a business process model, the

administrators should be able to complete the Meta Model. This allows for the definition

of a role and their related permission assignments.

I analyze a Role-Finding Model against RPAM01 discussed in this dissertation.

First, I discuss the additional capability that is provided by the model. To do this, I

compare the key components of a Role-Finding Model against RPAM01. Next, I

compare the key components of RPAM01 and its layers against a Role-Finding Model.

The key components of a Role-Finding Model that I consider are:

§ Cross-platform approach,

§ Classification of Roles,

 82

§ Decomposition,

§ Layers (Process, Role, Access Rights),

§ Workflow, and

§ Administration (user, role, system).

A Role-Finding Model was intended to create roles that contain access for

applications that execute across different types of platforms. The dissertation approach is

also platform independent.

Classifying roles identifies categories of roles that may need to be defined. Roeckle

determined that only one category of roles needed a special finding process (e.g., Role-

Finding). RPAM01 does not distinguish between the different types of roles when

decomposing roles.

A Role-Finding Model is more than just finding a role from the functional roles. It

also defined the access rights for a role. This model decomposes functional roles by

starting with the Process Layer and assigns rights at the Access Rights Layer, whereas

RPAM01 starts with the predefined roles, and then determines if a role’s jobs can be

defined as a process. If a role cannot be defined as a process, then it can be defined as an

ad-hoc set of steps, even though a Role-Finding Model does not have a concept of an ad-

hoc set of steps.

A Role-Finding Model offers the benefit of an algorithm for finding role (See Figure

30). The algorithm and constraints on the relations are considered proprietary and not

available for analysis.

 83

 The purpose of the Procedural Layer is to define the steps of the Process Layer.

The model suggests six steps for creating the Process Layer to achieve the benefits of

RPAM01; however, the details for creating this process are not publicly available at this

time.

Another benefit of a Role-Finding Model is that it provided three types of

administrators that are responsible for administering security: the user administrator, role

administrator, and system administrator. The process allows me to correlate users,

permissions, and roles. RPAM01 has a similar concept where an administrator assigns a

role to a user. An application developer defined the permissions; and a role engineer,

with the aid of the organization, decomposes a role.

To further analyze a Role-Finding Model, I learn how RPAM01 benefits a Role-

Finding Model. The areas of interest are:

§ Approaches: Decomposition, Aggregation;

§ Model Layers;

§ Focus Approach; and

§ Properties.

A Role-Finding Model presents a compelling decomposition approach for a specific

type of roles known as functional roles. As stated earlier, a Role-Finding Model starts

with a process prior to defining a role, which can be a precursor for RPAM01. During

role definition, the other four types of roles become a part of a process. Later, this

process information can be used during the definition of workpatterns.

 84

A Role-Finding Model does not have an aggregation approach. With further thought,

and following the “bucketing” guidelines stated in RPAM01, I use a Role-Finding Model

to map out an aggregation approach.

RPAM01 contains five layers, whereas the Meta Model for Role-Finding has

three categories of layers. The comparison of the layers can be seen in Table 8.

Table 8: Layers: Role-Finding vs. Role/Permission
RPAM01 Meta Model for Role-Finding
§ Workpatterns
§ Jobs

Process Layer

§ Roles
§ Tasks

Role Layer

§ Permissions Access Rights

A Role-Finding Meta Model starts with the process layer, which contains a job

and its function. The actual steps are defined by another model, which is the procedural

model. The procedural model yields the practical steps of the process layer. These

practical steps are similar to the workpattern and its steps. The next layer, a role layer,

has the concept of roles, subroles, and a bundle of rights. A role and a subrole can be

defined within a role hierarchy.

There is a similarity between how a process is defined between both approaches.

Analogous to bundles of rights that can be mapped to a practical step or procedure,

which creates the process layer, I can consider the tasks as the bundle of rights that, in

turn, can be mapped to the steps of the workpattern.

 85

The dissertation concept of focus can provide a benefit to the Role-Finding Model

by concentrating on the procedural model step and procedural definition towards the

creation of the process layer. The process definition can be used for a role or it can be

used to administer multiple applications, or to restrict all application(s) permissions to a

specific set of roles that contain a security clearance.

A Role-Finding Model can also benefit from the properties of: Equivalence,

Uniqueness, Minimization, Reuse, and Completeness. Equivalence, uniqueness, and

minimization, working in conjunction with reuse, can reduce redundancies when

recreating the same jobs, job functions, subroles, bundles of rights, and role assigning

bundles. In addition, completeness can ensure that all the necessary rights have been

assigned to roles so that all required work can be accomplished. The functional roles

may not identify all of these rights. Functional roles may need to be combined with the

other four categories of rights. Without having a methodology to check completeness, I

may miss needed rights.

In summary, a Role-Finding Model can provide an excellent method for finding

roles from processes. It can be improved by considering the advantages of aggregation

using bucketing, process alternatives (i.e., ad-hoc), focus, and properties. RPAM01 can

be improved by considering the classification of roles when evaluating decomposing

roles. Finally, I may consider deriving roles from the process and remember this

information as part of the focus approach when I consider the creation of workpatterns.

 86

6.2 Napoleon Network Application Policy Environment & Role Based
Access Control Framework for Network Enterprises

The Napoleon Model created by D. Thomsen, R. O’Brien, and C. Payne was

initially introduced as seven layers. Under the original Napoleon Model, the first four

layers -- Objects, Object Handles, Application Constraints, and Application Keys -- were

administered by the Application Developer; and the top three layers -- Enterprise Keys,

Key Chains, and Enterprise Constraints -- were administered by the Local System

Administrator.

Through additional research, the Napoleon authors found that there was a need to

support workflows and capture security policies associated with suites of application.

This led to the extension of the Napoleon Model by inserting a Semantic Policy Layer

between the Local Policy and Application Policy Layers (See Figure 31.). The figure

shows three groups of layers: the Application Layer, Semantic Layer, and Local Layer.

The bottom layer, the application layer, interfaces with the permissions of the

applications. There are fewer changes (more static) to these interfaces as opposed to the

Local Policy Layer that interfaces with the users. The dynamic nature of assigning users

to the key chain occurs more often then the addition of new application accesses.

 87

Figure 31: Revised Napoleon Model showing the general trend from static
application policies to dynamic local policies

The revised model is a policy approach, where the policy dictates how

permissions are assigned to users. Many of the original concepts are used in the revised

model. However, unlike the original Napoleon Model, there can be any number of users,

who can be administrators by creating a policy within a user’s own semantic layer. The

original model does not directly map into the new model. The concept of objects,

handles, key, key chains, and constraints still exists in each layer5. The application policy

layer still interfaces with the applications and the local policy layer still binds users to

keys.

5 The following are the definitions of these terms[TOB98]:

§ An object is an abstract description of data within the system.
§ The object handle captures the way the object is used.
§ A key is an abstract representation of some rights.
§ A key chain is a collection of keys.
§ Constraints are used to capture policy information that cannot be represented as sets.

Semantic Policy n

Local Policy

 Semantic Policy 1

Application Policy

...

Top Dynamic

Bottom Static

Middle More Dynamic

 88

The addition of the semantic layers permits users, other than the administrator and

developer, to define policy. Using the Napoleon Model, semantic policies need not be

layered. The required semantic policy is applied to the application policy. For example,

the application developer creates a clipboard policy and the architect can state the

platforms that can use the clipboard policy.

Figure 32 shows the key chain and how the constraints restrict the ability of the

key chain. A key chain can be considered a key at the next higher level. One key may

contain multiple key chains, whereas each key chain has its own applied constraints.

The top most key chain points to a local policy and the local administrator assigns

the key chain to a user. The user can perform the accesses defined by the objects under

the restrictions dictated by the constraints.

Figure 32: Interface between Semantic Layers

key chain

key constraints

key chain

key constraints

key chain

key constraints

App. key chain
constraints

 89

To analyze the Napoleon Model against RPAM01 discussed in this dissertation,

first, I discuss the additional capability that is provided by the model. To do this, I

compare the key components of the Napoleon Model against RPAM01. Next, I compare

the key components of RPAM01 and its layers against the Napoleon Model. The key

components of the Napoleon Model that I consider are:

§ Aggregation,

§ Policy,

§ Workflow,

§ Permission Structure,

§ Constraints, and

§ Administration.

Using the terminology from this dissertation, the Napoleon Model is considered

an aggregation approach. The application policy contains keys that are an aggregation of

objects into handles and handles into keys. The next subsequent semantic layer in the

Napoleon Model, which is not necessarily contiguous, forms a Partially Ordered Set

(POSET) of key chains, which are assigned to users at the top local layer. This approach

covers the major components that are needed to aggregate permissions to assign them to

users. Both approaches conclude that there is a need to use a process that is derived from

a policy to assign permissions to users.

The model discussed policy as a means for defining the steps of a workflow. The

Napoleon Model article does not provide details on how the steps are created nor does it

provide specifics on how to create policy. I know at a high level that there are three types

 90

of policies: application, semantic, and local. From this, I can determine the components

that can be used to define the process; but I do not have details. This dissertation paper

uses a process as an aid to accurately define the permissions that users need to perform

their work.

Furthermore, the semantic layers are used as an alternative for role hierarchy.

While role hierarchy is out of the scope of this dissertation, the summary solutions point

towards role hierarchy as part of the decomposition/aggregation approaches. The main

purpose of using a role hierarchy in this dissertation is to ensure that all roles within the

hierarchy have been considered. If necessary, instead of using the iterative process to

consider each role, I can also use the iterative process to consider each key.

The constraints that control policy manipulate user accesses. Constraints are a tag

to key chains, which can improve the control of accesses. This dissertation does not

include constraints; however, if constraints are used, they can be tagged to roles, jobs,

tasks, or permissions. Job, task, or permission constraints control accesses differently. A

constraint on a job can restrict when a job can be performed (i.e., from 6:00 a.m. to 12:00

p.m.) or a constraint on a task can restrict how a user can access an application (e.g.,

allow only a browser with a 128-bit encryption to access a server). Constraints on

permissions can restrict a user’s view of data. Note that while a user has permission to

access to an application, the user may not have the ability to see another employee’s

records.

Another benefit of the Napoleon Model is its ability to decentralize administration

to the organization, which creates the policy. In addition to the developer and the local

 91

administrator, there can be many organizations involved in creating policy. In the

approach of this dissertation, I discuss three groups that help a role engineer architect a

role-to-permission relation:

1. Organization that provided the information for a role and if there should exist

permission equivalent workpatterns;

2. Developer that defined the permissions; and

3. Administrator that assigns roles to the users.

A role engineer is solely responsible for performing the approaches defined in this

dissertation with the support of the groups stated earlier. The dissertation does not

explicitly state that there are policies, nor does it constrain the capabilities of the

components of RPAM01. However, inherent within the approaches, policy is dictated by

the final role permission assignments. The people involved in performing the

approaches are representative of the groups discussed earlier.

To further analyze the Napoleon Model, I look at how RPAM01 can benefit the

Napoleon Model. The areas of interest are:

§ Approaches: Decomposition, Aggregation;

§ Model Layers;

§ Focus Approach; and

§ Properties.

The Napoleon Model does not have a decomposition approach. Instead, the

Napoleon Model provided the building blocks for the local administrator to determine the

 92

keys that are required by a role. The model does not consider a given set of roles or the

permissions that are required to perform the work.

RPAM01 contains five layers, whereas the Napoleon Model has three layers. The

comparison of the layers can be seen in Table 9. On the left side of the table are the

layers of RPAM01, which are aligned to the layers of the Napoleon Model.

Table 9: Layers: Napoleon vs. Role/Permission
RPAM01 Napoleon Model
§ Roles Local Policy Layer
§ Jobs
§ Workpatterns
§ Tasks

Semantic Layer

§ Tasks
§ Permissions

Application Layer

Under the Napoleon Model there is no concept of a job. I consider that jobs are

the responsibilities of a role and that the closest related concept is a key chain in the

semantic layer. A job can be considered as a set of keys, whereby a role may need to

perform multiple jobs to complete the work of roles. As such, a role requires multiple

key chains. The semantic layer is where processes are defined and is similar to

workpatterns that can be defined as a process. In RPAM01, I assign steps to tasks so

that I can consider properties. Tasks can also be related to the grouping of permissions

similar to object handles. Permissions are defined in both models by the application

developer.

 93

The dissertation concept of focus can be considered a policy. The concept of

focus was introduced to assist the administrator in engineering a role by directing his/her

decision based on known attributes of a target element. Decisions are based on a major

architectural component of a role/permission assignment (e.g., a role, the application, or

the permissions). The stimulus for the decisions is not discussed; however, policy is the

end result of the decisions.

Another valuable concept introduced in the dissertation is properties. The

Napoleon Model can benefit from the properties of: Equivalence, Uniqueness,

Minimization, Equivalence, Reuse, and Completeness. While the benefit of reuse may

exist, there is no discussion of the concept in the Napoleon Model. Reuse reduces the

amount of overhead involved in recreating the same policy. In addition, reuse can

establish a standard for the multitude of users that are creating policy. With the number

of users creating the policy, there is a high possibility of inefficiency. Equivalent

policies can be minimization, possibly to a point of uniqueness. Policies may be reused,

rather than new ones created. Finally, completeness helps ensure that all the required

permissions are available to users. There is less of a chance that a required permission

has not been assigned, ensuring that a user cannot have access to a critical application.

In summary, the Napoleon Model provided policy, multi-purpose administration,

role hierarchy alternatives, and constraints. The dissertation can provide the following

advantages: decomposition, granularity of roles/jobs, workflow, focus approach, and

properties. RPAM01 can benefit from the Napoleon Model by including constraints and

policies.

 94

6.3 Summary of RPAM01 vs. Role/Finding and Napoleon Models

I have analyzed the relation between RPAM01 and two other models, the decomposition

Role-Finding Model and the aggregation Napoleon Model. I observed the commonality

of these models. Each is concerned with:

§ assigning permissions to roles,

§ administering the model, and

§ considering processes in the approach.

More importantly, I found the benefits from the original concepts of RPAM01 to

assist in the development of other decomposition and aggregation approach models.

These benefits include:

§ Focusing the Decisions: The other models do not consider focusing their

decisions on the applications;

§ Defining Model Properties: There is no concept of reuse to prevent the

recreation of model components, nor is there a concept of completeness to

ensure that all of the necessary model elements are used.

§ Decomposing Roles into Jobs: Neither of the models considers that a role is

comprised of multiple jobs. A Role-Finding Model considers job position and

job function when defining a task. There is a concept of subroles, but neither

roles nor subroles are defined as a process. The Napoleon Model provided

the capability to have accesses based on a key chain. The key chain can

combine a set of permissions that can be aggregated into a job. The jobs can

 95

be combined to create a role. Each job may be considered a semantic key

chain.

§ Relation Between Jobs and Workpatterns: Workpatterns can use a process to

decompose a role into a logical flow of steps that are required to perform the

work. These can simply be assigned to a permission. Both models consider a

process, but they do not implement a process as a logical flow of steps to

identify the permissions that are required to perform the work of each job.

Finally, I observed that only RPAM01 provided an approach for both

decomposition of roles to permission and the aggregation of permission to roles.

 96

7.0 CONCLUSION

7.1 Summary

This dissertation demonstrates that it is possible to create a model and methodology to

decompose roles into permissions and aggregate permissions into roles. It also shows

that, by applying properties to the RPAM01 model, the effectiveness of role

administration can be increased.

The RPAM01 model extended the RBAC96 model by adding three layers: job,

workpattern, and tasks. The responsibilities of a role were subdivided into a concept of a

job, which was then decomposed into a discrete, atomical unit of work that is referred to

as a task. The translation from the job to a task was accomplished by identifying the

steps required to perform the work of a job in a set called a workpattern.

Decomposition from roles to permissions was accomplished with an approach that

started by selecting a focus that could be used in defining the criterion for decision-

making. Once the criterion is chosen, the concept of analyzing, tracking, or brainstorming

is used to decompose roles into jobs. After determining if the workpattern is single-

process, multi-process, or ad-hoc, the approach identifies the steps. The tasks that are

assigned to by the steps are mapped to permissions.

 97

The aggregation approach starts with the definition of the focus; however, the

next two layers use the concept of buckets to determine the permissions that should be

grouped into tasks; and subsequently, the tasks that should be grouped into a workpattern.

The result may require that the workpattern perform an additional task to complete the

work of the job. Next, the workpattern is assigned to the job; and from the list of jobs,

the jobs are selected and assigned to the roles based on the access needs of the work

being conducted by the role.

The aggregation and decomposition approaches were improved by applying the

minimization property, which eliminates equivalent elements that are not unique. In

addition, a property was introduced, which allows the reuse of elements from one layer to

the next layer. The completeness property was then applied to ensure that all permissions

and roles were assigned.

Finally, the dissertation demonstrates that a benefit of the approaches is the ability

to create a placeholder for permission growth. The placeholder is a permission-free task

that can be assigned in the future when there is a need to access an application that does

not currently require permissions. Another benefit of using this approach is that it

provides the ability to not have to completely redefine a role when a new job is assigned.

Instead, the new job can simply be mapped to a role.

7.2 RPAM01 Contributions

In this dissertation, I have introduced the layering of roles, jobs, workpatterns, tasks, and

permissions to logically show an approach to decompose or aggregate roles and

 98

permissions. This led to the need for concepts that could be used to engineer a layer of

the model layer and to define the relation between each of these layers.

 To strategically guide a role engineer in consistently defining the model, I

presented the concept of “Focus.” Focus provided information about a foundation

component (i.e., roles, applications, or permissions) that I use to engineer the approach.

 Another concept to aid in engineering is the ability to define the jobs of a role. I

began by categorizing roles into Documented, Existing, or Undefined. I further detailed

the jobs by using process as a means of decomposing the job into a set of steps. I realized

that not all permissions that are required by a job might not be part of a process, so I

added an ad-hoc set for disjointed steps.

I also found that I needed a concept to aid in the aggregation of permissions. I

combined aggregated permissions from one layer to the next layer by using buckets.

Buckets were used to group permissions into tasks and tasks into workpatterns.

 Finally, I considered the economy of re-using terms, efficiency of eliminating

redundancy, and the ability to perform all necessary work. I could enhance mapping the

elements between layers. These properties were accomplished by:

1. Reusing previous work;

2. Minimizing the number of elements by determining if there was a need for

uniqueness (If so, minimize equivalent (permission or not) elements to

provide an efficient assignment); and

3. Performing all the necessary work to ensure that there is a complete mapping

of elements between layers.

 99

7.3 Future Research

During the presentation of this dissertation, I identify future research that could enhance

RPAM01.

I note that constraints offer an important approach for restricting data access.

However, these constraints were considered out of the scope of this dissertation and were

not included within the model. By introducing constraints, I supplemented the model by

explaining additional concepts. For example, I could create a policy based on how the

constraints are applied to the different layers of the model. I learned that: 1) constraints

can be used to resolve the issue of distinguishing between an application access and the

data the application executes; 2) even when the user has permission to access an

application, he/she cannot unequivocally provide the user with the authority to see all of

the data executable by that application; and 3) by creating a set of rules constraints can

restrict access to the data based on some attribute.

 I note another area of research, the introduction of properties, into other models.

Currently, no other known research has a concept of properties. Permissions are

eventually assigned to users without consideration of reuse, minimization, or

completeness. These concepts could help improve efficiency for other models.

I observe that I can include role hierarchy and consider how a role hierarchy

would affect the definition of the jobs. With the addition of role hierarchies, I can

determine if the responsibilities of a job can be considered as a “child” role and be

inherited by a role hierarchy, instead of defining another job.

 100

Finally, I can learn that additional research is needed to concentrate on the benefit

of a process. While I can provide a detailed analysis on how a business process can be

used to define a role, I realize that I need to consider more than the process. For

example, I may need to include attributes such as the organization, geographic location,

or a company to determine the needed permissions of a role.

 101

REFERENCES

 102

8.0 REFERENCES

[B90] R.W. Baldwin, Naming and grouping privileges to simplify security

management in large databases. In Proceedings, IEEE Computer Security
Symposium on Research in Security and Privacy, IEEE Computer Society,
1990.

[B95] John Barkley, Implementing Role-Based Access Control Using Object

Technology, In Proceedings of First ACM Workshop on Role-Based
Access Control, Gaithersburg, MD, November 30-December 1, 1995.

[B98] Konstantin Beznosov, Requirements for Access Control: US Healthcare

Domain, In Proceedings of Third ACM Workshop on Role-Based Access
Control, October 22-23, 1998.

[BC98] John Barkley, Anthony Cincotta, Managing Role/Permission

Relationships Using Object Access Types, In Proceedings of Third ACM
Workshop on Role-Based Access Control, October 22-23, 1998.

[BLP75] D.E. Bell and L.J. La Padula. Secure Computer System: Unified

Exposition and Multic Interpretation. Technical Report MTIS AD-
A023588, MITRE Corporation, 1975.

[BRJ99] Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling

Language User Guide. Addison Wesley Longman, Massachusetts, 1999.

[C01] Ramaswamy Chandramouli (NIST), A Framework for Multiple Types in a

Healthcare Application System, In Proceedings of 17th Computer Security
Applications Conference, New Orleans, Louisiana, December 10-14,
2001.

[C95] Edward Coyne. Role Engineering, In Proceedings of First ACM

Workshop on Role-Based Access Control, Gaithersburg, MD, November
30-December 1, 1995.

 103

[C99] Ramaswamy Chandramouli (NIST), A Framework for defining an Access
Control Service for Healthcare Information System Using Roles, A
Presentation for 4th ACM Workshop on Role-Based Access Control,
Fairfax, VA, October 28-29, 1999.

[CY95] E. Coyne, C. Youman, Workshop Discussion, In Proceedings of First

ACM Workshop on Role-Based Access Control, Gaithersburg, MD,
November 30-December 1, 1995.

 [ES1] Pete Epstein, Ravi Sandhu, Engineering of Role Permission Assignments,

In Proceedings of 17th Computer Security Applications Conference, New
Orleans, Louisiana, December 10-14, 2001.

[ES99] Pete Epstein, Ravi Sandhu, Towards a UML Based Approach to Role

Engineering, In Proceedings of Fourth ACM Workshop on Role-Based
Access Control, October 28-29, 1999.

[FCK95] D. Ferraiolo and J. Cugini, and R. Kuhn, Role-based access Control

(RBAC): Features and motivations, IN Proceedings of 11th Annual
Computer Security application Conference, December 11-15, 1995.

[FK92] D. Ferraiolo and D.K. Kun, Role Based access control. In 15th National

Computer Security Conference, NIST/NSA, 1992.

[FSGKC01] David Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn,

Ramaswamy Chandramouli, Proposed NIST Standard for Role-Based
Access Control, 2001.

[G95] Luigi Giuri, Role-Based Access Control: A Natural Approach, In

Proceedings of First ACM Workshop on Role-Based Access Control,
Gaithersburg, MD, November 30-December 1, 1995.

[G98] Luigi Giuri, RBAC in Java, In Proceedings of Third ACM Workshop on

Role-Based Access Control, October 22-23, 1998.

[GH00] Thomas Gebhardt, Thomas Hildman, Enabling Technologies for Role-

based Online Decision Engines, In Proceedings of Fifth ACM Workshop
on Role-Based Access Control, July 26-27, 2000.

[HA99] Wei-Kuang Huang, Vijayalakshmi Alturi, Secureflow: A Secure Web-

enabled Workflow Management System, In Proceedings of 4th ACM
Workshop on Role-Based Access Control, Fairfax, VA October 28-29,
1999.

 104

[KPF01] M. Kang, J. Park, J. Froscher, Access Control Mechanisms for Inter-
Organizational Workflow, In Proceedings of Sixth ACM Workshop on
Role-Based Access Control, May 3-4 2001.

[M97] William J. Meyers, RBAC Emulation on Trusted DG/UX, In Proceedings

of Second ACM Workshop on Role-Based Access Control, November 6-
7, 1997.

[M98] Jonathan Moffett, Control Principle and Role Hiearchies, In Proceedings

of Third ACM Workshop on Role-Based Access Control, October 22-23,
1998.

[N94] M. Nyanchama, Commerical Integrity, Roles and Object Orientation, PhD

thesis, Department of Computer Science, The University of Western
Ontario, London, Canada, Sept. 1994.

[N95] L. Notargiacomo, Role-Based Access Control in ORACLE7 and Trusted

ORACLE7, In Proceedings of First ACM Workshop on Role-Based
Access Control, November 30 – December 1, 1995.

[NO93] M. Nyanchama and S. Osborn, Role-based Security, Object Oriented

Databases and Separation of Duty, Sigmod Record, 1993.

[NO94] M. Nyanchama and S.L. Osborn, Access rights administration in role-

based security systems. In J. Biskup, M. Morgenstern, and C.E.
Landwehr, editors, Database Security, VIII, States and Prospects,
Proceedings of the IFIP WG 11.3 Working Conference on Database
Security, North-Holland, 1994.

[NO95] M. Nyanchama and S.L. Osborn, Modeling mandatory access control in

role-based security systems. In D.L. Spooner, S.A. Demurjian, and J.E.
Dobson, editors. Proceedings of the IFIP WG 11.3 Ninth Annual Working
Conference on Database Security, Chapman & Hall, 1995.

[NO98] M. Nyanchama and S.L. Osborn, The Role Graph Model, In Proceedings

of First ACM Workshop on Role-Based Access Control, Gaithersburg,
MD, November 30-December 1, 1995.

[O97] Sylvia Osborn, Mandatory Access Control and Role-Based Access

Control Revisited, In Proceedings of Second ACM Workshop on Role-
Based Access Control, November 6-7, 1997.

 105

[PS01] N. Perwaiz, I. Sommerville, Structured Management of Role-Permission
Relationships, In Proceedings of Sixth ACM Workshop on Role-Based
Access Control, May 3-4 2001.

[R95] R. Sandhu, Rationale for the RBAC96 Family of Access Control Models,

In Proceedings of First ACM Workshop on Role-Based Access Control,
Gaithersburg, MD, November 30-December 1, 1995.

[R96] Rational Rose/C++, Rational Rose Software Corporation, Summit

Software, Santa Clara, CA, www.rational.com, Copyright 1996.

[RSW00] Haio Roeckle, Gerhard Schimpf, Rupert Weidinger, Process-Oriented

Approach for Role-Finding to Implement Role-Based Security
Administration in a Large Industrial Organization, In Proceedings of Fifth
ACM Workshop on Role-Based Access Control, July 26-27, 2000.

[S75] Louis Shapiro, Introduction to Abstract Algebra, 1975, McGraw-Hill.

[S96] R.S. Sandhu, Role Hiearchies and Constraints for Lattice-Based Aaccess

Controls. In Computer Security – ESORICS 96, Springer Verlag, 1996
Lecture Notes 1146.

[S98] Ravi Sandhu, Role-Based Access Control, In Advances in Computers,

Vol. 46, Academic Press , 1998.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal Feinstein, CharlesYouman, Role-Based

Access Control Models, In IEEE Computer, Volume 29, Number 2,
February 1996.

[T88] T.C. Ting, A User-Role Based Data Security Approach, in Database

Security: Status and Prospects, C.E. Landwehr, Editor. 1988, Elsevier.

[TB79] Thomas, E. and B. Biddle, The Nature and History of Role Theory, in

Role Theory: Concepts and Research, B. Biddle an E. Thomas, Editors,
1979 Kreiger Publishing.

[TJ00] J. Tidswell and T. Jaeger, Integrated Constraints and Inheritance in DTC,

In Proceedings of Fifth ACM Workshop on Role-Based Access Control,
July 26-27, 2000.

[TOB98] Dan Thomsen, Dick O’Brien, Jessica Bogle. Role Based Access Control

Framework for Network Enterprises, In Proceedings of 14th Annual
Computer Security Application Conference, December 7-11, 1998.

 106

[TOP99] D. Thomsen, R. O’Brien, and C. Payne, Napoleon Network Application
Policy Environment, In Proceedings of 4th ACM Workshop on Role-Based
Access Control, Fairfax, VA, October 28-29, 1999.

 107

CURRICULUM VITAE

Pete A. Epstein was born on May 27, 1957, in Mount Vernon, New York and is an
American citizen. He graduated from Valhalla High School, Valhalla, New York, in
1975. He received his Bachelor of Science degree from University of Maryland in 1980.
He received his Master of Business Administration from Marymount University in 1984.
He has been employed in the Information Technology field for 21 years and received his
Doctor of Philosophy in Information Technology from George Mason University in
2002.

