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Abstract

SUPPORTING SECURE AND EFFICIENT WRITE-UP IN
HIGH-ASSURANCE MULTILEVEL OBJECT-BASED COMPUTING

Roshan K. Thomas, Ph.D.
George Mason University, 1994

Dissertation Director: Dr. Ravi Sandhu

This dissertation addresses the support of secure and efficient remote procedure call
(RPC) based synchronous write-up actions in multilevel object-based computing envi-
ronments and systems. These environments and systems are characterized by objects
classified at varying security levels {called classifications) and accessed by subjects
with varying security clearances. Many multilevel systems, such as relational multi-
level database management systems, typically do not allow write-up, due to integrity
problems arising from the blind nature of write-up operations in these systems. (A
blind write-up operation is one that is not allowed to read the data at a higher level,
but is allowed to overwrite it.) In object-based computing environments, sending mes-
sages upwards in the security lattice does not present an integrity problem because
such messages will be processed by appropriate methods in the destination (receiver)
object. However, supporting write-up operations in object-based systems 1s compli-
cated by the fact that such operations are no longer primitive; but can be arbitrarily
complex and therefore can take arbitrary amounts of processing time. Dealing with
the timing of write-up operations consequently has broad implications on confiden-

tiality (due to the possibility of signaling channels). integrity, and performance.
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We present an asynchronous computation model for multilevel object-based
computing, which achicves the conflicting goals of confidentiality, integnty, and effi-
ciency. This requires concurrent computations (methods) to be generated whenever
write-up actions are issued, and for them to be scheduled and synchronized so that
the net effect is logically that of a sequential computation {minucing remote proce-
dure call semantics). The computations generated by a user form a tree of concurrent
computations and are collectively considered to belong to a user session. OQur work
utilizes an underlying message filter security model to enforce mandatory confiden-
tiality. We demonstrate how our computation model can be implemented within the
framework of trusted subject, kernelized, and replicated architectures. In doing so,
we present a family of synchronization and scheduling schemes for concurrent compu-
tations, and present a framework for comparative analysis. We also present various

inter-session synchronization schemes.



05/09/05

19:08 FAX 703 993 1638 GEORGE MASON UNIVERSITY

-

Chapter 1

Introduction

The object-oriented paradigm continues to emerge as a useful and unifying one n

computer science and engineering. Ideas from the paradigm have been incorporated

in such diverse fields as software engineering, artificial intelligence, and database

management, with the resulting advancement of these fields in new directions. The
interest of the artificial intelligence community to object-orientation has come from
the search for knowledge representation and manage;nent schemes for large knowledge
hases. From the software engineering perspective, objects are seen as instances of
abstract data types (ADT’s) [LZ74] incorporating the principles of encapsulation and
information hiding. It is now well known that these are vital in building software
systems and components that are highly modular, maintainable, and reusable. From
the database viewpoint, the object-oriented data model overcomes the limitations
of record-based models by being able to model complex structures, relationships,
and behavior. These capabilities are essential for emerging application areas such as
computer-aided design and manufacturing (CAD/CAM), software management and

reuse, and office information systems, to name a few.

Central to the object-oriented paradigm is the notion of an object. An object
models some real-world entity, encapsulates some private state, and is identified by
some persistent and unique identity. An object also encapsulates services which

are made available to requesting clients through a public interface. Services are

goo1
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implemented by pieces of code called methods, and invoked by sending messages to

objects.

Although there is wide agreement on the above primitive notion of objects,
much debate has ensued in the last few years over the formulation of an object-
oriented data model. There is some consensus on the core concepts that such a
data model should support. However, a single universal definition has not emerged
[MaiB9]. Some researchers also distinguish between object-based, class-based, and
object-oriented systems. In Wegner's view [Weg87], a language is considered to be
object-based if it provides linguistic support for objects. Examples of such languages
include Actors [Agh87], and Ada. In addition, if a language supports the notion
of classes, it is considered to be class-based. An example of such a language is Clu
[L*77). Further, if the language supports the notion of inheritance, it is categorized
as being obje;:t-oriented. Inheritance allows objects and classes to share structure in

terms of inherited attributes and behavior in terms of inherited methods.

In this dissertation, we address the support of object-based computing n
multilevel-secure environments. Such environments are characterized by objects la-
beled at different classifications, and accessed by users (or more precisely subjects
on their behalf) cleared to various security levels. A security policy governs how the
subjects can access the various objects in the system. We are not concerned with the
plethora of modeling issues and variations in the object-oriented data model. Rather,
we are interested in how objects can form a basic model for secure computing. Com-
puting in the object framework reduces to sequences of message passing and method
:nvocations among objects. We are thus :nterested in how objects can send messages

and exchange information without violating the relevant security policy.

It is now widely recognized that computer and information security consists of

three distinct but interrelated areas, namely confidentiality, integrty and availability.
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Confidentiality is concerned with the disclosure of information, integrity is concerned
with the improper modification of information, and availability is concerned with
the denial of access to information. In this dissertation our focus is primarily on

confidentiality and integrity issues.

Before proceeding further in the discussion, it is helpful to clarify the distinc-
tion between users, principals, and subjects. By a user, we mean a human being,
represented in the system by a unique user identity. Each user may be associated
with several principals. However, a principal can be associated with only a single
user. Each principal associated with a single user may be given a different set of
access rights, and allowed to login at different security levels as long as these levels
are dominated by the clearance of the parent user. Each principal may in turn have

several subjects. Each subject is a process in the system.

The rest of this introductory chapter is organized as follows. The first section
discusses concurrency, message passing, :-;md other issues in object-based computing
that are relevant to the topic of this dissertation. This is followed by a brief intro-
duction to multilevel security. The last section highlights the organization of the rest

of the dissertation.

1.1 Object-Based Computing

The wide applicability of the object-oriented paradigm and way of thinking has nat-
urally led to the integration of many technologies. For example, a noticeable trend
is the enhancement of object-oriented programming languages with support for ob-
jects that are persistent and sharable. The ability to support persistent and sharable
objects is indeed the main feature offered by database management systems. Thus
the distinction between object-oriented programming environments and databases is

increasingly becoming blurred. Another wave of integration will likely result from
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concurrent object-based computing environments incorporating database functional-
ity. Application areas such as situation assessment, network monitoring, and process
control are naturally modeled as cooperating concurrent objects. However, the states
of such objects may be required to persist beyond individual computing sessions and
process lifetimes, and to be shared by other objects. For example, in a process con-
trol system, persistency may be required for the simple reason that we need history

information for measurements of quantities such as temperature and pressure.

The issues addressed in this dissertation are most pertinent to domains which
can be modeled as a set of autonormnous but cooperating objects such that the object-
based model of computing is a good fit, and where object states are required to be
persistent and sharable. The mechanisms we propose can be incorporated into a
variety of multilevel computing environments and systems such as object-oriented

databases and message-based operating systems.

| 1.1.1 Concurrency and Message-Passing Alternatives

The object-based model of computing sees the world as a set of concurrent and co-
operating objects. As such these object.s would have to occasionally interact with
each other and exchange information. An obvious approach would be to use common
variables residing in some shared memory. However object interaction based on mes-
sage passing is the most suitable, when objects are autonomous entities executing in
a loosely coupled environment. We may categorize message passing alternatives into

two categories:

o Synchronous. In the synchronous form of message passing, a sender object
O, sends a message to a receiver object O, and is suspended until the message

is delivered to the intended receiver and a reply returned.
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o Asynchronous. In this case the sender transmits a message and continues

execution without waiting for the message to be delivered, or for the reply.

Synchronous message passing essentially parallels the semantics of remote procedure
calls (RPC’s), with the difference that the receiver's activity does not have to end with
the return of the reply. The asynchronous form varies in style from the sending of a
single message to more complex forms involving streams of messages. In either case,
asynchronous message passing requires synchronization if the sender needs to access
the reply returned from the receiver. This is because the sender and the receiver may
be executing concurrently. The well-known approach to such synchronization is based
on the notion of futures [Weg91]. A future is a data structure (object) that represents
the results of the concurrently executing receiver object (process). When a message
is sent in asynchronous mode, a future is created, after which the sender continues
execution. The future represents a promise or 1.0.U. from the receiver object (the
called process). When the sender subsequently wishes to obtain the reply it accesses
the future object. If the promise has not been fulfilled, the sender has to wait until

the receiver returns the required results to the future object.

In the multilevel context, whenever a sender has to wait for a reply or some
other result, there always exists the possibility of _conﬁdentié.ﬁty leaks through covert
channels (as discussed in subsection 1.2.2). This may occur from both synchronous
and asynchronous communications. However, in our subsequent discussions, we focus
on synchronous (RPC-based) communications as the intended correctness semantics

is clear,

1.1.2 Persistent and Sharable Objects

When objects persist beyond individual user sessions and are shared by many users,

the integrity of the data objects becomes a primary concern. The actions or updates
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of one user on an object can causally influence the values read and written by other

users. Further, information can flow from one object to another.

Several deﬁniitions of data integrity have appeared in recent literature. Sandhu
has succinctly complared and summarized these different notions of integrity [San93].
Of these different notions of integrity, the one most suitable in our context is that
which is concerned with the improper modification of data. Qur objective is to make
sure that objects are modified in a fashion that is consistent with a synchronous
message passing (re}note procedure-call) semantics. We are not concerned with data
integrity in the sense of an expectation of data quality that may incorporate liveness

requirements.

1.2 Multilevel Security

The notion of multileVel security for data confidentiality originated in the late 1960’s
when the U.S. Dép;a.rtrnent of Defense wanted to protect classified information pro-
cessed by compute:rs. Environments and applications requiring multilevel security
are characterized by users with more than one clearance level sharing data with more

than one sensitivity level (classification).

In the following subsections, we review basic notions of multilevel security by
introducing latticelbased security policies and models. We then discuss how even
with adequate access control mechanisms, information may still leak through covert

and signaling channels. |

1.2.1 Lattice-based Security Models

The military security policy is a special case of a more general lattice-based security

policy. Every ob je(;:t in the system is assigned a security class (also known as a security
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label). Information is allowed to flow between two objects only if the policy allows
information to flow between the corresponding classes. Given a set SC of security
classes, we can formally define a binary can-flow relation — C SC x SC. It is also
convenient to define the inverse of the can-flow relation called the dominates relation.

We say A > B (A dominates B) if and only if B — A.

In a 1attice:-based approach to multilevel security, the security classes form
a mathematical stjructure called a lattice. The security elements of the lattice are
partially ordered under the can-flow (-+) relation.. In a lattice, there may be pairs
of elements say (A, B) for which the can-flow relation does not hold (i.e., A 4 B is
true), Every pair of elements in a lattice possesses a greatest lower bound. In other
words, for every pair of elements (A, B) there is an element L such that L — A and

L—=B hold._.Simﬂa.rly, every pair of elements in a lattice has a least upper bound.

In the mili:tary and government setting, the security label given to a data
item (object) consists of two parts, a hierarchical level and a category. The set of
hierarchical levels is totally ordered as follows:

Top-secret > Secret > Confidential > Unclassified
The individual seti elements in a category are known as compartments. Compartments
are used to impleiment the principle of least privilege or “need-to-know”. This is a
well known princiiple in security and ensures the;t a user has access to the minimum
number of objectis required to perform his or her job. The compartment assigned
to an object typiical]y reflects the subject matter of the information contained in
the object. We sia.y a security level dominates (2) another if its hierarchical level
is greater than tlrixe other’s and its category set includes the others. As an example

consider two coni1partments CRYPTO and ATOMIC. Thus the level <top-secret;
CRYPTO, ATOMIC> dominates the level <secret; CRYPTO>.

Having in:troduced lattice-based security policies, we now turn our attention
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to related security %nodels. A security model is used to implement a security policy.
The Bell and LaPaiiula security model (also called the BLP model) was the first to
formally address mlultilevel security, and even today remains the de facto standard
[BL76]. BLP characterizes and governs access control and information flow with the

following two rules {1 denotes the label of the corresponding subject (s) or object (0)).

e Simple Security Property. Subject s can read object o only if I(s) > (o).

. _*—Property.i Subject s can write object o only if I(s) < l(0).

The need for the ;simple—security rule is obvious; it prevents low level users (and
subjects) from rea.éding information stored at higher levels. It thus prevents “read-
up” operations. Téhis requirement parallels that of the paper world with documents
and human beingsi (users). However, it turns out that disallowing read-up operations
alone is not sufﬁc;ient to prevent illegal information fiows that violate the security
policy. To illustriate, a high subject may read a file classified at high, and write
a subset of its cc?vntents (or information derived from its contents) into a second
file at a lower ﬁlé. This would clearly violate the security policy as information is
flowing downward%s in the security lattice. The *»property (pronounced star property)

prevents such viol:ations by disallowing write-down operations.

The *—propi’erty is reaily a confinement property and at first sight might appear

| ;
to be overly restriictive and counter-intuitive to the way the real (paper) world works.
A human user cleared to a high level may talk and disclose information to users

at lower levels. However, in the real world, the high user is “trusted” to exercise

judgement and not disclose any highly classified information. In other words the user

" s allowed to talk about public information such as sports scores and the weather. A

subject, which is|a program or process in the system, cannot be trusted in a similar

fashion.
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USER PROGRAM . * | REPORT Y
(sccret) —_—— (infected) —_——— (op sckTL)

-

i TRQJAN HORSE
! .

Figure 1.1: An example of Trojan horse leaking information

The above distinction between the trust placed in human users and the mis-
trust of subjects is !s nificant and fundamental to implem g security pelicies in
computer systems. A subject (computer program) cannot be trusted as it may con-
tain bugs and trcqan horses. A trojan horse is a malicious program which in addition
to its stated ob jectl'ves performs some hidden functions. Trojan horses are typically
embedded into apphcatlon programs and utilities. A typical victim such as an end
user, is not aware iof the Trojan horse when using the infected program. Fig 1.1
illustrates how info!tmation could be leaked with the help of a Trojan horse. A high
subject (program) reads two high level files and compiles a high level report. Mean-

while, the Trojan horse that is embedded in the program, writes some information in

the high level files to a low level file. The *property prevents such leaks.

The Bell-LaPadula rules are examples of what we call mandatory access con-

trol (MAC) rules. Mandatory access control pla.ces restrictions on the access of ob-
jects based on thex'r security labels, and the controls themselves cannot be bypassed.
In many models and systems (including BLP), mandatory access control is comple-
mented by discret:'|onary access control (DAC) mechanisms. In the DAC framework,
objects are owned |by subjects who at their discretion, propagate rights to these ob-
jects, to other subjects. An example of a discretionary access control rule would be

one that specifies jnow the owner of a directory may give read or write permission to

the directory, to other subjects. In this dissertation we do not address discretionary
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: : : . .
access control issues as they are irrelevant to the problems associated with supporting

write-up actions.

1.2.2 Covert and Signaling Channels

In our discussion SCE) far, we have seen how mandatory access controls prevent illegal
communication (mformatlon flows) between access classes. However, a system that
enforces ma,ndatory access controls such as one based on the BLP model can be
riddled with covert? channels{also called leakage paths). These channels arise due to
processes sharing resources in the system, and pose a formidable problem in building
secure systems. Models such as BLP approach access control from a certain level
of abstraction. Hoiwever, there exists several shared resources and variables such as
buffer pools and g;lobal counters that are not part of the abstractions of BLP, but

nevertheless are sﬁared by processes {subjects) at multiple security levels.

There exlsts two types of covert channels. A storage channel arises when a
process writes an ob]ect or variable and another process can observe or read the effect
of the write. A ttmmg channel results when the activity of a high level subject affects
the performance of the system in such a 'way tha.t it can be observed and measured
by lower level subj _]ect.s To exploit timing cha.nnels subjects must have the ability to
measure time (sug.h as having access to a real-time clock). Storage channels do not
require access to a.ny such timing base.

As an illusi tration, let us see how a storage covert channel based on resource
exhaustion can be formed. Consider a computer system that has a 10MB pool of
dynamically a.lloéa.ted memory. A high subject requests the entire pool of memory
and its request is| granted This is followed by a request from a low subject for 10MB
)

of memory. Obviously, this request cannot be granted, and the low sub ject records

this fact as one bit of information. Now a colluding high subject can selectively
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request and release the pool of memory at regular intervals, causing the low subject’s
request to be denied or honored in a specific pattern, and thereby opening up the
covert channel. Another example of a storage channel is one that arises from a low
subject inferring the existence of an object at a higher level. A low subject may
accomplish this by attempting to create a file with a file-name that already exists,
and the file system rejecting the request since it has to guarantee the uniqueness of file
names. A pair of colluding subjects can cause a pattern of bits to be leaked. Lastly, a
simple illustration of a timing channel is one that is caused by the modulation of CPU
atilization. A high subject can vary the CPU utilization at some constant interval,

causing the low subject’s progress to be modulated and measured.

In summary, a covert channel is a communication channel not normally in-
tended for direct communication between subjects in the system. These channels are
beyond the :purview of abstract security and access control models such as BLP. De-
tecting and closing them will require analysis of information flow within the internals
of individual systems.

In this dissertation we distinguish between the above mentioned covert chan-
nels and signaling channels [JS91]. A signaling channel is a means of downward
information flow which is inherent in a data or computation model, and will therefore
occur in every implementation of the model. - A covert channel on the other hand
is a property of a specific implementation, and not a property of the data or com-
putation model. In other words, even if the data or computation model is free of
downward signaling channels, an implementation may well contain covert channels
due to implementation specific quirks. Conversely, closing all covert channels in an
implementation will not eliminate signaling channels. It should be noted however

that both covert and signaling channels form illegal and unintended communication

paths.
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As mentioned before, the object-based computation model essentially reduces
to sequences of message passing among objects. Unfortunately, with such a computa-
tion model, message passing with remote procedure-call (RPC) semantics is vulnera-
ble to signaling channel attacks, as we will see shortly. This has broad implications for
building multilevel-secure systerms that support object-based computing. In particu-
lar, solutions to close signaling channels should be addressed to the layer that supports

ihe data and computation model, rather than fine-tuning low-level implementation

parameters. The 1rnpasse formed by signaling channels appears to be fundamental to

object-based computing, and is 1ndeed one of the main issues that we address in this

dissertation.

1.2.3 Security Kernels, Architectures, and Trusted Subjects

Are there approaches to building secure systems that overcome the security problems
inherent in conventional design methodologies? One answer to this lies in the idea of
building secure operating systems with a securify kernel approach. The lower-level
functions in an operating system are generally performed by what is considered to be
the kernel (also called the nucleus or core). Similarly, in a secure system the security
kernel implements the security mechanisms of the operating systern. The security
kernel approach is based on (and implements) the concept of a reference monitor. The
reference monitor, which is the the combination of hardware and' software, enforces
the security policy by providing access control to resources. It utilizes access control

information stores in an access control database for this purpose.

The successful application of the security kernel approach is based on the
theory that only a small fraction of the total functiens in an operating system are
needed to enforce security. The motivations to isolate the security functions into a

security kernel are many. Isolation makes it easier to protect, modify, as well as verify
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these security mechanisms. It also makes it easier to ensure completeness or coverage;

l.e., every access to a protected object must pass through the security kernel.

Several svstems that employ the security kernel approach also support the
notion of trusted subjects.t The m;)st distinguishing feature of trusted subjects is
that they are endowed with certain privileges. Most notably, a trusted process may
be allowed to bypass mandatory security controls. Thus a trusted subject could access
information at various security levels and be allowed to write-down such information

~ (as it is exempt from the *-property restrictions of mandatory security)-

There has been a certain degree of controversy, uneasiness, and suspicion with
the notion of trusted subjects. One of the major drawbacks of utilizing trusted sub-
jects has to do with the greater difficulty in verifying trusted software. The properties

‘and associated proofs of trusted subjects are not as obvious or straightforward as that

for the simple security and * properties. In the remainder of this dissertation, we
refer to architectures that use trusted subjects as trusted-subject architectures, Ar-
chitectures that use only single-level (untrusted) subjects are referred to as kernelized

architectures.

1.2.4 Multilevel System Architectures

In this section we briefly review three multilevel database management system
(DBMS) architectures, namely, the kernelized, replicated, and trusted subject archi-
tectures. Of these, the first two comprise two of the three architectures identified

by the Woods Hole study organized by the U.S. Air Force [Cou83]. These architec-

1The term “trusted” is used often in the literature to convey one of two different notions of trust.
In the first case, it conveys the fact that something is trusted to be correct. In the second case,
we mean that some subject is exempted from mandatory confidentiality controls; in particular the
simple-security and *-properties in the Bell-Lapadula framework. It is the latter sense of trust that
we refer to here.
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Figure 1.2: A kernelized multilevel system architecture
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Figure 1.3: A multilevel system architecture with trusted subjects
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Figure 1.4: The replicated multilevel system architecture

tures were motivated by the need to build multilevel secure DBMS's from existing
untrusted DBMS’s. The trusted subject architecture on the other hand, requires one

to build a multilevel DBMS from scratch.

L ‘:: The basic features of the kernelized architecture are shown in figure 1.2. Most
noticeable is the fact that there exists an individual DBMS for every security level.
S A user clea.ll'glc;l;_kto level high, interacts with the high DBMS through a trusted front
i‘ end. Existing DBMS’s can be directly incorporated with minimal modification since
they have to manage only single-level data at their levels. These single-level DBMS’s
' | communicate with a trusted operating system that manages both high and low data
| : storage.

The trusted subject architecture differs from the kernelized one in that we no

longer have single-level DBMS’s for every level, as shown in figure 1.3. Instead, there
exists a single (trusted) DBMS that incorporates multilevel trusted subjects. Recall

that such a subject is exempt from the mandatory access control rules enforced by
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the operating system.

In contrast to the kernelized and trusted subject architectures, the distinguish-
ing feature of the replicated architecture shown in figure 1.4 is the existence of separate
DBMS’s for every level and the replication of low data at the higher level DBMS's.
The high assurance of this architecture stems from the fact that the DBMS’s are
physically isolated and a subject cleared to a level, say I, is allowed to access only the

database for level {, and can obtain all the data needed at the local DBMS location.

1.3 Multilevel Security in Object-based Computing

In this section, we discuss the integration of multilevel security in object-based sys-
tems. In attempting such an integration, are there fundamentally different approaches
to providing access control and authorization in object-based systems? Keefe [Kee90]
has provided a useful framework and categorization of existing object-based secu-
rity models and access control approaches. Namely, these include behavior-based,

structure-based, and message-based approaches.

An object models the behavior of an entity through the methods supported by

its interface. Accordmg]y, a behavior-based approach to muitilevel security specifies
and enforces access control in terms of method 1nvocat10ns Thus the access control
problem essentially reduces to the question: Is subject S allowed to invoke method
M on object O7 Access control and rights is no Jonger seen in terms of read and
write operations; rather at the higher and semantic level of abstract operations. The
tdea of behavior-based access control meshes well with the notion that objects are
instances of abstract data types. Unfortunately, the semantic and abstract nature of
this approach gives no clue on how to construct a more concrete and implementable

mpdel.

In the structure-based approach, access control is no longer seen in terms of
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the semantics of methods or abstract operations. Rather, it is based on mediating
primitive read and write operations issued by methods. The mediation of reads and
writes essentially reduces this approach to an interpretation of the Bell-LaPadula
(BLP) model for objects. Access to portions of object states by subjects, is governed

by the simple-security and *-properties of BLP.

The behavior-based and structure-based approaches reflect the bias which sys-
tems have in supporting behavioral and structural features. Dittrich has provided a
‘useful taxonomy for object-oriented databases [DHP89], and observes that behav-
iorally object-oriented systems tailor all mechanisms to emphasize the support of
abstract data types. Structurally-oriented systems emphasize the access and ma-
nipulation of complex and nested object structures. Fully object-oriented systems

provide both behavioral and structural features.

A third approach, referred to hereafter as the message or flow-based approach,
is based on the central noﬁion that in the object-based model, objects communicate
with each other solely through messages. Since objects are encapsulated units, it
follows that security can be enforced by controlling the exchange of messages. When
a message is sent, the classifications of the sender and receiver objects are used to
determine if an illegal information flow will take place. The message is delivered to
the receiver only if the resulting information flow does not violate the security policy.

It is important to note that there is no attempt to analyze the semantics (i.€., message

type) or contents of the message itself.

How does the message-based approach compare with the behavior-based and
structure-based approaches? In some sense, b‘y ignoring the semantics of messages
the message-based approach appears to be less rich than the behavior-based one.
Nevertheless, it offers the advantage of meshing well with the object-based model of

computing. Thus it has wide applicability in providing security for systems ranging
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Figure 1.5: Object classification granularities

from message and object-based operating systems to object-oriented databases. A

further advantage of the message-based approach is that it lends-itself easily to an

implementation. It is conceptually simple and elegant to enforce security by mediating
messages at a central point such as the trusted computing base. When compared to
structural approaches, the message-based approach incurs less overhead since access
control need not be enforced on the many primitive read and write operations that
can be issued by methods.

Another issue that arises with the integration of multilevel security and object
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notions, is that of object classification granularity. What is the basic size of the unit
that should be classified independently from other units? If the granularity is larger
than an object, the system may offer good performance. However, from a modeling
standpoint this may not be flexible enough to classify the objects accurately and
paturally. If the granularity is very fine and smaller than an object, the system may

offer great modeling flexibility, although at the price of performance.

Figure 1.5 illustrates five different approaches and associated granularities for
object classification discussed in [Kee90)2. In the first approach, referred to as instance
variable value labeling, every instance variable or element of an object is assigned an
independent security level. In the second approach, called object labeling, the entire
object is uniformly classified.. A variation of this second approach yields a third one
called partial object labeling, in which all the instance variables share a common
uniform c]as;iﬁcation which may be different from the rest of the object. The fourth
approach called class labeling, results iﬁ every object instantiated from a class, 1o
be object labeled with a single common classification. The last approach referred to
as instance variable labeling, requires the classification of the object-identifiers for
all the instance objects instantiated from a class, to be the same. Further, all the
instance variables are required to have the same label, or labels that fall within some

prespecified range.

In summarizing this section, we note that the approaches to authorization,
and classification granularity, are related as they influence each other. The primitive
read and write operations always apply to the values of individual instance variables
of an object. Thus instance variable value labeling lends itself to a structure-based
access control. On the other hand, if message or flow-based access control is used, it is

more natural to classify objects uniformly. On receipt of a message, the corresponding

2]t is of course possible to enumerate other combinations and possibilities.
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method invoked is generally given access to the entire object state within the object

boundary. Thus object labeling appears to be more suitable.

1.4 Summary of Previous Work

In this section we review some of the existing proposals to integrate multilevel security
in object-based and object-oriented systems. The motivation for most of these efforts

have come primarily from object-oriented databases.

A behavioral approach to access control is pursued in [MHR9]. A subject S is
allowed to invoke a method M on an object O, if a relationship exists between the
subject, object, and the method. The security policy is expressed as a set of such
relationships.

Structure-based approaches are mentioned in [KTT88, ML92, Lun90, ThuB9a,
Thu89b]. All these approaches accommodate fine-grained classification granularity
by supporting multilevel objects (objects where each compopent is classified inde-
pendently). Thus access to components of objects is governed by mandatory access
control rules. These models also consider illegal information flows that could occur
from classes to instances, as well as through inheritance along the class hierarchy. In
order to prevent such flows, these models require a number of constraints to be main-
tained. For example in [Thu89b) it is required that the classification of an instance
of a type dominate the classification of the type. In (Lun90], the hierarchy property
requires that the classification of a subclass dominate the classification of the parent
superclass. This ensures that information flow along the class hierarchy is always

upwards in the security lattice.

Flow or message-based approaches to multilevel security were initially pro-

posed in [BTMDg9, CVW*88] for message-based secure operating systems. Similar
:deas for databases and information systems are mentioned in [MO87, TC89, JK90].
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The underlying theme in all these proposals is to enforce security by mediating mes-
sage flow between objects. The model in [JK90], referred to hereafter as the message
filter model, calls for a message filter component to filter messages. The message filter

here is the analog of the reference monitor.

Our discussion above has been intentionally brief as the focus in this disserta-
tion is on a very specific issue: the support for write-up actions by sending messages
upwards in the security |attice. While the modeling flexibility and ease of implemen-
tation of the above proposals and models vary, the support for write-up actions 1s

generally absent, or if present, not worked out in sufficient detail.

The models in [ML92, Thu89b] explicitly prohibit write-up actions. The orig-
inal message filter proposal in [JK90] allows messages to be sent upwards in the
security lattice and places no restrictions on write-up actions. However, it does not
address the details and complications involved in doing this. The model in [ML92]
also allows messages to be sent upwards in security levels. As in the message-filter
model, the authors note that the actual replies to such messages cannot be returned
i the lower level senders, and hence have to be substituted with innocuous NULL
or NIL messages. However, the following observation by the authors is significant :

“Note that the system, rather t.l::a.n the higher-level subject, should determine the time it

takes to deliver the null value, otherwise ; timing channel will exist. The underlying TCB is respon-

sible for this protection.”
i
|
But how will the TCB provide such protection? What are the architectural require-

ments? In providing such protectilon, will integrity be compromised? It is precisely
|
answers to these specific questions that are pursued in this dissertation.

|
1.5 Organization of Thfesis
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Trusted Subject Kemnelized Replicated
Integrity Serial correcmess Serial correcmess Serial correctness
Final-state-equivalence
Confidentiality Session manager
is noninterfering

Table 1.1: Summary of main results

The major results of this dissertation cast in terms of the various theorems

are summarized in figure 1.1. In the kernelized and replicated architectures we need

to show that our solutions preserve integrity. In the trusted subject architecture,

we meed to show that in addition to integrity, our solutions do not introduce any

confidentiality leaks.

The rest of this dissertation is organized as follows. Chapter 2 motivates

the main problem addressed in the dissertation. Chapter 3 is a quick overview of the

message filter security model, while chapter 4 presents our asynchronous computation

model,  Chapters 5, 6, and 7 discuss the implementation of our ideas in trusted

subject, kernelized, and replicated architectures, respectively. Chapter 8 discusses

inter-session synchronization schemes, and chapter 9 summarizes the dissertation and

also highlights some future directions for research.
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Chapter 2

Motivation and Problem Statement

In this chapter we discuss the main problem addressed in this dissertation; the support
of secure and efficient write-up actions in multilevel object-based computing. We be-
gin with two motivating examples to illustrate the usefulness of write-up operations.
We then discuss the various confidentiality, integrity, and performance tradeoffs in-

volved in supporting write-up operations.

R;eca.llrtha.t multilevel security mandates information flow to be always upwards
in Lhe security lattice. However, there 1s no reason to disallow a low-level subject from
writing-up to higher levels, as the information flow is from low to high {upwards in
the lattice). Such write-up actions are natural and very useful in modeling many
applications (as we will illustrate shortly). Unfortunately, an analysis of multilevel
systems, particularly databases, would reveal that support for write-up actions is
generally absent, or at best weak and ad-hoc. These systems typically implement a
restricted version of the BLP +property that allows writes only at the level of the

subject requesting the write operation.

We may partly attribute the above reluctance in supporting write-up actions to
a fundamental conflict between confidentiality and integrity [MA91]. This is because
the requirements to enforce integrity constraints often result in confidentiality being
compromised. Conversely, guaranteeing confidentiality may require tolerating lower

degrees of integrity. In conventional databases such as relational systems, the effect of

23
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arbitrary blind write-up operations on integrity is unpredictable and uncontrollable.
Thus, there always exists the potential for a low-level subject to obliterate higher-
level data. Now in the object-based framework, we cannot foresee a similar threat to
integrity. Why is this? Because if objects can communicate solely through messages,
the properties of encapsulation and information hiding will ensure that an object
state is updated only in controllable ways. On receiving a message from a lower
level, a high-level object can exercise complete control over how, and if, its state
should be updated. It may choose to reject the message request by not invoking the

corresponding method. If the message is accepted, the method invoked has precise

semantics known a priori.

Thus the objective of supporting integnty preserving write-up actions seems
tenable within the object-based framework. Unfortunately, this convenience does
come at a pricé. Ironically, the very feature of objects {the ability to incorporate
well-defined semnantics with dpera,tions)- poses confidentiality leaks. In the object
framework, operations are no longer primitive read’s and write’s, but complex and
abstract, and taking varying amounts of processing time. As we will elaborate shortly,

this can cause signaling channels when write-up actions are issued [STJ92].

In retrospect, traditional models such as Bell-LaPadula (BLP) address security
issues primarily within the realm of multilevel operating systems and not databases.
Thus BLP does not associate much semantics with operations; rather, it views op-

erations as basically primitive read’s and write’s on memory segments. Also, the

BLP view of write-up actions boils down to blind writes (i.e., modification of existing
higher-level data is not permitted while its overwriting is permitted). Thus a request
from a low-level subject to debit or credit a high-level bank account, cannot be han-
dled by the BLP framework. These restrictions, or should we say limitations, have

enabled BLP and its derivatives to abstract away the problem of signaling channels
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Figure 2.1: Objects in a payroll database

during write-uﬁ. If write-up actions are primitive, and thus implemented by machine
language insttuctions such as STORE, it may be reasonable to assume that STORE
operations will take a fixed amount of time independent of the data and address. In
reality this assumption is only an approximation to what happens in modern com-
puters. Paging, caching, bus contention, and CPU load, to name a few, modulate

the time taken to complete operations such as STORE. Depending on the imple-

mentation, such variations can be exploited for timing channels and this has been

recognized by the security community [Cip90).

2.1 Motivating Applications and Examples

We now motivate the usefulness of write-up operations accomplished by sending mes-

sages up in the security lattice, with two examples.

2.1.1 Payroll Processing Example
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Consider a database for payroll applications, that has three objects: EM-
PLOYEE (Unclassified), WORK-INFO (Unclassified), and PAY-INFO (Secret), with

the attributes shown in figure 2.1. Every object is assigned a single level. Weekly
payroll processing is initiated by the lower level EMPLOYEE object with the sending
of the (a) PAY message to the higher level PAY-INFO object. As the receiver is at
a higher level than the sender, an innocuous NIL reply is returned by the message
filter (as mandated by the message filtering algorithm, which will be discussed in
the next chapter). On receiving the PAY message, the method in PAY-INFO sends
a read-down message (b) GET-HOURS, to the lower level WORK-INFO object in

order to retrieve the hours worked. This information is retrieved and returned in the

reply message (c) HOURS-WORKED. Finally, the accumulated hours for the week
is reset to zero by the message (e) RESET-WEEKLY-HOURS.

Another scenario for write-up arises when the child-benefits an employee is eli-
gible for needs to be updated due to an increase in the number of children. Such an up-
date is most efficiently accornplished by a trigger fired in the lower level EMPLOYEE
object when the NO-CHILDREN attribute changes. The trigger would result in the
sending of a message with the value of number of children, NO-CHILDREN, as a
parameter to the higher level object PAY-INFO. The alternative to such a write-up
would be that the PAY-INFO object scan the corresponding EMPLOYEE object for
such changes, whenever the payroll is computed. However, this alternative imposes a

significant performance cost for slow-changing information such as NO-CHILDREN.

Further, incorporating such monitoring capai)ilities into methods lowers the reuse po-

tential of the corresponding objects and classes. We elaborate on these issues in the

next example.
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2.1.2 Situation Assessment Example

Our second example is in the domain of situation assessment. Figure 2.2 illustrates
a tactical situation with four objects POSITION-UPDATE (Confidential), TARGET-
LOCATOR (Secret), TARGET-TO-SHIP-DISTANCE (Secret), and ACTION-UPDATE
(Top-secret). The object POSITION-UPDATE receives and records periodic updates
of the position of an AWACS aircraft. After recording the position, it is reported
through the message REPORT-POSITION to the object TARGET-LOCATOR. The
object TARGET-LOCATOR locates any targets near the reported position and fur-
ther sends two messages CALC-DISTANCE and DETERMINE-ACTION. The first
message is received by the object TARGET-TO-SHIP-DISTANCES which calcu-

lates the distances between ships in the fleet and the identified targets, and in
turn reports these distances with the message REPORT-DISTANCE to the object
ACTION-UPDATE. The second message DETERMINE-ACTION sent by TARGET-
LOCATOR is also received by the object ACTION-UPDATE. Finally, on receiv-
ing the DET ERMINE-ACTION and REPORT-DISTANCE messages, the object
ACTION-UPDATE selects one or more ships or other attack vehicles that are within

striking range of the target, and initiates some action.

 In this example, the messages REPORT-POSITION, REPORT-DISTANCE,
and DETERMINE-ACTION, lead to write-up actions. One could always argue
whether the above application could be implemented with read-down operations.

But we observe that application areas such as situation assessment, battle manage-

ment, network monitoring, and process control, have sparked a great interest in active
databases. Why? Because in these applications the processing steps involve the mon-
itoring of conditions, and the invocation of time-constrained actions when certain

conditions come true. In our example, when the AWACS aircraft crosses over a new

coordinate, an update of its position is triggered. This update in turn triggers other
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processing steps. Implementing these steps with read-down operations would require

extensive polling of low level object states by higher level objects.

The difficulty with polling is that it is not very feasible to determine an ap-
propriate polling window (interval) especially when the interval between triggered
events is unpredictable and not constant. An inaccurate polling window resulting
from guesswork, can have drastic consequences. For example, if the higher level ob-
ject TARGET-LOCATOR polls the lower object POSITION-UPDATE for updates
on the aircraft’s position too slowly, it might miss some vital positions that were cov-
ered by the aircraft. Clearly, this can result in potential targets escaping detection
and identification. On the other hand, if the POSITION-UPDATE object is polled
too frequently, it may be flooded with repetitious read-down requests that waste re-
sources and affect performance. In fact, the object may be so overwhelmed with these
requests that it may not be able to keep up with the the useful and timely position

updates from the aircraft. This again, can result in many targets being missed.

2.2 Write-Up and Confidentiality, Integrity, and Perfor-
mance Tradeoffs

Having motivated the need for write-up actions, we now discuss the issues, conflicts,

and trade-offs involved in supporting such actions in multilevel object-based comput-

ing environments. In particular, we highlight the trade-offs between confidentiality,

integrity, and performance.

Going back to the basics, let us see what happens when a message 1s sent
to a higher security level for the purpose of initiating some write-up action. Figure
23 depicts a message g, sent from a sender object 0, to a receiver object O, with
thé receiver classified at a higher security level. Now in synchronous communication

mode, the sender method t; in object O is effectively suspended once the message



05/09/05

19:21 FAX 703 993 1638 GEORGE MASON UNIVERSITY o007

- Target-coordinate
- Time-of-action
. - Anack-veh-id
Awu:s &je - Position-coordinate | _.=""" | - Success-prob
<. - Target-coordinale &/  ACTION-UPDATE (TS)
- Difficulry-level B
‘ 5/
Position te g
~coordios TARGET-LOCATOR (S) '(" £
¥ J
4‘ ’
% ]
POSITION-UPDATE (C} *
Target-coordinate
- Shipl-distance
- Ship2 -distance
TARGET-TO-SHIP-DISTANCE (S)
Legend:

== Writc-up message with "NIL" reply
~mge  Read-down message

Figure 2.2: Write-up in situation assesement

g1 has been sent. The receipt of g1 by O; will result in the invocation of a receiver

method ts.

In the multilevel context, it is clear that the contents of the actual reply from
t, cannot be returned to the lower level receiver method (or object), for doing so
would lead to an illegal information flow (in fact, the security kernel and mandatory
security rules would prevent such an attempt). A conceptually simple solution would
be to arrange for an innocuous reply such as a NIL to be substituted and returned
by the kernel. This does not result in any direct illegal information flow from the
higher level object, as no information based on its contents is made known to the
lower level sender. However, it turns out that the very timing of such a reply has

broad implications on confidentiality, integrity, and performance issues.!

i1Strictly speaking, we do not require any reply (NIL or other) to be returned to a suspended
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Figure 2.3: A writeup message and its reply

To elaborate on the above. consider the following alternate ways to deal with

message replies:

» Option 1: Return a NIL reply on completion of the method in the receiver

object;

!

¢ Option 2: Return the reply independent of the termination of the receiver

method in one of the following ways:
— Option 2a: Return the NIL reply after some constant time interval that
represents an upper bound for completion times;
- Option 2b: Return the reply after some random delay;

~ Option 2¢: Return the NIL reply instantaneously.

With the first option, we have a sequential synchronous execution of methods gov-
erned by remote procedure call semantics. Now the time taken for the receiver method

to complete is by no means constant or predictable. This can happen for example if

sender. The real issue is not so much the timing of the reply, but rather when a suspended method
should be resumed. This can be done irrespective of whether a reply is received. Thus it is only for
uniformity and ease of exposition, that we assume the receipt of the NIL reply as a logical point to
resume a suspended sender method. '
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the recelver method sends more messages and completes other subtasks before termi-
nating. Further, the receiver method in the higher level object has complete control
over its termination. Thus by varying the completion times, the receiver method
can modulate the timing of the reply, and this opens up the potential for a signaling

channel.

The second set of options attempts to eliminate the above signaling channel
by making it impossible for the delivery of the NIL reply to be modulated by a higher
level method. Option 2a imposes a heavy performance penalty whenever the receiver
method has terminated and the sender remains unnecessarily suspended, waiting for
the constant time interval to elapse. If we adopt option 2b, by randomizing the delay
before returning the reply, we are faced with a tradeoff between performance and
integrity. This is because if the reply is returned well after the termination of the
receiver method, we are again unnecessarily holding up the sender method. On the
other hand, if we return the reply too early, that is, before the receiver method has

terminated, we have to deal with the concurrent execution of methods.

Concurrent executions introduce synchronization 'problems that can affect the
integrity of the database. In particular, it is essential that the concurrent executions
guarantee equivalence to a sequential execution, as in the first option. In other words
the updates and reads issued by concurrent methods should have the same effect
as when the methods are executed synchronously. When such equivalence can be
guaranteed, we say that the concurrent execution of the methods (computations)
preserve serial correctness. In the next section, we give some concrete examples that
illustrate how concurrency can affect serial correctness. Note that this requirement of
preserving serial correctness is entirely dictated by integrity considerations. From a

confidentiality viewpoint, there is no need to synchronize these concurrent executions.

We now illustrate a scenario on how the integrity of the payroll database
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(see‘ﬁgure 2.1) can be compromised. In this scenario, the application semantics
and requirements called for a synchronous execution of methods but the resulting
execution was concurrent (asynchronous). Now a sequential synchronous execution
will lead to the message sequence a, b, ¢, d, e, f; while a concurrent execution may
produce the sequence a, d, ¢, f, b, c. When weekly payroll processing is initiated by
the sending of the PAY message from the lower level EMPLOYEE (U) object to the
higher level PAY-INFO (8) object, a NIL reply is returned to object EMPLOYEE
and the suspended method in EMPLOYEE resumes execution. Now it is possible for
the RESET-WEEKLY-HOURS message which resets the hours worked to zero, to be
received and processed by object WORK-INFO before the message GET-HOURS.
Thus the message GET-HOURS will retrieve the reset hours as opposed to the actual

accumulated hours, resulting in an erroneous calculation of the weekly pay.

We will demonstrate later in chapter 4, how the required integrity can be
achieved by the use of a multiversioning scheme that synchronizes concurrent actions
on objects so as to guarantee serial correctness. To see how the multiversioning
scheme applies to above the payroll example, the (e) RESET-WEEKLY. message
would result in the creation of a new version of object WORK-INFO with the reset
hours. However, an earlier version of object WORK-INFO that existed before the

method in PAY-INFO was invoked, is used to pr(;cess the (b) GET-HOURS message.

Serial correctness is now ensured as the GET-HOURS message now retrieves the

intended weekly accumulated hours as in the sequential synchronous execution.

Finally, option 2c above calls for replies to be returned instantaneously. We
thus no longer incur the performance penalty that is possible with options 2a and 2b.
However, we still have to address the integrity issue, as concurrent computations are

now inevitable.

How do the various architectures impact our choice of one of the above options?
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Option 1 is inherently insecure in trusted subject architectures. Option 1 is further
not implementable in a kernelized architecture as the x-property prevents informa-
tion flow from a higher level to a lower one, by disallowing write-downs (recall that
only a trusted subject is allowed to indulge in such write-downs). Such write-down
operations are required to inform lower sender methods of the termination of higher
level receivers. Option 2a and 2b are implementable in a kernelized architecture but
at the cost of performance and integrity. Option 2c needs to address the integrity
issue just as option 2b, but offers better performance than the latter, although as

with option 2b, this comes at the cost of managing concurrency.

In summary, synchronous RPC-based write-up actions are not secure in trusted
subject architectures, and not implementable in kernelized architectures. Thus our
only viable cllloice is to implement message passing and write-up actions in multilevel
environments in an asynchronous fashion. The challenge, and our focus, then is to
provide the desired RPC-based semantics for asynchronous abstract write-up actions.
This requires appropriate synchronization mechanisms, which themselves have to be

secure and implementable.
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Chapter 3

Message Filtering and Mandatory Security
Enforcement

In this chapter we introduce the message filter object-oriented security model. This
mode] is used to enforce basic mandatory access control among objects. We begin
with a discussion of the message filtering algorithm and message filtering functions.
This is followed by a discussion of architectural and other implementation issues. In
particular, we illustrate what it takes to map an abstract specification of the filtering

functions to an executable one.

3.1 The Message Filter Model

Objects and messages constitute the main entities in the message filter model. As
far as the security model is concerned, an entire object is classified at a single level.

Modeling flexibility is not lost due to this as a user may model multilevel entities. The

multilevel entities form a conceptual schema that is broken down into an implemen-

tation schema of single-level objects [JK90]. Messages are assumed, and required to

be, the only means by which objects communicate and exchange information. Thus
the core idea is that information flow be controlled by mediating the low of messages.
Consequently, even basic object activity such as access to internal attributes and ob-

ject creation, are to be implemented by having an object send messages to itself (we

RIS L g ;

consider such messages to be primitive messages).

R R RS o
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The message filter is the analog of the reference monitor in traditional access-
mediation models. The message filter takes appropriate action upon intercepting a
message and examining the classifications of the sender and receiver of the message.
Tt may let the message pass unaltered or interpose a NIL reply in place of the actual
reply; or set the status of method invocations as restricted or unrestricted (explained

later).

3.1.1 The Message Filtering Algorithm

The message filter algorithm is given in figure 3.1. (In this and other algo-
rithms, the % symbol is used to delimit comments.) Cases (1) through (4) deal with
abstract messages, which are processed by methods. Cases (5) through (7) deal with
primitive messages, which are directly processed by the security kernel. In case (1),
the sender and receiver are at the same security level, and the message ¢ and its reply
are allowed to pass. In case (2) the levels are incomparable and thus the filter blocks
the message from getting to the receiver object, and further injects a NIL reply. Case
(3) involves a receiver at a higher level than the sender. The message is allowed to
pass but the filter discards the actual reply, and substitutes a NIL :nstead. (As we
have argued, the timing of this NIL reply is a critical consideration.) In case (4),

the receiver object is at a lower level than the sender and the filter allows both the

message and the reply to pass unaltered.

The cases (1) through (4) that we have seen so far deal with abstract mes-
sages. However abstract messages will eventually lead to the invocation of primitive
messages. These include read, write and create (cases (5) through (7)).! Now read

operations always succeed, while writes succeed only if the status of the method in-

1The delete operation has not been directly incorporated into the model. It can be viewed as a
particularly drastic form of write and is subject to the same restrictions.




05709705 19:25 FAX 703 993 1638 GEORGE MASON UNIVERSITY 1003

% let gy = (h1,(P1,---,Pk),T) be the message sent from oy to o2 where
% h, is the message name, pi,....Px Gre message paramelers, r is the return value

if 01 # 0, V Ry ¢ {read, write, create} then case

% i.e., g, i§ @ non-primitive message

(1) L(oy) = L{eg): % let g1 pass, let reply pass
invoke t; with rlevel(tz) — rlevel(t;);
r « reply {rom i; return r to t;;

(2) L{a) <> L{ea) : % block gy, inject NIL reply
r «— NIL; return r to i;;

(3) L(oy) < L(oz): % let gy pass, inject NIL reply, ignore actual reply
r «— NIL; return r to ii;
invoke t; with rlevel(ty) « lub[L(op), rievel(t1)};
% where lub denotes least upper bound
discard reply from ts;

(4) L{en) > L{o2): % let g pass, let reply pass

. invoke t; with rlevel(ty) — rlevel(t,);

r «— reply from {;; return r to #;;

end case;

if 0 = 02 A hy € {read, write, create} then case
% i.e., g1 is a primilive message

% let v; be the value that is to be bound to attribute a;

(5) g1 = (read,(a;),r): % allow unconditionally
r — value of ¢;; return r fo t;;
(6) g = (write,(a;,v;),7) : % allow if status of t; is unrestricted
- if rlevel(t1) = L(o1)
then [a; « v;; r — SUCCESS]
else r — FAILURE;

return r to 1;;

(7) ¢1 = (create,(vy,...,v%,5;),7) : % allow if ty is unrestricted relative to S;
if rlevel(t;) < 5;
then [CREATE i with values v1,...,vx and L(i) — §j;
T — i}
else r — FAILURE;
return r to Iy;

end case;

Figure 3.1: Message filtering algorithm
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Figure 3.2: Restricted methods in a chain

voking the operation is unrestricted. Thus if a message is sent to a receiver object at
a lower level (as in case (4)}, the resulting method invocation will always be restricted
and the corresponding primitive write operation will not succeed. This will ensure
that a write-down violation will not occur. Finally, the create operation allows the

creation of a new object at or above the level of the method invoking the create.

3.1.2 Restricted Methods and Invocation Trees

We now revisit the notion of restricted method invocations alluded to earlier.
To start with, observe that in cases (1), (3), and (4) of the filtering algorithm, the
method in the receiver object is invoked at a security level given by the variable rlevel.
In other words, the method body is executed by a subject (process) running at level
rlevel. The intuitive significance of rlevel is that it keeps track of the least upper
bound (lub) of all objects encountered in a chain of method invocations, going back
to the root (first object and method) of the chain. The value of rievel needs to be
combuted for each receiver method invocation. In cases (1) and (4) the rlevel of the
receiver method is the same as the rlevel of the sender method. In case (3), rlevel is

the least upper bound of the rlevel of the sender method, and the classification of the

receiver object. These ideas are illustrated in figure 3.2 for a method chain starting

at an unclassified object.

Let us see how rlevel implements the notion of restricted method invocations

so as to prevent write-down violations. Observe that if ¢; is a method invocation in
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Figure 3.3: A tree with restricted subtrees

object o; then rlevel(t;) > L{o;). We say that a method invocation t; has a restricted
status if rlevel(t;) > L(o;). When {; is restricted, it can no longer update the state
of the object o;, it belongs to (i.e., its home object). Why? This is because if a
method invocation is assigned a level given by rlevel, then information classified at
rlevel is now available to (flowing into) the method from one or more objects classified
at rlevel and encountered earlier in the chain. For example, such information flow
could occur through message parameters. To illustrate, consider the secret (S) and
confidential (C) objects in the chain in 3.2. The secret object sends a message to
the confidential one, resulting in a restricted method invocation in the latter. Secret
information could be passed in message parameters to the lower level (confidentijal)

receiver. If information derived from such parameters is used by the receiver method
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to update its home object, a write-down violation would occur. Hence the method

invocation in the lower level (home) object is restricted.

We can visualize chains of method invocations as belonging to a tree such as in
figure 3.3. Restricted method invocations in these chains now show up as restricted
paths and subtrees. In figure 3.3, {; represents a method in object o, that sent a
message, and ¢, represents the method invoked in the receiver object 0,. The method
t is given a restricted status as L(o0,) < L(ox). The children and descendants of ¢,
will continue to have a restricted staius till such point as ¢,. At t,, the restricted

status is removed since L(o,) > L(ox) and a write by ¢, to the state of o, no longer

constitutes a write-down violation.

3.2 Implementing Message Filtering

Having given an introduction to the message filter model, we now turn our attention
to implementation. In particular, we discuss what it takes to map an abstract speci-
fication of the filtering functions (as given in the filtering algorithm) to an executable

one [STJ91, TS94a]. We begin by elaborating some architectural considerations.

3.2.1 System Layering and the Security Perimeter

In architectural terms, how should systems be structured and layered to incorporate
and enforce mandatory security and message filtering? A good and logical starting
point for our investigations is the architecture of existing object-based systems. This
is because we want our solutions to be cost-effective and thus fit within existing

implementation frameworks.

An analysis of many prototypes and proposals for object-oriented database

systems such as GEMSTONE, IRIS, ORION (to name a few) would reveal a common
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Figure 3.4: A layered architecture with TCB

architectural structure; a demarcation into a lower storage layer and an object layer
on top of the storage layer. For example, in GEMSTONE the lower layer is referred
to as STONE, while the object layer consists of GEM processes. The lower storage
layer essentially interfaces to the operating system and file system primitives, and
is responsible for the management (i.e., the reald, write, ;'md creation) of typeless

chunks of bytes representing objects. Every object (chunk of bytes) is associated and

represented by a unique object-identifier. This layer typically does not understand
the abstraction of objects or the object-oriented data model, rather sees itself as one

that provides basic services to the higher layers such as the object layer.

In contrast to the storage layer, the object layer is not typeless, but rather sup-

ports the abstraction of objects as encapsulated and typed ﬁnits of information. This
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layer is thus responsible for implementing the object-oriented data model. Object-

oriented concepts such as classes, class-hierarchies, inheritance, as well as message

passing lie within the purview of this layer.

Given the above layering structure, how and where will the TCB fit in? Also.
what subsets or functions of these layers should lie within the security perimeter? It is
clear that somne subset of the operating system and the storage layer need to be within
the TCB. But what about the object layer? Could we not realize a secure system
by having just part of the storage layer in the TCB? If conﬁdentiality were our only
objective, the answer to the latter question would be “yes”. Mandatory confidentiality
can be enforced by the subset of the operating system and storage layer within the
TCB. However, integrity is a vital requirement that has to be maintained alongside
confidentiality. The maintenance of integrity for objects cannot be done at the lower
layer since it dc')es not recognize the abstractions of the object model. Hence, a subset

of the object layer needs to be within the TCB for integrity purposes.

Recall that a good design principle for security kernels is to keep its size
to a minimum. We thus require that much of the functionality to implement the
object-oriented data model be outside the TCB. Thus even support for the notion
of objects as units of encapsulation, is provided by the object layer subset outside™
the TCB. The subset within the TCB implements high assurance and integrity pre-
serving message passing and filtering. This is accomplished through modules called
message managers.’ A message manager process is created dynamically whenever a
message 1s sent upwards in the security lattice and concurrent execution of the sender

and receiver methods is required. Once created, it implements the message filter-

?In our further discussions, we use the terms message managers, computations, and methods,
interchangeably. However, it is to be understood that message managers are created only as a result
of write-up messages. A message manager is thus a concurrent computation executing a chain of
methods.
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ing algorithm for the chain of methods emanating from such a concurrent receiver
method. A message manager is thus a relatively short-lived process, and one that

eventually terminates along with the last method in the associated chain. In a trusted

; subject architecture the level managers that are forked by a single user session are
coordinated by a trusted multilevel process called a session manager. A user session
encompasses all the computations (activities) initiated by a user between consecu-
tive logins. In an architecture without trusted subjects (such as a kernelized one),
the message managers are coordinated by untrusted single-level processes called level

managers.

In summary, the message manager and level (or session) manager modules in
the object layer need to be within the security perimeter (TCB) so as to ensure serial
correctness (mentioned earlier in chapter 2). If the concurrent message managers
cannot guaraﬁtee this, the integrity of the data in the database could be severely

compromised.

3.2.2 An Executable Specification

The message filtering algorithm presented earlier can be thought of as an
abstract non-executable specification of the filtering functions. An executable speci-
fication, as implemented by a message manager, is given in figure 3.5. The security
perimeter of the object layer exports the following operations: send, quit, read,

write, and create. The read, write, and create operations handle primitive mes-

sages. The system primitives send and quit are used by methods to send messages
i : and replies. A stack is used to save the contexts associated with nested message sends.
i The interface between a message manager and a level or session manager consists of
two calls: (1) fork issued by a message manager to request creation of a new message

manager at a higher level and (2) terminate issued by a message manager to its
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local level or session manager to terminate itself.

: Whenever a message is sent by a method ¢, in an object ¢, to a second object o7
at the same or lower level (cases (1) and (4)), the message manager saves the message
parameters on a new stack frame, suspends execution of ¢;, and begins execution of
the method t; in object 0;. When 1, terminates, the stack is popped and the return

value from ¢, is recorded on the stack. The suspended sender method ¢, is then

resumed, and it retrieves the return value from ¢, from the top frame of the stack.

When messages are sent to incomparable or higher levels (cases (2) and (3)),

a NIL value is recorded on the stack and #; is resumed immediately. In case (3)
when a message is sent upwards in the security lattice, a message manager issues a
fork call resulting in concurrent computations (as ¢, 1s resumnmed independently of the
termination of ;). The parameters of this call include the level of forking message
manager, the level of the forked message manager, a unique fork stamp identifying the
start order in the equivalent sequential execution for the forked message manager, and
a vector (astamps) of timestamps to process read down requests. Whenever a reply is
returned and a message manager finds its stack to be empty, it means that there are
no suspended methods waiting to be resumed. The message manager then issues a
~terminate call to its local level manager, to terminate itself. The parameters of the
terminate call include the level and fork stamp of the terminated message manager,

as well as a timestamp identifving the last written version.

In moving from an abstract to an executable specification, we have so far
described how the filter allows and blocks messages, and how return values are set
to NIL. Now it remains to show how the notions of rlevel and restricted method
invocations are implemented. The basic idea is very straightforward. Every message
manager {process) is assigned a security level that is equivalent to the rlevel assigned

in the filtering algorithm, and all methods executed by a message manager run at this
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level. The effect of restricted method invocations is now achieved by the enforcement
of the standard - property in the Bell-LaPadula type security models [BL76]. In
other words, whenever a method’s status is restricted, its level (and the level of its
message manager) will be higher than the object accessed, and the x-property will

prevent any write-down attempts.




05/09/05 19:29 FAX 703 993 1638 GEORGE MASON UNIVERSITY o112
"

A
[
1

. procedure send(g;, 01, 02)
i ' % let gy = (h1,{p1,....p&). 7} be the non-primitive message sent from o, to 02
% where h, is the message name, p, ..., pk are message parameters, and
. % p is the parameter set py,...,px and Imsgmgr is the level of the message manager 1,
P (1) L(e1) = L(0y) : push-stack(p);
1, — select method for 0, based on h;; execute ts;
(2) L{o1) ~ L{og) : write-stack(NIL); résume;
% Let astamps be a vecior that is passed to a forked message mancger
(3) L{oy) < L{oz): append-astamps-vector(astamps, wstamp);
fork(Imsgmgr, lub[ilmsgmgr, L{02)], forkstamp, astamps);

wstamp ~ wstamp + 1;
write-stack(NIL); resume;

(4) L(o1) > L(ez): push-stack(p); -
ty — select method for oo based on hq; execute 13;
end case;
if 01 = 02 A hy € {read, write, create} then case % i.e., g1 is @ primitive message
(5) hy = read: if L(0y) = lmsgmgr then v «— wstamp
else v — local-stamp (L(o1});
read o, with version «— max{version: version < v};

(6) hy = write : write 07 with versior — wstamp;
% Let o be the object-identifier of the new object created at level S;
- (7) hy = create: create o with L(o) « 5; and version «—wstamp;,

write-stack(o);
end case;

end procedure send;

procedure quit(r)

pop-stack;
if empty-stack then terminate(lmsgmgr, wstamp, forkstamp)
else [write-stack(r); resume;]

end procedure quit;

Figure 3.5: Message manager algorithms for SEND and QUIT
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Chapter 4

Asynchronous Computing with RPC Semantics

In this chapter we focus on issues related to concurrency and scheduling within a
single user session. We begin by discussing the notion of serial correctness and how
this governs the degree of concurrency that can be allowed within a session. Mainte-
nance of serial correctness requires that we capture the serial order of computations.
This is done by means of a hierarchical scheme to generate forkstamps. Two extreme
scheduling st;ategies both of which preserve serial correctness, but offer varying de-

grees of concurrency, are then discussed. Finally we present a framework for the

comparative analysis of these and other scheduling schemes.

4.1 Serial Correctness versus Concurrency

In chapter 2 we discussed the synchronization problem caused by concurrent com-
putations and how this can affect serial correctness. To elaborate in more general
terms, visualize a set of concurrent computations as a tree such as that shown in
figure 4.1. In this figure we see that message manager 1 at the unclassified level has
sent messages to one secret object, one top-secret object, and one confidential object
in this sequence (we consider message manager 1 to be the ancestor of the three). As
these objects are higher in level than unclassified, message filtering has resulted in
the creation and concurrent execution of message managers 2, 3, and 4 as children of

the root message manager 1.

46
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We can now formally define serial correctness in terms of such a tree.!

Definition 4.1 We say a session preserves serial correciness if for any computation

c in the session’s computation tree, and running at level 1, the following hold:

I. ¢ does not see any updates (by reading-down) of lower level computations that

e Lt A e P P e e s <

are to its right®, in the tree;

o

For any of ¢’s ancestor computations a, (i.e,, eny cornputation on the path
from the root to ¢) ¢ should see only the latest updates made by a just before

; a’s child (or c itself) on this path was forked.

3. For any level k that is not the level of an ancestor of ¢, endk < 1, ¢ should

see the latest updates made by the rightmost terminated computations at level k

that are still to the left of c.

Given the above definition, let us see the complications concurrency poses

to the maintenance of serial correctness. Now if we were to execute the above tree
sequentially, the messages sent to higher level objects would be processed in the

order given by the labels on the arrows. Note that this order can be derived by a

11t is important to realize that even though the notions of serial correctness and serializability
may appear to be analogous, they are not equivalent. Serializability theory in classical transaction
management and concurrency control realms reasons about correctness and integrity in terms of
the fundamental abstraction of a “transaction”. Serial correctness on the other hand, is a more
primitive notion as it does not recognize the abstraction or semantics of transactions, and is further
more restrictive as it allows only a single serial order (i.e., the order of an RPC-based setial execution
of computations (methods)). However, if we were to map individual computations to transactions
: and derive the transaction serialization order from the forkstamps, serial correctness amounts to a
: stricter form of the multiversion concurrency control notion of one-copy serializability [BHGST]. We
intentionally do not give such a definition as this would give the impressicn that we are dealing with
transactions, and would further introduce unnecessary formal machinery in our exposition.

2A computation b is said to be to the right of a computation g, if neither b nor g is an ancestor
of the other, and b islencountered later than a in a depth-first traversal of tlie corresponding session
trée, starting at the'root. Similarly, a computation to the lefi will be encountered earlier in a
depth-first traversal.
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Figure 4.1: A tree of concurrent computations

left-to-right depth-first traversal of the tree. However, with concurrent execution it
is possible that message managers 4(C) and 6(S) may terminate well ahead of 3(TS).
Therefore our synchronization schemes must ensure that message manager 3 does not

see any updates by message managers 4 and 6, since 4 and 6 are to the right of 3.

Solving the above synchronization problem using classical techniques, such
as those based on locking and semaphores, is known to be insecure as they open
up signaling channels. Also, it is not possible to implement these synchronization
mechanisms in a kernelized architecture without introducing trusted subjects since
we need the ability to write-down and read-up. Our solution instead relies on a

multiversioning scheme. The scheme calls for multiple versions of objects accessed by

a session to be kept in memory.® Each version is uniquely identified with a timestamp,
and can be thought of as a checkpoint in the overall progress of a tree of computations.
Thus although 4(C) and 6(S) may terminate well ahead of 3(TS), we are guaranteed

that a read-down request from 3(TS) will always read versions that existed before

3Note that there is no multiversioning on disk. Even if paging causes these versions to migrate
to disk occasionally, they will not be visible to other 5€381018S.




05/09/05 19:32 FAX 703 993 1638 GEORGE MASON UNIVERSITY 1004

19

4(C) and 6(S) were started.

Given a computation, say ¢, the multiversioning scheme suggested above can
provide synchronization when other computations to ¢’s right (in the tree) get ahead of
¢. But to guarantee serial correctness, we must in addition ensure that ¢ itself does not
get ahead of earlier forked computations to its left. For example, under a sequential
execution of the tree of computations in figure 4.1, we would expect message manager
2(S) and its descendants (if any) to terminate before message manager 3(TS) to its
right, is started. Message manager 3(TS) should thus see all the latest updates by
2(S) and any of its descendants. Allowing arbitrary concurrency may not ensure this.
Thus, in addition to multiversion synchronization, we need to enforce some discipline
on these concurrent computations by scheduling them in a manner that guarantees

serial correctness.

A scheduling strategy which guarantees serial correctness must take into ac-

count the following considerations.

¢ The scheduling strategy itself must be secure in that it should not intreduce

any signaling channels.

e The amount of unnecessary delay a computation experiences before it is started

should be reduced.

The first condition above requires that a low-level computation never be delayed

waiting for the termination of another one at a higher or incomparable level.’ The
second consideration admits a family of scheduling strategies offering varying degrees

of performance. Some of these are discussed later in the next section.

SIf this were allowed, a potential for a signaling channel is again opened up in a trusted subject
architecture.
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In summary, the maintenance of serial correctness requires careful consider-
ation on how computations are scheduled as well as on how versions are assigned
to process read-down requests. Collectively we have to guarantee the following con-
straints (as discussed in section 5.2, we assume that every computation is assigned
a strictly increasing forkstamp that is consistent with the start order in a sequential
execution):

s Whenever a computation c is started at a level /,

e Correctness-constraint 1: There cannot exist any earlier forked computation

(i.e. with a smaller forkstamp) at level {, that is pending execution;.

e Correctness-constraint 2: All current non-ancestral as well as future execu-
tions of computations that have forkstamps smaller than that of ¢, would have

to be at levels higher or incomparable to {;

o Correctness-constraint 3: For each level at or below [, the object versions
read by ¢ would have to be the latest ones created by computations such as k,

that have the largest forkstamp that is still less than the forkstamp of c. If & is

an ancestor of ¢, then the latest version given to c is the one that was created

by -k just before ¢ was forked.

The above three constraints are sufficient to ensure serial correctness. We now state

this formally as a theorem.

Theorem 4.1 Correctness constraints 1, 2, and 3 are sufficient to guarantee serigl

correciness of concurrent computations in a user Session.

Proof:

Constraints 1 and 2 ensure that when computation c at level { 1s started, there will be
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no more writes/updates forthcoming from earlier forked non-ancestral computations
(the ancestral computations of ¢ are those that are on the path from the root to ¢,

in the computation tree). This guarantees that write operations by non-ancestral

computations at levels [ or below (and therefore inductively across all levels) will
occur in the same relative order as in a sequential execution. Write operations from
ancestral computations may, however, be issued in an order different from the sequen-
tia] execution. Such out of order writes can affect the values obtained by later read
operations from higher level methods. However, constraint 3 ensures that read down
operations under concurrent execution will obtain the same state as in a sequential
execution. To see this, consider any computation such as cat a level I. In a sequential

execution all non-ancestral computations at lower Jevels and with smaller forkstamps

than ¢, would have terminated before e. Thus higher level reads by computations
such as ¢ would obtain the last written versions by such non-ancestral computations.
The ancestors of ¢ on the other hand would be suspended in a sequentjal execution,
waiting for ¢ and its future children to terminate. Thus read operations issued by
¢ should see the versions written by the ancestors just before they were suspended.
Constraint 3 requires this and prevents ¢ from reading out of order writes (versions)

. of 1ts ancestors.D

4.2 Maintaining Global Serial Fork Order

We now discuss an implementation consideration for our scheduling schemes
which has to do with maintaining knowledge of the equivalent global serial order in
which computations are forked within a user session. In scheduling various compu-
tations, such knowledge is used to determine when a computation will be started.

In an architectural framework without multilevel trusted subjects, no single system

component has a global view (such as the tree in figure 4.1) of the entire set of com-
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Figure 4.2: Generation of forkstamps for a session’s computation tree

putations as they progress. In coordinating various computations, an individual level
manager has to determine where in the global serial fork order, the computations at
its level belong. One could be tempted to pursue a solution requiring the value of a
global real-time clock to be appended to every message manager (computation) as it
is forked. However, computations are not always forked in the equivalent serial order

and thus a solution based on a real-time clock will not always work.

Consider now a hierarchical scheme to generate forkstamps that is independent
of the scheduling strategy used. The forkstamps so generated, reflect the equivalent
serial order of execution of the computations. Figure 4.2 shows a tree of computations
and the forkstamps generated for it. Every message manager except the root, is
assigned a unique forkstamp by the parent issuing the fork. The scheme starts by
assigning an initial forkstamp of 0000 to the root message manager 1(U). Every
subsequent and immediate child of the root is then given a forkstamp derived from

this initial one by progressively incrementing the most significant (leftmost) digit by
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one. To generalize this scheme for the entire tree, we require that with increasing
depth along any path in the tree, a less significant digit be incremented. In general
for a security lattice with a longest maximal chain of n elements, we need to reserve
p*(n — 1) digits for the forkstamp. In a lattice with ! levels, and ¢ compartments,
n = [ + ¢ The value of p would depend on the maximum degree of a node in a
computation tree. For example if we assume that any computation sends a maximum
of 99 messages to higher levels, then setting p = 2 would be sufficient. Even with
large lattices and a high number of messages sent to higher levels, these numbers are

reasonable.

We now show that the above forkstamping scheme captures the intended global

serial order.
Theorem 4.2 The hicrarchical forkstamping scheme preserves global serial order.

Proof:

We prove the above by contradiction. Consider any pair of computations ¢; and ¢;
with forkstamps f; and f; respectively, such that ¢; was forked before ¢; (i.e., ¢; is to
the left of ¢y in the computation tree). Assume fz < fi. In other words, ¢; is forked
earlier than c; but we assume that the former is given a later forkstamp. Let us see

if this assumption can be contradicted.

By virtue of the fact that the forked computations form a tree, there will
always be a common ancestor node ¢ from which the paths to ¢; and c; fan out. Con-
sider the edges from @ to ¢; and ¢; as belonging to the paths p; and pj, respectively.
Now consider the immediate children of a, say a; and a; that lie on pafhs p1 and pa,
respectively (for paths of length one this will be ¢; and ¢;). Assume that we are using

forkstamps with k digits denoted di,d.,...,ds, with d; being the most significant
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digit. Of these k digits, let d; be the digit assigned to (and incremented by) compu-
tation @, and d,ja; and dg/a the values of the digit d, for the forkstamps assigned to
a; and aj, respectively. Now since the ancestor computation a forked ¢; before c,,
it follows that the path p; will be to the left of path p,. Hence, our forkstamping
algorithm will assign forkstamps to a; and a; derived from a’s forkstamp such that
dafor < dajaa. Now every descendant of a; (or a2) on the path p; (or p,) including
c; (or ¢;) will retain a,’s (or a;'s) value for the digits dy,d;,...,d,. Hence it follows

that the value of the digit d,;; will always be less than dajco- Further, successive

descendants of a; and a; in these paths will increment only digits dayy, doys, . . ., de.
These digits are less significant in place value than the digit d;. Thus the value of
the forkstamp f; of ¢, will be less than the forkstamp f of ¢;. This contradicts the

assumption that we stated out with, and hence the proof. O.

An obvious implication of our forkstamping scheme is that only unique and
acyclic forkstamps are generated. We conclude this section by stating this as a corol-

lary to the above theorem.

Corollary 4.1 The forkstamping scheme generates forkstamps that are unique and

acyelic.

Proof:

The proof follows from the following propositions:

1. Two computation nodes that lie on different paths originating from a common
ancestor will have their forkstamps varying on the significant digit (position)

that is incremented by the ancestor.

2. Nodes that lie on the same path will have forkstamps that increase with the

length of the path.
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3. The nodes form a tree and as such there no loops or parallel paths.

4. The forkstamps form a totally ordered set. O

4.3 A Family of Scheduling Strﬁategies

We now present a family of scheduling schemes. These schemes offer varying tradeoffs
between performance and complexity when implemented under different architectures.
We present two schemes, namely conservative and aggressive, that lie towards the ends
of a spectrum of scheduling schemes. We also briefly mention a hybrid scheme for
which the performance lies somewhere in between the above two. We also present a

framework and metric for the comparative analysis of these schemes.

4.3.1 A Conservative Level-by-level Scheduling Scheme

Consider first a level-by-level scheduling scheme. We characterize this approach as
being conservative, as opposed to ‘being aggréssive, since the objective here is not to
maximize concurrency. In other words, a corﬁputation may be unnecessarily delayed
before being started even if its earlier execution would not violate serial correctness.
Although this scheme is not optimal in terms of performance, it does give insights
into how concurrent computations can be scheduled and completed in a simple, yet
secure, correct and distributed fashion. The conservative scheme maintains the fol-

lowing invariant:

Inv-conservative: A computation is ezecutfng at a level [ only if all computations

at lower levels, and all computations with smaller fork stamps at level I, have termi-

nated.
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Thus the basic idea is to execute forked computations in a bottom up fashion in the
lattice, starting with the lowest level. At any point, only computations at incornpa-
rable levels can be concurrently executing. We thus begin with the root computation
and allow it to run to completion. Meanwhile, all higher level computations that
are forked by the root are unconditionally queued in forkstamp order at these higher
levels, by the respective level managers. Upon termination of the root, its level man-
ager signals that it is okay to release computations at all immediate higher levels by
sending a WAKE-UP message to tﬁes_c_e levels. Thus when a level manager receives
a WAKE-UP meséage from all immediate lower levels, it proceeds to dequeue and
execute computations at its level one at a time in forkstamp order. Note that, at this
point, this level manager is guaranteed that no more fork requests will be forthcoming
from lower !e\:els. Eventually, the level manager will find its queue to be empty. The

next higher levels are then released through WAKE-UP messages.

For a more visual explanation of this level-by-level scheduling strategy, con-
sider the lattice and partial order in figures 4.3(a) and 4.3(b). Consider the lattice
first. On termination of the root computation at level [U,{}], WAKE-UP messages
are sent to all the immediate higher levels [C,{A}], [C,{B}], [C,{D}], and queued
computations at these levels are then released. Next, computations at [S,{B,D}] are
started when all those at the immediate lower levels [C,{B}] and [C,{D}] have ter-
minated. Eventually, computations at the highest level [TS,{A,B,D_}] are started on
the termination of computations at levels [S,{A}] and [S,{B,D}] followed by the re-
ceipt of a WAKE-UP message from each of these levels. Now consider the partial
order in figure 4.3(b). When the root computation at level [U.{A}] terminates, a
WAKE-UP message is sent to all the immediate higher levels, namely (C,{A,B,D}]
and [C,{A,B.E}] and computations at these levels may thus be running concurrently.

Computations at level [S,{A,B,D}] are released when a WAKE-UP messaée 1s received
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from the only dominated class which is [C,{A.B.D}]. Similarly when computations at

[C.{A,B,E}] terminate, a WAKE-UP message is sent to level [S,{A,B,E}] to release
queued computations.

Figures 1.4(a) through 4.4(g) illustrate the progressive execution of the com-
putation tree in figure 4.1. as governed by the level-by-level scheduling scheme. At
each stage the termination of a computation results in the start-up of another. In
this example, there can only be one computation executing at any given moment as
the lattice is totally ordered. More generally, we could have multiple computations
running, provided they are at incomparable lévels. As Shown in figure 4.4(a), the
startup of the root computation has resulted in its forked children to be queued (the
unborn computations have not yet been created, and are shown in the figures for
visual completeness only). The subsequent termination of the root (see figure 4.4

(b)) has resulted in the forked child, at the lowest level 4(C), to be executed.

4.3.2 An Aggressive Scheduling Scheme

We now describe an aggressive scheduling algorithm. It is governed by the following
invariant:

Inv-aggressive: A computation is executing at a level [ only if all non-ancestor com-
putations, in the corresponding computation tree, with smaller fork stamps at levels |

or lower, have terminated.

We characterize this as an “aggressive” scheme as every attempt is made to execute a
forked computation immediately. The above invariant implies that if a computation
< denied jmmediate execution, then there must be at least one non-ancestral lower
level computation with an earlier forkstamp, that has not terminated. The invariant

ensures that the correctness constraints 1 and 2 are never violated. The correctness
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of read-down operations is again dependent on multi-versioning.

The major differences between the aggressive and conservative schemes can be

summarized as follows:

On being forked. a computation may be immediately started, if doing so would

not violate the invariant inv-aggressive.

o The termination of a computation may result in the start-up of the next queued
computation at the same level as well as multiple computations at other higher

levels.

¢ A wake-up is sent to a higher level only if there exists at least one queued

computation pending execution at the higher level.

o A level may receive multiple wake-up messages before all its queued computa-

tions are released.

Figure 4.5 illustrates how a tree of computations can advance to termina-

tion under the aggressive scheme. In particular, we note that the termination of a
computation may result in multiple start-ups of others at higher levels, even with
a totally ordered security lattice, so long as the invariant is not violated (see ﬁgﬁre
4.5(c) where computations 3{TS) and 6(S) are started on termination of 2(S)). We
also observe that with aggressive scheduling, by the time the first four terminations
have occurred, namely, 1(U), 2(S), 3(TS), and 5(TS), the entire tree of computations

has been released for execution (see figure 4.5(e)). Now compare the progress of this

tree under conservative scheduling where the first four terminations as shown in fig-
ure 4.4 (e), still leaves four others queued and awaiting execution. In summary, the
tree progresses to termination at a much faster rate, under the aggressive scheduling

scheme,
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4.3.3 Hybrid Schemes

We now consider a variant of the level-by-level scheduling scheme. It is a hybrid
scheme as it combines both conservative and aggressive approaches. The basic idea
is simple. As in the conservative level-by-level scheme, we execute computations on a
level-by-level basis. However, when a computation is allowed to be active (by virtue
of its level), we allow its immediate children to execute as well, if doing so would not
violate serial correctness. Figure 4.6 illustrates how a tree of concurrent computations

advances to completion under this hybrid scheme.

To get a quick comparison of the conservative, hybrid, and aggressive schemes,
consider the trees in figures 4.4(e), 4.6(e), and 4.5(e), each with four terminated
computations. In the conservative scheme, this leaves two computaﬂons still pending,
while in the hybrid scheme we have only one computation pending execution. On the
other hand, with the a.ggr;essive scheme, the termination of four computations leaves

no computations pendingéstart-up.

4.3.4 A Framework and Metric for Comparative Analysis

The conservative and aggressive schemes discussed above can be seen as two that
épbroach the ends of a siaectrum of secure and correct scheduling strategies. This
is because it is meaningless to come up with a;.ny algorithm that does worse than
the conservative one, in Eerrns of the degree of concurrency allowed. At any given
time, if there is a computation active at a maximal level in the lattice, then no other
computations may be concurrently active. The conservative scheme thus exhibits the
least meaningful degree of concurrency within a session. The only way to do worse
would be to allow computations at incomparable levels in the lattice to execute one
at a time (and not to mention the fact that this would be insecure due to sideways

signaling channels). On the other hand with the aggressive scheme, we can poten-
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tially have concurrent computations running at every level. This can happen if a
computation is forked at the highest level in the lattice, and this is followed by con-

secutive fork requests where each request is at the next lower level and the lifetimes of

these computations are long enough to overlap. One can always increase the degree of
concurrency by exploiting intra-level concurrency. But conflicts at the same level can
be easily handled by well-known concurrency control techniques. We do not explore
this issue further in this thesis as it lies outside the scope of the execution model and

scheduling protocols we present.

We now develop the notion of delay-degree as a metric for analyzing scheduling
strategies. We demonstrate how by varying this metric, we can derive and admit a
family of scheduling strategies offering varying degrees of concurrency, while guaran-

teeing confidentiality and serial correctness.

We begin with some definitions.

Definition 4.2 A level is inactive if no computation is ezecuting at the level.

Definition 4.3 A level is active if there ezists an ezecuting computation at the level

Definition 4.4 We say a level [ is serial-execution enabled (or s-enabled for short),
if there ezists at least one forked computation ¢, at l, and there are no active or queued

non-parent computations with smaller fork stamps than c, at level | or below.

Intuitively, when a level is s-enabled, executing the next computation at the head

of the queue at this level will not violate serial correctness. A computation that is
denied execution by a scheduling scheme when its level becomes s-enabled is therefore
experiencing an unnecessary delay. We build on this observation and extend it below

to an entire security lattice in order to formulate a metric for analysis purpose.
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Definition 4.5 A scheduling algorithm introduces an unnecessary delay whenever

any level is s-enabled but remains inactive.

Definition 4.6 We say a chain of n security levels in a lattice is fully-enabled when-

ever every level in the chain is concurrently s-enabled.

Definition 4.7 We define a computation tree to be a full-enabler for a given security

lattice, if it causes a longest mazimal chain in the lattice to be fully-enabled.

Thus when a maximal chain in the lattice is fully-enabled, computations can be con-
currently running at every level in the chain. However, when scheduling is governed

by some scheme, it is only certain scenarios that can cause such chains to be fully-

enabled. We characterize below the computation trees associated with such scenarios

as realizers.

Definition 4.8 For a given scheduling algorithm and security lattice, we define e
realizable full-enabler (or realizer for short) to be a full-enabler, which when scheduled

by the algorithm, causes a longest mazrimal chain in the lattice to be fully-enabled.®

Definition 4.9 We say a realizer has a delay-degree (d-degree) of k for some schedul-

ing algorithm, if it causes k computations to experience unnecessary delays.

Definition 4.10 Given a security lattice (SC), a scheduling algorithm (A) is consid-
ered to have a delay-degree ( d-degree) of k, where k = max {d-degree of all realizers
for SC under A}.

5It is important to note that our framework is not restricted to lattices; it applies equally well to
maximal chains of partial orders.
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Given a set of secure scheduling schemes, we can now use their d-degrees as a
basis for comparison. We thus need to derive the d-degree for any given scheduling
scheme. To do this, we consider all the realizable full-enablers (realizers) and observe
the maximum number of computations, excepting the root, that are denied immediate

execution, on being forked. This number would give us the d-degree.

As an illustration, consider the full-enabler trees in figure 4.7 for a lattice with
a longest maximal chain of three levels U, C, and S (where U < C < S). For the
aggressive scheme, we see that both trees are realizers and in either cases no compu-
tation would be unnecessarily delayed. For the conservative scheme, onl;r the tree in
4.7(a) is a realizer and we see that computations 2(5) and 3(C) would be unnecessar-
ily delayed. For a further illustration, consider all the full-enabler trees for four levels
U,C,S,and TS, as shown in figures 4.8(a) through 4.8(e). All the trees are realizers
for the aggressive scheme, and in each case no computation would be unnecessarilj
delayed. However, only the tree in figure 4.8(a) is a realizer for the conservative

scheme and the computations 2(TS), 3(S)}, and 4(C) would be unnecessarily delayed.

In both of the examples above, we see that the aggressive scheduling scheme
would have a d-degree of zero (0), while the conservative scheme would have a d-
degree of n —1 for a lattice with a longest maximal chain of n elements. These results
are general and not specific to these two examples. To be more precise, the d-degree,
say k, of a scheduling scheme holds true for any lattice with a longest maximal chain
of n elements, as long as k < n. Also, it follows that for any scheduling scheme with

a d-degree of 0, a level is inactive only if it is not s-enabled.

Now are there other scheduling schemes that have d-degrees between the ex-
treme values of 0 and n — 17 To answer this question, let us look at the hybrid
(variant of the level-by-level) scheduling scheme discussed earlier. Recall that with

the level-by-level scheme, computations are executed one level at a time. Thus at
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any given time. there is a current-level at which computations are dequeued and ex-
ecuted. While our variant would also require that computations be dequeued and
executed one level at a time, it would in addition permit the execution of all the
immediate child computations of any active computation at the current-level. To
derive the d-degree of this variant, consider again the full-enabler trees in figures 4.7
and 4.8. Both trees in figures 4.7(a) and 4.7(b) are realizers with d-degrees of 0 and
n — 2 respectively, and thus giving a d-degree of n — 2 for this variant (i.e., max{0,
n —2}). In figure 4.8 the trees (a), (c), (d), and (e) are realizers with d-degrees 0,
n—2,n—3andn—3 re5p§cti\'ély, giving again a d-degree of n — 2 for this variant.
It thus introduces fewer delays, due to increased concurrency, than the conservative
scheme with a d-degree of n — 1. We conjecture that by varying the metric d-degree,

one could derive several scheduling schemes.
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Chapter 5

Trusted Subject Architecture Implementation

In this chapter we elaborate on implementing the message filter model and the aggres-
sive scheduling scheme under a trusted subject a,rchitecturé. We begin by discussing
a trusted subject architecture for multilevel object-based systems. This is followed
by the description of some data structures and various scheduling algorithms. We
finally present some theorems and their associated proofs to demonstrate that these

scheduling algorithms preserve integrity and confidentiality.

5.1 Architecture

Figure 5.1 illustrates the trusted subject architecture. As mentioned before, the
session manager is the trusted subject in this architecture. It is thus a muitilevel
process and coordinates single-level (untrusted) message manager processes. The ses-
sion manager is a long-lived process that is created when a session starts and deleted
only when the session eventually terminates. A session manager may create several
short-lived message-manager processes. Whenever a write-up message is issued, a
message manager process is created to service the request, and it implements the

message filtering functions.

The interface between a message manager and its local session manager con-
sists of fork, terminate, and start calls. A fork is issued by a message manager to

request creation of a new message manager. A terminate call is issued by a message
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manager to its session manager and signals termination. A start call is issued by
a session Tnanager to a message manager to initiate the execution of the message

manager.

What is the motivation, if any, for the trusted subject architecture and im-
plementation? The main advantage is the simplicity with which the scheduling al-
gorithms can be implemented due to the availability of a trusted subject. A session
manager always maintains a global snapshot of a session’s tree of computations as
they progress. With the help of such a global snapshot (view), it is able to coordi-
nate the various concurrent and implement the st-:heduling algorithms. As we will see
in the next chapter, without such a global snapshot, the coordination of concurrent
computations has to be achieved in a distributed fashion and this complicates the

implementation of the scheduling algorithms.

The aBove advantage of using a trusted subject for scheduling does come at
a price. We now have to provide assurance that such a trusted subject cannot leak
information. We later give a noninterference argument to demonstrate that the session
manager cannot leak information while coordinating various scheduling strategies and

being exempt from mandatory access control rules.

5.2 Scheduling Algorithms

Recall that the session manager in the trusted subject architecture always has a global
snapshot of the tree of concurrent computations as they progress to termination.
The availability of such a global snapshot significantly reduces the complexity of
implementing scheduling algorithms. In fact, we observe that the implementation
of the aggressive scheduling is no more complex than the implementation of the
conservative one, and as such the latter provides no significant advantage. Hence, for

brevity we discuss here only the aggressive scheme for the trusted subject architecture.
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Figure 5.1: A trusted subject architecture with TCB

Before discussing the algorithms in detail, we describe the data structures used
by the session manager. Recall from chapter 4 that our approach to synchronizing
concurrent computations was based on a multiversioning. Every version of an object

when created, is assigned a unique timestamp- The session manager maintains the

following data structure to keep track of initial versions.

s Init-stamp: This is a global table of timestamps with one entry per level. It
identifies the initial version of objects at every level that exists before a session
starts. An individual message manager can see that portion of the table which

s for levels dominated by that message manager.

The session manager also maintains a tree structure that reflects the progress of the
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concurrent message managers forked in a session. Every forked message manager is

represented by a node in the tree that contains the following information attributes:

status: this can be one of the following: active, terminated, queued;
level: the level of the message manager;
local-stammp: a local table of timestamp entries with an entry at each
jevel dominated by the message manager and identifying the
versions at the level that will be used to process read-down requests;
forkstamp:  forkstamp issued by the parent message manager;

parent: pointer to parent message manager,

wstamp: This is timestamp entry indicating the next version that will be
" written by the message manager;

object: receiving object; :

message: message;

p: message parameters;

A message manager’s local-stamp vector is initialized in two phases, with the
first one undertaken when a message manager is forked and the second one deferred
until the message manager actually starts. For a message manager just forked, the
first phase entries identify the versions to be read at the levels of ancestors, on the path
from the root to itself (i.e., the path in a computation tree for a session). These first
phase entries are actually obtained by a message manager from another vector that
is passed along by its parent. Such a vector can be seen as one that Is incrementally
constructed along a path in the computation tree. To do this, every message manager
is required to save the timestamps in the vector (astamps) obtained from its parent
and on issuing a fork, to reconstruct a new vector to give to its child (see figure
3.5). This newly constructed vector will contain the timestamps from the old vector
appended with the writé stamp wstamp at the level of the issuing message manager.
Finally, in the second phase we obtain local-stamp entries for the levels that did not

participate in phase one (this is done in the start-trusted-agg procedure of figure

5.3).
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Procedure fork-trusted-agg(level-parent, level-create, forkstamp, astamps)
{

Let parent be the node issuing the fork;

Let child be a new message manager node;

Make child the rightmost child of parent;
child.level « lub[parent.level, L(O2));

child.forkstamp « forkstamp;

% Begin phase I of acquiring local-stamp entries
For (every level | < level-parent)
do
initialize child.local-stamp table entries from astamps;

End-For

If in a depth-first traversal of the tree starting at the leftmost path and
until child is traversed, there exists a non-ancestor node, say n, with
{n.level < child.level and n.status = active or queued}
then child.status «— queued;
else

start-trusted-agg(child);
end-if

end procedure fork-trusted-agg;

Figure 5.2: Session manager algorithm for FORK
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Procedure start-trusted;agg(nn)

{

o Let node nn represent the message manager to be started

% Complete phase 2 of acquiring local-stamp entries
% Update timestamps from terminated message managers to the left
Initiate a depth-first search of the tree until node nn is traversed such that:

If the level 1 of a node n traversed is not 2 level of any of the ancestors of
nn
and 1 < nn.level
then .
nn.local-stamp(l] « n.wstamp;
end-if

% Update remaining locel timestamp entries from the Init-stamp table
If there exists a level [ lower than the level of nn and which is neither
the level of a node traversed in the tree nor of an ancestor of nn
then

nn.Jocal-stampll] « Init-stampll];
end-if

execute(nn);

end procedure start-trusted-agg;

Figure 5.3: Session manager algorithm for START
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Procedure terminate-trusted-agg(lmsgmgr, wstamp, forkstamp)

Let ferm be the node that terminated at level Imsgmgr;
% Mark this node as terminated
term.status « terminated;

% See if any queued nodes can be started
Initiate a depth-first traversal of the session tree such that:

If for every leaf node say leaf, that is traversed to the right
of term such that leaf.level > lmsgmegr, there exists
no previously traversed non-ancestor node p with {p.level < leaf.level and
p.status = active or queued}
then '
start-trusted-agg(leaf);
end-if

end procedure terminate-trusted-agg;

Figure 5.4: Session manager algorithm for TERMINATE

A high-level pseudocode specification of the session manager algorithms to
implement the aggressive scheduling scheme is shown in figures 5.2, 5.3, and 5.4. The
algorithms make extensive use of the tree structure representing the various message
managers. Let us discuss these algorithms in more detail. They are basically designed
to ensure that the invariant inv-aggressive presented in chapter 4, is never violated.
For easy reference, we give the invariant below:

Inv-aggressive: A computation is ezeculing at @ level [ only if all non-ancestor

computations, in the corresponding computation tree, with smaller fork stamps at

levels I or lower, have terminated.

Whenever a fork request is received (see the procedure in figure 5.2), the

session manager updates its tree structure by creating a node for the forked message

manager and making it the right most child of the parent node issuing the fork. The

procedure then records the forkstamp for the newly forked message manager that
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has been passed on by the parent (i.e., the message manager that generated the fork
request). This is followed by the first phase of the initialization of the local-stamp
entries. The session manager then checks to see if the forked node can be started
immediately. To do so, a depth first traversal of the tree is made starting at the
leftmost path until the newly inserted leaf node is reached. If during this traversal we
find another node, active or queued, at the same or a lower level, the newly inserted

node is queued and thus forced to wait.

The processing of a terminate request begins by updating the status of the

node to terminated (as shown in figure 5.4). We then check to see if this termination

can release other nodes queued up. In determining this, our invariant leads to the

property that any nodes started as a result of a termination have to be to the right of
the terminated node and at a equal or higher level (and of course, these nodes have to
be leaves in the tree). Thus a depth first traversal of the tree is once again initiated.

Now as in the fork case, a leaf node is allowed to execute if and only if required by

the invariant. It is important to note that a termination may result in more than one
node being started. For example in figure 4.5(c) the termination of message manager

node 2 (secret) results in nodes 3 (top secret) and 6 (secret) being started.

Both the Fork and Terminate algorithms utilize a common Start procedure
(shown in figure 5.3) by which message managers are started. This procedure is
primarily concerned with the completing the update of the local-stamp table entries
i | of the node to be started. Recall from our previous discussion that the first phase of
| updating the local-stamp entries is achieved at fork time. The second phase is now

accomplished from the following sources.

1. Terminated left nodes: For levels dominated by a node's level, and for which

timestamps were not obtained from the ancestors, the start algorithm looks to
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the subtree of computations to the left of the node to be started. The timestamp
of the last written versions at such levels is obtained from the last forked message
manager (or rightmost node to the left of the node to be started) which wrote

at these levels.

9. Init-stamp table: If there are levels for which timestamps could not be ob-

tained from phase 1 or from terminated left nodes, the algorithm then retrieves

the timestamps from the global Init-stamp table maintained by the session man-

ager. This is because objects at these levels have not been updated so far in

the session. Thus the initial versions of objects that existed before the session

started at these levels should be used by the starting message manager. The

timestamps in the Init-stamp table identify such versions.

4

Once all the local-stamp entries have been collected, the message manager is
started (executed). Thus once a messagé manager starts, its node in the tree will
have all the timestamps necessary to process read down requests for objects classified
below its level. These timestamps are never modified in the local-stamp table after
start up. However, the timestamp entry stored in the variable wstamp is dealt with
differently. On start, the timestamp is incremented unconditionally before the first
write (update) operation and subsequently incremented after every fork request issued
to the session manager. Thus the timestamp passed on to the forked children by a

message manager will vary. Each value identifies the state of the objects at the level

- of the message manager as of the time the fork was issued.

' 4l f Proof of correciness.

| We pow state and prove that the aggressive scheduling algorithms under the trusted

e subject architecture preserve the invariant inv-aggressive.
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Theorem 5.1 The aggressive scheduling algorithms for the trusted subject architec-

ture maintain the invariant inv-aggressive.

Proof:
Message managers get started only in the body of the fork-trusted-agg and terminate-
trusted-agg procedures, with a call to the procedure start-trusted-agg. In the pro-
cedure fork-trusted-agg in figure 5.2, the precondition to executing the statement
start-trusted-agg when the node child is forked is that there exist no non-terminated
node to the left of child, at levels dominated by child. This condition continues to
hold after child is started. Whenever this condition holds, the invariant is maintained.
A similar precondition holds before after the execution of the statement start-trusted-
agg in procedure terminate-trusted-agg of figure 5.4 for every leaf node traversed to
the right of the just terminated node in the tree. Thus the invariant inv-aggressive
is maintained. O - .

We now state and show how the invariant inv-aggressive maintains serial

correctness under our implementation. We state this as a corollary.

Corollary 5.1 The aggressive scheduling implementation maintains serial correct-

NESS.

Proof:

We basically have to show how the correctness constraints 1, 2, and 3 are maintained.
For a computation to be dequeued and successfully started, invariant inv-aggressive

requires all earlier forked computations at level I or lower, to have terminated. But

this is what is precisely required to maintain correctness constraints 1 and 2. The ar-
| gument for the maintenance correctness constraint 3 is independent of the scheduling
algorithm used. The local-stamp table entries collected in the first phase at fork

time by child reflect versions identifying the states of objects written at the level of
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these ancestors before each successive child in the ancestral path was forked (see pro-
cedure fork-trusted-agg in figure 5.2). The second phase entries on the other hand
identify latest versions written at lower Jevels for which there were no ancestors. In
surmary, the read down operations when assigned versions identified by the local-
stamp entries, will read the same object states as in a sequential execution, thus
ensuring that correctness constraint 3 is maintained. Thus all the three constraints

are maintained and serial correctness follows.0

Proof of termination

We now prove that the aggressive scheduling scheme terminates. In order to proceed

with a proof of termination, we assume that once 2 method (computation) is started,

it runs unint}arrupted to completion. Obviously, such an assumption can be valid only
if the body of the method contains no errors such as an infinite loop. We assume
that there is some time-out mechanism iniplace, to handle such situations. We argue
termination of individual computations by formally stating and proving the lemma

below:
Lemma 5.1 Once a computation is started, it is guaranieed to terminate.
Proof: The proof follows from two observations:

1. Whenever a computation issues a send which results in a FORK, it is not

blocked, but rather runs concurrently with the receiver computation. Now if a

computation only issued forked new computations, it is guaranteed to run to

completion and terminate since only a finite number of FORK requests can be

issued.

5‘ i i 2. Whenever a method issues a send that does not result in a FORK; it will be

blocked and in general this could result in a chain of blocked methods. However,
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there will always be a method executing and progressing to termination at the
end of such a chain, and if are no cyclical send relationships, such a method will
eventually resume its blocked predecessor. It follows that any blocked method

will be resumed eventually and allowed to run to completion in finite steps. O

We now state and prove formally as a theorem that a session will terminate.

Theorem 5.2 The aggressive scheduling algorithms for the trusted subject architec-

ture guarantee termination of user 5€5S10NS.

Proof:

A message manager (cbmputation) m can be denied immediate execution only at the
moment it is forked. If this happens there has to. be at least one non-terminated
computationr to the left of m in the tree. Now by lemma 5.1 every running com-
putation will eventually have to terminate. Also, we know that every termination
causes at least one other queued computation to be started. Thus in finite steps all
computations to the left of m will terminate, causing m to be started. We can apply
this argument to every queued computation and it follows that the entire session will

terminate. O.

5.3 Proof of Confidentiality

We now give a confidentiality proof for the trusted subject architecture and imple-

mentation. Recall that in this architecture, the session manager is a trusted multilevel
1 process that accepts inputs from different security levels, processes them, and out-
|

puts information at various levels. Now since the session manager is the only trusted

process in this architecture, it follows that any confidentiality leaks would have to be

introduced and traceable to the session manager.
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Figure 5.5: The two-step processing cycle of the session manager

Before developing a formal security proof, we first give an intuitive argument

for the confidentiality of the session manager. We view the session manager as 2

black box accepting inputs and producing outputs. More precisely, the inputs are the
fork and terminate requests issued by message managers at various security levels
and the outputs are the start requests issued by the session manager requesting the
start-up of previously forked (and perhaps queued) message managers. We assume
that these inputs are the sole means by which information enters the process and the

outputs are the sole means by which information leaves the process.

Consider first just two security levels Jow and high (low < high). A fork request
issued by a message manager (computation) at low will form a low-input (low-fork)

to the session manager. Now such an input can generate only a high output {high-

i j start), when the fork request is processed. Now consider three levels low, med, and

high. The termination of a computation at level med can result only in the start-up

of another computation at level med or high. Thus in either case, an input generated
at level | and received by the session manager, can produce an output only at levels
[ or higher. Now if we examine the processing steps of the session manager, wWe see

that it is a repetitive two-step cycle of accepting inputs at a level I and producing

the associated outputs at [ or higher (as shown in figure 5.5). Thus in general any

information flow through the session rnanager OCcurs only in an upwards direction in

a lattice.
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Having given an intuitive argument for confidentiality by demonstrating that
information flow is always upwards in security levels, we now develop a more formal
and rigorous proof using the theory of non-interference {GM82, GM84]. We consider
the reception of inputs as well as the generation of outputs to be discrete events. Asin
[McC90] we call the events less than or equal to a level | as belonging to the the view
of that level, and all other events as hidden from I. The basic idea of noninterference
can be stated as follows: A subject s, is said to be noninterfering with subject s;
if no action issued by s; can influence the futufe output of the system to s;. An
obvious approach to establishing noninterference ié. to purge all hidden inputs and
demonstrate that the events observed in the view for a lower level subject remains

unchanged.

We begin with some definitions and formalisms.

Definition 5.1 We define an event as a triple (type,l,tstammp) where type € {fork,
term, start}, | is the level of the message manager (computation) from which the
input originated or the level of the message manager to which an output is directed,
and tstamp is a timestamp indicating the elapsed time since the occurrence of the last

event at l.

Definition 5.2 Given any securily level, 1, we define the events at less than or equal
to | as belonging to a set called the view of [ and all other events as belonging to a

set called hidden from !.

Definition 5.3 Given any security level, [, we define the subset of events in the view

of | that are at levels strictly below 1 as belonging to the set lower-view.

Definition 5.4 Given two event SEquences 8, and B, we say that they are l-equivalent

(denoted as 51 =i B,) if they coniain the same events, in the same relative order, for
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levels | and lower (i.e., they contain the same values for the event triples and the events

associated with these triples appear in the same relative order in both sequences).

Definition 5.5 Given a sequence 3, we define a purge function purge(f,1) as one
that returns the sequence (3 but with all events of the form (type, ., tstamp) removed

(purged) whenever 1 2 I..

Given any input sequence ¢, which when processed by the session manager
produces an output sequence 5 {(dencted a; — $3:), noninterference requires us to
show the following: If for every level {, purge(a, ) — B, then Sy & 5.

Before proceeding on a formal proof that the session managet is noninterfering, we

list our assumptions:

e Input-totality. If we view the session manager as a state machine, this as-
sumption states that the session manager (or state machine) can accept inputs
in any state. This ensures that the session manager is not conveying any infor-

mation by accepting inputs.

s Input-output atomicity. This assumption requires the session manager to
accept an input and produce the corresponding outputs, if any, atomically.
In other words, in the interval between-'the acceptance of an input and the
subsequent processing and generation of the corresponding outputs, the session

manager cannot be interrupted, especially by other inputs.

The assumptions of input totality and input-output atomicity may seem at first
to be irreconcilable. After all, if the session mapager cannot be interrupted in the

interval between the acceptance of an input and the production of the corresponding

output, how would it be capable of accepting other inputs that come within such an
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interval? Assume for a moment that inputs arrive at the session manager boundary

synchronized with clock ticks that are a constant interval apart. It is important to

note that such an interval can be chosen to deal with worst case arrival rates of inputs.
The session manager is required to accept an input at a clock tick, and produce all
the corresponding outputs, before the next clock tick. In other words, at every clock
tick, the session manager is ready to accept an input, and within clock ticks cannot

be interrupted to accept other inputs.

In the above model, given an input, we require that the corresponding outputs
be produced within the same interval. In other words, the outputs cannot spill over

to time intervals between subsequent clock ticks. However, one needs to approach

the implementation of this requirement with caution. In particular, the timing of the
outputs within an interval should not be used to build a channel. Hence we require the
scheduler to hold off all outputs until the expiration of the interval. Upon expiration,

the cutputs are delivered as a batch to a lower level subsystem or operating system.

The realization of the input-output atomicity assumption also requires that
the tree data structure implementation utilized by the session manager be an “ideal”
one. By ideal we mean that the elementary data structure operations such as the

o insertion and deletion of nodes in the tree are implemented in such a way that their
timing cannot be exploited for covert timing channels. In particular, tree operations
should be completed within a clock tick. For if this were not the case, a high user’s

| ‘ computation can maliciously cause the tree to grow to a considerable size by causing

a lot of nodes to be inserted into it. A low-level computation generating fork requests

may now experience observable delays due to the increased time taken by the session

manager to update and manage the tree.

A possible solution to deal with the above scenario would be for the TCB to

do the tree operations at random intervals. An approach that pursues a similar idea




05709705 19:
= 9:50 FAX 703 993 1638 GEORGE MASON UNIVERSITY

I go17

s | 4 M LA
outputslll l \l—}_l)

Figure 5.6: Nlustrating the noninterference proof

to address hardware timing channels is based on the technique of fuzzy time [Hu91].

Fuzzy time techniques reduce the bandwidth of timing channels Ly adding noise tc all
]

sources of timing information and by ensuring that inputs and outputs are delivered

at random intervals. We do not consider such solutions as they would take us beyond

the scope of this thesis.

We now formally state and prove that the session manager is noninterfering.

Theorem 5.3 In scheduling various concurrent computations, the session manager

process 1s noninterfering.

Proof:

The proof is by induction on the length of the input strings accepted by the session
manager. ’

Basis: Consider the basis with input strings of length 1. It follows that by accepting
only one input at a single security level, say I, the corresponding outputs will be at
| ! or higher. This does not influence the outputs at the lower-view of [ and it {ollows
that the session manager will be noninterfering. Thus the basis holds trivially.
Inductive Step: For the induction hypothesis assume that for all input strings of

length n, the session manager is noninterfering. For the inductive step, consider any

o !3" given input string, say a, of length n + 1 which produces interference. Let & be the
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(n + 1)* input in this string (see figure 5.6). Also, let this interference be observed
at level 7. By this we mean that there is at least one input at 7, and the purge(a, T)
will cause the outputs in the lower-view of 7 to change. Now let the outputs gen-
erated by the scheduler after the reception of the input §, belong to the set 8 with
the individual outputs in the set denoted as 8y, 6, . ..,0k. From our earlier discussion
on the two-step processing cycle of the session manager, it should be clear that the
levels of the individual outputs in the set 9 dominate the level of § (we denote this as

I(BJ) > 1(6),¥Y5,0=1,. .. k).

Now consider all inputs preceding é. Note th#t an input at a level can only interfere
with outputs in the lower-view of the level. So let us pick the most recent input, say
. at level 7, that could interfere with outputs in the set 8 that are in the lower-view
of 7. We must must now look at the interac;tion of ¢ and 6. There are two cases of
the input § that we must now consider. The first one being the case where 6 is a fork

input event, and the second where & is a term input event.

For the the first case where & is a fork, let us analyze the procedure fork-trusted-agg
in ﬁgure 5.2. In this procedure, we determine if the forked computation generating é
can be immediately started or if it has to be queued for future execution. This is done
by initiating a depth-first traversal of the sessit;n tree starting at the leftmost path
and ending at the node representing the computation. Now in general, a computation
f is denied immediate execution (startup) only if such a traversal encounters at least
one nonterminated non-ancestor computation at or below the level of f before the
node for f is traversed. Also, it follows from the requirements of serial correctness

that the computation genefating the input & would have to be to the right of the one

generating :. (If this were not the case, the computation that would generate ¢ would
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be suspended, and as such, there would be no input ¢ before 6.) Hence, during the
depth-first traversal, the computation associated with ¢ would be encountered before
the computation generating 5. Now if we purge the computation that generated the
input ¢, the outcome from the traversal of tree will be unaffected. In other words, if
the computation associated with & was denied execution, or allowed to start, this will
continue to be the case after the purge. In other words, the output generated by the
scheduler in response to 1Dput § would remain the same for output events in g at the
lower-view of T. Also, the purge will not generate any qdditiona.l outputs in 8. We

can thus conclude that these sequences do not lead to any interference.

Now consider the second case when § is a term event. Once again, it follows from our
ipvariants and the requirements of serial correctness that the computation generating
the the term event § would have to be the right of the computation generating the
high input event ¢, in any session tree. If this were not the case (i.e.,if the low com-
putation was to the left of the high computation), the high computation would not
be executing due t0 serial correctness restrictions and thus cannot generate any high
inputs. Now let us look at the procedure terminate-trusted-aggin figure 5.4 to see
how terminate input requests are processed. We observe that when a computation
say t, terminates, a depth-first ‘traversal of the session tree is initiated to identify

potential lea computations to the right of £, that could be released for execution.

A leaf computation in the tree is started only if there exists no previously traversed
active or queued computation at or below the level of the leaf computation. Now in
a depth-first search, the computation generating ¢ will be encountered before the one
generating 6. However, the computation generating ¢ is at a higher or incomparable
level with respect to the computation generating &, and thus the purge of the former

will not affect the outcome of the traversal. Thus there is no interference as the out-
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put events in § that are generated in response to 6 would remain the same. To put it

more precisely, the output events in the lower-view of 7 that are in ¢, remain the same.

Thus {ar, we have shown that the input ¢ does not interfere with outputs in the set
9 and in the lower-view of 7. Let us now proceed by purging the input ¢ from the
original string of length n + 1 to get string n'. We will now get a new output set &'.
The set §' may differ from 8 only in that it doesn’t contain the outputs of ¢ which
are at the level of ¢ or higher. Thus, events in the lower-view of 7 would remain
uﬁchgngéd in both sets 8 and §'. Now since we just demonstrated that the input ¢

causes no interference, it follows that if the original string of length n+1 is interfering,

this interference must be also observable in the outputs of the string n' with ¢ purged.

In other words, this interference must be observable in § which retains all outputs
below 7 in the original output set 6. However, the string n' is of length n, and if
it is interfering, will contradict the induétion bypothesis which assumed the session
manager is noninterfering for all strings of length n. Hence the proof for the induction

step. O
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Chapter 6

Kernelized Architecture Implementation

In this chapter we discuss the implementation of our scheduling algorithms within
the framework of a kernelized architecture [TS92]. We begin by discussing the archi-
tecture. This is followed by a detailed description of the conservative and aggressive

scheduling algorithms. We finally end the chapter with the major theorems and

proofs. Unlike the trusted subject architecture, the kernelized one requires no proof

for confidentiality.

6.1 Architecture

As mentioned before, kernelized architectures in general have no trusted sub-

jects. In our architecture, there exists a single-level level manager process at each
level to coordinate the various concurrent computations running at the respective

levels. Figure 6.1 illustrates the kernelized architecture.

While security comes for free in a kernelized architecture (since there are no
trusted subjects), the price we have to pay is the additional complexity involved in
implementing the various scheduling algorithms. In particular, the lack of a giobal
multilevel coordinator such as the session manager in the kernelized architecture,

necessitates that we implement the scheduling schemes in a distributed fashion.

89
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Figure 6.1: A kernelized architecture

6.2 Scheduling Algorithms

We now describe the algorithms to implement both the conservative and aggressive
scheduling schemes under a kerpelized architecture. We begin by describing some

level manager data structures that are common to both schemes.

Level manager data structures: '

current-wstamp:  the current timestamp given to objects written at the
"~ level of the level manager;

queue: a queue of message managers waiting to be activated;

terminate-history: a list of ordered pairs (forkstamp, wstamp);

In addition to the above data structures for every level, a message Manager utilizes

the following:
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[ Procedure terminate-kern-cons(imsgmgr, wstamp, forkstamp)

o, Let tt be the message manager that just terminated at level Imsgmgr
O Let Im be the level manager at level Imsgmgr

% Update local current write stamp from it
m.current-wstamp « wstamp

% Update local Terminate-history with the forkstamp and wstemp of it
Append—terminate-history(termina.te-history, forkstamp, wstamp);

If queue is not empty
then
dequeue(queue, mm);
start(mm);
Else
Send a WAKE-UP message to all immediate higher level managers;
End-If
}

end procedure terminate-kern-cons;

Figure 6.2: Level manager algorithm for terminate processing

local-stamp: a local table of timestamp entries with an entry at each
level dominated by the message manager and identifying the
versions at the level that will be used to process read-down requests;
forkstamp:  forkstamp issued by the parent message manager;

6.2.1 Conservative Scheduling Algorithms

We now discuss the algorithms to implement the conservative scheduling scheme. Let
us begin by looking at how fork requests are processed. When a computation is forked,
a new message manager is created, and it is unconditionally queued by the local level
manager, as éhown in procedure fork-kern-cons in figure 6.3. The procedure also
initializes the forkstamp entry and the phase 1 entries of ihe local-stamp table passed

on by the ancestors (this is the astamps parameter for the procedure). When a

level manager is notified of the termination of a message manager at its level, it first
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[ Procedure fork-kern-cons(level-parent, level-create, forksiamp, astamps);‘

% Let level-create be the level of the local message manager
Create a new message manager mm at level level-create;

% Record the forkstamp passed on by the parent
mm . forkstamp «— forkstamp

% Begin phase I of acquiring local-stamp entries
For (every level I < level-parent)
do
‘nitialize mm.local-stamp table entries from astamps;

End-For

9% This 15 a priority queue maintained in forkstamp order
enqueue{queue, mm);

end procedure fork-kern-cons;

Figure 6.3: Level manager algorithm for fork processing

Procedure wake-up-kern-cons

% Proceed if the necessary condition has been mel
If 2 WAKE-UP message has been received from all lower levels
then
If the queue is not empty
then
dequeue{queue, mm);
start-kern(mm);
else
Send a WAKE-UP message to all immediate higher levels;
End-If
End-If

end procedure wake-up-kern-cons;

Figure 6.4: Level manager algorithm for wake-up processing
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[ Procedure start-kern(nn)}

{

% Let nn represent the message manager to be started
%, Let Im represent the level manager managing nn

% Complete phase 2 of acquiring local-stamp entries
For (every level | lower than the level of nn for which no timestamp
has been obtained so far)
do
nn.Jocal-stampl(l] « mm.wstamp;
where mm is the message manager entry in the terminate-history at level
!
with max{forkstamp: forkstamp < nn.forkstamp}
End-For

% Update the write stamp (wstamp) from the level manager
nn.wstamp « Im.current-wstamp + 1

% Begin ezecution of the messege manager nn
execute(nn);

end procedure start-kern;

Figure 6.5: Level manager algorithm for start processing
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updates the local terminate-history. The level manager then dequeues and starts
the next computation at the head of its local queue; if the queue is found to be
empty, 2 WAKE-UP message 's sent to all immediate higher levels (see procedure
terminate-kern-cons in figure 6.2). Let us now see how WAKE-UP messages are
processed. When a level manager receives 2 WAKE-UP message from each of the
immediate lower levels in the security lattice, it dequeues its Jocal queue and starts
the next message manager; if the queue is empty, the WAKE-UP message is simply
forwarded to all the immediate higher levels in the lattice, as shown in the procedure

terminate-kern-cons in figure 6.2.

As in the trusted subject implementation, a message manager’s local-stamp
vector is once again initialized in two phases. The first phase entries are obtained
as before from the ancestors. The second phase utilizes the terminate-history
data structufes at all levels dominated by the level of the starting message manager.
Recall that this history contains a list of terminated computations identified by their
forkstamps and their associated wstamp values at termination time. At each level,
the computation with the largest forkstamp that is still less than the forkstamp of
the message manager to be started, is selected, and the associated timestamp is read

into the corresponding local-stamp entry.

We conclude this subsection by giving proofs of correctness and termipation

for our conservative level-by-level scheduling algorithms.

Proof of correciness.

Theorem 6.1 The conservative (level-by-level) scheduling algorithms for the kernel-

ized architecture maintain the invariant inv-conservative.

Proof:
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While there are two message manager algorithms, namely send and quit and four
Jevel manager algorithms fork, start, terminate and wake-up, we focus only the
latter two for the proof. The terminate and the wake-up algorithms invoke the
start procedure whereby computations get activated (started). It suffices therefore

to show that these algorithms maintain the invariant inv-conservative.

Consider the terminate procedure first. If we assume that the invariant holds
as a pre-condition before the procedure was invoked, then it follows that there are no
active or queued computations at level lmsgmgr or lower. Now if the start-kern(mm)
statement is reached, the following pre-conditions are true: (a) there exists one or

more queued computations at level lmsgmegr; (b) the computation mm, with the lowest

forkstamp will be started. The start-kern(mm) statement further ensures the post-
condjtion: (c) mm, beng the computation with the smallest forkstamp 18 started,
and there are no queued or active computations at lower levels. This maintains the
ipvariant. On the other hand, f the start-kern(mm) statement is not reached the

invariant obviously continues to be true.

Consider the wake-up procedure next. From the terminate procedure we
i see that a WAKE-UP rmessage s sent to all immediate higher levels only if there are
' 1 ‘ "“-;' no active or queued computations at or below the level that sent the message. Hence,
' i when a WAKE-UP message has been received at a level say lwake, from all lower

. levels, the following are true:

il d. there are no queued or active computations at levels lower than lwake;

e. there are no active or terminated computations at level Iwake.

The latter condition is true since a computation can be started only as a result of a

previous terminate at ihe same level or due to the receipt of a WAKE-UP message
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(and no terminate event would have occurred at lwake at this point). Thus when

the statement start-kern(mm) is executed, the following post-condition is true: (1)

mm is the first computation to be activated at level lwake and there exists no queued

or active computations at levels lwake or lower. This clearly maintains the desired

invariant. Once again, if the start-kern(mm) is not reached, the invariant continues

to hold.0

40 Having shown how our algorithms maintain the invariant inv-conservative,
we now argue how these algorithms preserve serial correctness by maintaining cor-

rectness constraints 1, 2, and 3. We state this below as a corollary.

Corollary 6.1 The conservative (level-by-level) scheduling implementation under in-

variant inv-conservative maintains serial correctness.

Proof:
When a computation ¢ 1s started at a level I, the invariant inv-conservative re-
quires ail computations that are forked at level { with smaller forkstamps, to have

terminated. This maintains correctness constraint 1. The invariant also requires

that on the start of computation ¢, all computations at levels lower than ! to have
-“terminated. This requirement clearly maintains correctness constraint 2 since the

constraint requires only computations with smaller forkstamps than ¢ and at levels

I or lower to have terminated. In other words, as far as lower level computations
are concerned, the invariant inv-conservative is more restrictive than correctness
constraint 2, and clearly maintains and implies the latter. Correctness constraint
3 has to do with versions assigned to process read-down tequests. The arguments
given for the accumulation of local-stamp entries in the trusted subject architecture

| : still apply. Thus the local-stamp table entries collected in the first phase at fork

time by c reflect versions identifying the states of objects written at the level of these
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ancestors before each successive child in the ancestral path was forked. The second
phase entries as before, identify latest versions written at lower levels for which there
were no ancestors. In summary, all read down operations that are mapped to the
versions identified by the local-stamp entries, will read the same object states as in

a sequential execution, and thus maintain correctness constraint 3.0

Proof of termination

We formally state as a theorem, that a session will eventually terminate.

Theorem 6.2 Under the conservative scheduling scheme, all computations in @ ses-

sion will eventually terminate and thus guarantee the termination of @ uSer session.

Proof:

By induction on the number of security levels, n, at which computations are forked

in a session.

1
Basis: Consider the basis with n = 0. Then the only level with active computations

will not have any fork requests emanating from it. It follows from the second part of

the proof of lemma 5.1 that the session is guaranteed to terminate.

Inductive Step: For the induction hypothesis assumme that when n is equal to m, all

computations terminate at the m levels and a WAKE-UP is sent to all immediate

higher levels. For the inductive step consider m + 1 levels where level ln4 is a

maximal element in the security lattice and dominates a subset of the m levels. Now

by the induction hypothesis, all computations at the m levels would have terminated
|

and hence a WAKE-UP message would have been received at level Iy from all

immediate lower levels in m. It now remains for us to show that a WAKE-UP is

| :
received at level I, 4, from all immediate lower levels dominated by [n41 that never

had active computations in the user session. These levels thus do not belong to
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m. The argument to sl:jnow this can be made from the following: (1) The induction
hypothesis guarantees tk&at the root computations which are at the lowest level, say &,
in m, would have termi;mted and sent a WAKE-UP message to all immediate higher
levels; (2) WAKE-UP messages are always forwarded across empty levels. Hence all
levels which dominate 11 and in turn are dominated by lm41 would have WAKE-UP
messages forwarded through them. This guarantees that lm4: would receive these
messages from all lmrnedlate lower levels, and when this happens the computation at
the head of the queue Wthh has the smallest forkstamp will be dequeued and started.
The termination of th1§ first computation at level I,,H.] is again guaranteed by lemma
5.1 and leads to the St}a.rtup of the next one in the queue. Every terminate results
in the next computatlon in the queue to be subsequently started in turn. The queue
will thus be progresswely emptied in finite steps and all computations at level ln41

would have then term;na.ted. Thus the entire session will terminate. O

6.2.2 Aggressive Scheduling Algorithms

Having discussed a conservative scheduling scheme, we now turn our attention to
an aggressive schedulmg scheme. The implementation algorithms for the aggresswe

- scheduling scheme a.rg given in figures 6.6, 6.7, and 6.8 (the start algorithm is the

same as in figure 6.5 fbr the conservative scheme). In addition to the data structures
needed to implement | the conservative scheme, the aggressive one requires that every

level manager mamta.m a fork-history consisting of a list of ordered pairs (forkstamp,

level). This helps a level manager keep track of the fork requests generated at its level.

; We now elaborate onithese algorithms.
‘ \
When a computa.tmon is forked (see the if statement in figure 6.6), we have

to decide if 1t can be sta.rted immediately. A forked computation is started immedi-

ately if there exists np non-terminated computations at lower levels and with smaller
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Procedure fork-kern-agg(level-parent, level-create, forkstamp, astamps)
d { |

% Let level-create be the level of the local level manager

Create a new message manager mm at level-create;

: Y% Record the forkstamb passed on by the parent
1 mm.forkstamp + forkstamp

% Begin phase 1 of acquiring local-stamp entries
For (every level I < level of the parent of mm)
do :

initialize mm.local-stamp table entries from astamps;

End-For

|
) % Check to see if a forked computation can be started immediately
1 If ¥ | < level(mm), -3 any computation ¢ : (c.forkstamp < mm.forkstamp
A c ¢ terminate history at {)

then, ‘
start-kern(mm);
1 else 7 :
P o % This is a priorily queue maintained in forkstamp order
: enqueue(mm);
end-if |

end procedure fork-kern-agg;

Figure 6.6: Processing fork requests under aggressive scheduling

il |
I Procedure wake-up-kern-agg
| { ;
dequeue(queue, mm);
start-kern(mm); |

)

end procedure wake-up-kern-agg;

Figure 6.7: Processing wake-up requests under aggressive scheduling
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Procedure term-kern-agg({lmsgmer, wstamp, forkstamp)

- % Let tf be the message manager that just terminated at level Imsgmgr
e o Let Im be the level menager at level Imsgmgr

% Update local current write stamp from tt
Im.current-wstamp « current-stamp

% Update terminate history
Append-terminate-history(terminate-history, forkstamp, wstamp)

% Check if a computation at level Imsgmgr can be started
If queue is not empty
then
% Let mm be the computation at the head of the queue
If Vi < level(mm), =3 ¢ : (c.forkstamp < mm.forkstamp
A ¢ ¢ terminate history at level /)
then
dequeue(queue, mm);
start(mm);
End-If
End-If

% Check if a computation at levels > lmsgmgr can be started

For all levels ! < lmsgmegr

do
If 3 ¢ € fork-history at [ with (level(¢) > lmsgmgr A
c.forkstamp > tt.forkstamp) :
-3 any computation k with (level(k) < level(c) A k.forkstamp
< cforkstamp A k ¢ terminate history at level(k) A k is not an
ancestor of c)
% We checked to see if ¢ was not preceded by a lower-level active or queued
% non-parent computation in any of the fork-histories searched
then

Send a WAKE-UP message to the level manager of ¢ at level {;

End-If

End-For

}

end procedure term-kern-agg;

Figure 6.8: Processing terminate requests under aggressive scheduling
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forkstamps. We can determine all the computations forked at lower levels by ex-
amining the fork histories at these levels. We can further determine which of these
computations have terminated by examining the terminate histories at these lower
levels. When processing terminate requests, a similar check is made upon the termi-
nation of a computation at a level to see if the next computation, if any, at the head
of the queue for this level, can be started (see figure 6.8). We also check to see if
computations queued at higher levels can be released. We examine the fork histories
at lower levels for computations that have been forked from these lower levels but
have larger forkstamps than the just terminated comphutation (see the for statement
in figure 6.8). Such computations with larger forkstamps can be started so long as

they are not preceded by lower level non-terminated computations to the left, in the

computation tree. A WAKE-UP message is sent to the level managers at the levels

for which computations can be stared. On receiving such a message, a level manager

dequeues and starts the next computation at the head of its queue (see figure 6.7).

We now give proofs of correctness and termination for the aggressive scheme.

Proof of correciness.

Theorem 6.3 The aggressive scheduling algorithms for the kernelized “architecture

maintain the invariant inv-aggressive.

| . | Proof:

We start with the fork-kern-agg procedure in figure 6.6. We see that for the state-

ment start-kern(mm) to be executed, the following pre-conditions are true:

a. there exists no non-ancestral queued or active computations at or below level(mm)

and with a smaller forkstamp than mm;

b. mm is the only computation at level(mmm).
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After computation mm has been started the condition (a) above still holds and thus
the invariant is maintained. A similar argument can be made for the start-kern(mm)
statement in procedure term-kern-agg. When mm s dequeued, condition (a) above
holds, and since mm has the smallest forkstamp in the queue, the invariant is main-

tained after the execution of start-kern(mm).

It now remains 1:;0 show that the start-up of a computation due to the receipt of
a WAKE-UP message at a level, will not violate the invariant. To see this, we observe
that 2 WAKE-UP meésage iz sent to a higher level (in the terminate-aggressive
procedure) only if there exists a pending computation say, ¢ at the higher level that
was denied immediaté execution at fork time. Further, ¢ has to have the smallest
forkstamp among others at its level and should not be preceded by active or queued
computations at lower levels and with 2 smaller fork- than itself. Thus on receiving a
WAKE-UP message, a level meets all the necessary conditions to start a computation.
The post-condition following the start-kern(mm) statement in procedure wake-up-

aggressive thus maintains the invariant.O

We now state and show how the invariant inv-aggressive maintains serial

correctness under our mplementation.

Corollary 6.2 The éggressive scheduling implementation maintains serial correct-

ness.

Proof:

We basically have to s;how how the correctness constraints 1, 2, and 3 are maintained.
For a computation to :be dequeued and successfully started, invariant inv-aggressive
requires all earlier forked computations at level [ or lower, to have terminated. But

this is what is precisely required to maintain correctness constraints 1 and 2. The
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argument for the maintenance correctness constraint 3 is independent of the schedul-
ing algorithm used. Thus the earlier argument given for the conservative case still

holds.O

Proof of termination

Theorem 6.4 Under the aggressive scheduling scheme, all computations in a session

will eventually terminate and thus guaraniee the termination of a user session.

Proof:

To argue proof of termination for the aggressive algorithm, we observe that if a
computation is denied :mmediate execution this can only be at fork time. Again we
assume that once started, a computation is guaranteed to terminate (by lemma 5.1).
Our task is thus basically to show that every queued computation will eventually be
started. Now if on fork, a computation f is denied immediate execution, then there
must be at least one active computation say ¢, with a smaller stamp than f and
at or below level(f). Now the termination of ¢ is guaranteed by lemma 5.1. The
termination of ¢ will cause at least one computation with a greater forkstamp than ¢
and a smaller forkstamp than f, or f itself, to be started. Now if f is not started, there
can only be a finite number of computations that can potentially block f. Subsequent
terminate events will progressively decrease the number of such computations with a
smaller forkstamp than f. This will result in the eventual release of f for execution.
With a similar argument, we can show that every queued computation will eventually
be released for execution and thus run to termination. Thus the entire session will

eventually terminate, concluding the proof. O
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Chapter 7

Replicated Architecture Implementation

In this chapter we discuss the implementation of the méssage filter model and related
scheduling schemes within the context of the replicated architecture [TS94b]. We
begin by reviewing the architecture itself. This is followed by a discussion of message
filtering issues from an architectural standpoint, as well as a some elaboration on the
interplay between serial correctness, scheduling, and replica control. We then present

the various scheduling algorithms, and the related theorems.

7.1 Architecture

The replicated architecture for multilevel secure database management systems (mls
DBMS’s) has lately experienced a resurgence in the research community. As men-
tioned before, it represents one of the three architectures identified by the Woods
Hole study organized by the U.S. Air Force [Cou83]. The distinguishing feature of
the replicated architecture is that lower level data is replicated at higher levels. To
be more precise, for any given security Jevel, a physically separate DBMS is used to
manage data at or below the level. In our further discussions, we use the term “con-
tainer” to be synonymous with “database”. These backend databases are untrusted,

and rely on a trusted front end (TFE) that hosts the trusted computing base (TCB),

for access mediation.

| The replicated architecture, as elaborated for a simple lattice, is shown in

104
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figure 7.1. The objects classified at U and stored in the first container are replicated
acrossjthe other containers 2, 3, and 4. Such replicas when stored at containers 2, 3,
and 4,: are no longer considered to be at level U, rather are classified at the level of
their r?espective containers. The advantages and security of the replicated architecture
stem from the fact that users (or subjects acting on their behalf) at different levels
are physically isolated from one another, and that a user is able to accomplish all
tasks i(rnultilevel queries and updates at his or her level) from the data stored at a
single% DBMS. This is because a properly cleared user who logs in to the system at
security level I, will be assigned to the DBMS at I. All data that is classified below
levelsgl and stored at the lower level databases is replicated, and thus available, at
the ﬂBMS at [. Thus, for example, security threats from covert channels due to

read-down operations in multilevel queries do not arise in this architecture.

The benefits of the replicated architecture come at the cost and complexity of
the replica control schemes needed to keep the replicas of the data mutually consistent.
To mia.ke this architecture commercially viable, these schemes would not only have
to be?efﬁcient‘, but in addition must be secure (in that they do not introduce covert
chanﬁels). It is important to note that covert channels can be introduced in this
unde1j' the replicated architecture have appeared in recent literature [Cos92, CM92,
KJ90§, MJS91]. The work reported here is the first to address these issues within
the ctj)ntext of object-oriented databases. With the ever increasing interest in object-
orienlted databases, our effort here is timely, and we hope, will provide impetus for

furthjer work in the area.
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7.2 Message-filtering in the Replicated Architecture

When we consider the implementation of message filtering in the replicated architec-
ture, the very nature of the architecture poses a different and unique set of problems.
We have to deal with security and integrity aspects of processing data within a single

container as well as multiple containers.

Consider first the issues pertinent to a singler container. The way objects are
replicated and classified at the various containers, and the fact that only a subject
cleared to the level of a container can access the data at the container, have the

following implications:

1. There exists no need for message filtering between objects at a single container.

9. Method invocations resulting from messages sent between objects at a single
container can be processed sequentially, as there exists no downward signaling

channel threat.

3. There exists the need for integrity mechanisms to prevent replicas at a single

container from being updated arbitrarily by subjects.

In other words, we do not enforce any message filtering or mandatory security
controls between objects at a single container, since doing so would require access
mediation mechanisms to be imported into the individual backeﬁd DBMS’s. This
clearly goes against the original spirit and motivation of the replicated architecture.
Messages sent from low replicas to other objects within a single container result in
method invocations which are processed sequentially according to RPC semantics.
Hence there is no need to maintain multiple versions of objects. Also, covert channel
threats do not exist, as only subjects cleared to the lével of a container can observe

the results of local computations. Finally, the lack of mandatory controls within
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a container has to be balanced with adequate integrity mechanisms giving us the

assurance that such replicas will not be updated by the local subjects at a container.

In contrast to the above, dealing with objects residing at different containers
does require message filtering so as to prevent illegal information flows. If we review
the different filtering cases in the message filtering algorithm (as shown in figure 3.1),
we now see that case (4) which deals with messages sent from higher level to lower
level objects, is degenerate. This is because messages sent downwards in the security
lattice to enable read down operatmns do not cross the boundary of a container, and
as mentioned before, involve no filtering. Messages sent to higher and incomparable
levels will still need to be filtered.. In particular, when messages are sent to higher

objects (residing at higher level containers), concurrency may again arise.

Having discussed the message filtering and security issues in the replicated
architecture, we now turn our attention to the trusted computing base (TCB} in
the architecture. As mel-ntioned before, the TCB is hosted within the trusted front
end (TFE). A design objective in é.ny secure architecture is to minimize the number
of trusted functions that need to be implemented within the TCB. This enables
the TCB to have a small size, and thereby making its verification and validation
easier. In light of this, is it possiblé to implement the various coordination and replica
control algorithms while keeping tihe size of the TCB small? In later sections of the
chapter, we present replica control and coordination schemes that require minimal
functionality from the TCB. To be; more precise, the role of the TCB reduces basically
to that of a router of messages from lower level to higher containers. In particular,
the TCB requires no trusted (multllevel) subjects or data structures. All scheduling
and coordination is achieved thropgh single-level subjects at the backend databases.
In other words, this portion of t%he front-end TCB could be implemented using a

kernelized architecture.
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7.3 Serial Correctness and Replica Control

Recall from our previous discussion that sending messages between objects at a sin-

gle container involves no message filtering, while sending messages to objects across

containers does call for filtering. When filtering is involved concurrency 1s once again
|
| :
inevitable and we have to ensure that the concurrent computations executing across
the various containers preserve serial correctness. We now investigate the interplay

between serial correctness, the vario:us scheduling algorithms, and replica control.

In chapter 4, three constraint@s were presented as sufficient conditions to guar-

antee serial correctness of conc,urrelil.t computations. Correctness constraints 1 and
|

2 are required to govern the schedu!ling of concurrent computations while the third

constraint governs how versions shcé:uld. be assigned to process read-down requests.

Constraints 1 and 2 would now ha.\ffe to be interpreted for computations executing
|

across containers. For example, -wh:en a computation ¢ is started at a level I (con-
tainer C}), constraint 2 would now Eread: All current non-ancestral as well as future
ezecutions of computations that ha%ue forktamps smaller than that of ¢, would have
to be at containers for level | or hgigher. Also, the fact that there are no trusted
subjects in our implemen-ta.tion:mea;;ns that there will .no central coordination of the

computations executing across the various containers. Hence the implementation of
|

the various scheduling algorithms u:rould have to be inherently distributed, as in the

kernelized architecture presented eTarlier. Finally, correctness-constraint 3 also has

to be reinterpreted for the replicate:d architecture as we no longer maintain versions

of objects. The original requiremeﬂt that a computation ¢ reading down obtain the

versions of lower level objects consiistent with a sequential execution, now maps to
the requirement that the various u|pdates (also called update projections in the lit-
erature) producing these different versions be shipped and applied to ¢s container

before it starts executing. This last constraint thus has a direct implication on the
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replica control schemes that would be utilized for the architecture.

In order to reason about update procjections and their effect on serial cor-
rectness, we introduce the notion of r-transactions. This is done only for ease of
exposition. Our solutions do not impose or mandate any particular model of trans-
actions. Transactions allow us to conveniently group sequences of updates, and in
particular those that need to be incrementally propagated to higher containers. We
use the prefix “r” to distinguish this notion of transactions with other models that
will used in the rest of the thesis. We drop the prefix whex it is clear from the context
that we are referring to r-transactions.

In the object model of computing, every message in is received at an object
and results in the invocation of a method defined in that object. We refer to such
an object as the home object of the method. The subsequent activity (reads and
updates) within the boundary of a home object can be modeled as belonging to a
-transaction. Every message in a message chain can be mapped to a corresponding
transaction. This leads to a hierarchical (tree) model of transactions for a user session.
We consider the root message as starting a root transaction. The root transaction in
turn issues other transactions which we see as its descendants in the tree. Figure 7.2

illustrates the transaction tree for a computation tree.

A depth-first (left-to-right) traversal of a transaction tree starting with the
root transaction, will give the sequence in which the transactions are issued and
started within a user session. To illustrate how serial correctness is to be maintained
within a session and in the context of the replicated architecture, we need to zoom in
and take a magnified look at the transaction tree. This is because a transaction may
make its partial results visible to other transactions at different containers. Consider
any subtree in figure 7.2 such as the one rooted at transaction Tj. A .child of T,

such as 7h, is allowed to see (read down) only part of the updates made by T;. To
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be more precise, it is only those updates made by T up to the point T3 was issued.
The second child Ty will be allowed to see all the updates seen by T3, and in addition

those made by T7 between the interval that T5 and Ty were issued.

To model and visualize partial visibilities within transaction boundaties, we
introduce r-subtransactions as finer ;units of transactions. The second and larger tree
in figure 7.2 illustrates a subtransaction tree derived from the original transaction
tree. A transaction such as T3 is now chopped up into three subtransactions 2, 2.2,
t33. The subtransaction t; represents all the updates by T until transaction 73 was
issued. Subtransaction fa2 similarlj represents the updates between the interval that
transactions T5 and Ty were 1ssued. Finally, the subtransaction t;3 accounts for all
the remaining activity in T, before it committed. A subtransaction is seen as having a

relatively short lifetime, and is required to commit before any sibling subtransactions

to the right, or child transactions (and implicitly subtransactions)‘ are started. The
operations issued by La subtransacti.on are said to be atomic operations. Such opera-
tions never cross the jboundaury of their relevant home object and cannot lead to the
sending of further méssages (or the issuing of transactions) to other objects. Serial
correctness requires that an indivi&ual transaction, such as Ty see all the updates of
all subtransactions below its level that will be encountered in a depth-first search of
. the subtransaction tree starting with the root and ending in T4. Thus for T4 this will
) include subtransactions 1,3, t2,1, a,:nd ta2. The uﬁdates of all these subtransactions
except t,, would have to be seen by the left sibling of Ty, which is transaction T3,
and thus would have already been:a,pplied logically at the relevant containers before

T, was issued.

We formally define these and other notions below:

Definition 7.1 We consider a subtransaction to be a totally ordered set of atomic

operations. We define a transaction T} to be a partial order (s;,<t,) such that:
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1. s is a set of operations, and each operation may be a subtransaction or another

iransaction T; = (s;,<1,)

2 The relation <1, orders at least all conflicting atomic operations in $i.

Definition 7.2 We define the replica-set of a transaction T at level j to be the set

of updates of subtransactions at or below level j that will be seen by T; in a sequential

 ezecution (or depth-first search) of fthe tree.

Definition 7.3 We deﬁner the propié,gatiéﬁ-list of a transaction T; to bethose updaies
in the replica-set of T; that have not been seen by T:, where T; was the last transaction
that was issued before T; in a sequential ezecution, These updates are those made by

subtransactions at levels lower than j, and to the right of T and to the left of Tj (in

the subtransaction tree).

: In figure 7.2, the replica-set of transaction Ty will consist of the updates issued by
. subtransactions 11, t2,1, and tz 2. The propagation-list of Ty will consist of the updates
L issued by subtransaction t2.

Now in the replicated architecture, the transactions in a subtransaction tree

I
execute across containers. Whenever an object in a low contaiper issues a write-up

request, a message will be sent up;wa:ds in the lattice, and routed by the TFE to the

appropriate high level container. Such a message will be received by an object in the

| higher level container and eventua{lly result in the invocation of a method. Before this

St

method can be invoked (i.e., before the corresponding transaction can be started),

we need to do the following:

1. Determine if it is safe to begin execution of the transaction;
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9. Make sure that the propagation-list of the transaction has been applied at the

local container.

The first consideration above arises from the fact that the transactions (methods)

generated by a session execute across the various containers in a distributed fashion,

and this may lead to transactions at higher containers starting prematurely (when

compared to centralized sequ-lzntial execution). We thus require the start-up of trans-

actions to be governed by some invariant. Once a transaction is allowed to start (i.e.,

_doing so would not violate the invariant), the replica control scheme should ensure
]

that the relevant propa.gatioxi:-list (set of update projections) is applied at the local

container of the transaction.

The global serial order implied by the tree is not known to the containers,
and has to be derived by labeling transactions with forkstamps as shown in figure
= 9 The hierarchical scheme proposed earlier in chapter 4 can be used to derive such
forkstamps. Thus in figure 7.2, tﬁe root transaction is assigned an initial forkstamp of

0000. Every descendant transaction that is assigned a stamp that is derived from this

{ initial one by progressively incrementing the most significant (leftmost) digit by one.

To generalize this scheme for an entire transaction tree with meany transactions, we

require that with increasing depth in the tree, a less significant digit be incremented.
When a new transaction is created, its propa.gétion-list is also assigned the same
forkstamp as the transaction. Also, the last subtransaction issued by a transaction
is given a forkstamp that would have been given to the next child transaction had
there been one.

Before concluding our disé:ussion on serial correctness and replica control, we

note that in the replicated architecture serial correctness alone is insufficient to guar-

antee the mutual consistency of ?réplicated data. This is because serial correctness

can be guaranteed by shipping update projections only to the containers which have
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forked transactions for a session.: In other words, if a transaction was not forked for
a level, the replicas at the container for the level could be out-of-date, and we would
still not violate serial correctness. The scheduling algorithms that we present in the
next section not only guarantee sierial correctness, but in addition ensure that when a
session terminates, all containersi will be mutually consistent. When such consistency
is guaranteed, we say that the ;algorithms preserve the final-state equivalence of all

the containers.

7.4 Scheduling Algorithms

In this section we discuss how v.gre can combine replica control, with the conservative
and aggressive scheduling strategies. As in the kernelized architecture, the conser-
vative sche;ne involves less corqplexity and is thus easier to implement. We begin
by clarifying some aspects related to the execution and failure semantics of transac-
tions, as well as some of the necéssary data structures to be maintained by individual

containers.

A r-transaction as descr{bed in this chapter, is characterized by the property
of failure atomicity. Hence if any of the subtransactions of a transactions fails or
aborts, we have to abort the entére corresponding transaction. This would also require
that we undo the effects of any committed earlier subtransactions. To avoid this,
and still guarantee failure atomicity, we allow a transaction to commit only if all
its subtramsactions commit. The updates of committed subtransactions are made
permanent in the database onlyfr when the parent transaction commits. Also, we take

the commit of the root transaction to imply that the entire session has committed.

To implement our scheﬁuling strategies and replica control schemes, every
container C; at level j maintains the following data structures for an. active user

session:
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Activation-queue;: this is a priority queue of transactions that is maintained
according to the forkstamps;

Projection-queue;: a queue which stores update projections {propagation-lists)
by their forkstamps;

When transactions start issuing other transactions at higher levels, the relevant
propagation-lists (update projections) are incrementally shipped to higher containers
and stored in their projection queues. When a scheduling scheme calls for a trans-
action to be started, it is dequeued from the local activation queue and the relevant

update projections are applied to the container just before the transaction starts.

7.4.1 Conservative Scheduling Algorithms

Recall that the conservative scheduling scheme calls for computations to be executed
on a level-by-level basis. Cast in terms of tra.nsactions, the conservative scheduling
scheme maintains the following invariant:

Inv-conservative-replicated: A transaction T is ezeculing at a container Ci at
level | only if all transactions at lower levels, and all transactions with smaller fork-

stamps at level I, have terminated.

This invariant is basically the same as invariant-conservative presented iﬁ chapter
4, but is cast in terms of transactions. When a new transaction is forked, the container
receiving the fork request invokes the procedure fork-rep-cons shown in figure 7.3.
On being forked, a transaction is unconditionally queued in the activation queue of
the local container. Also queued is the update projection (propagation-list) obtained
from the parent transaction that issued the fork. The update projection is given the
same forkstamp as the transaction just queued. The parent transaction also sends

these update projections to all other higher containers.

When a transaction terminates, the processing steps involved are shown in
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procedure term-rep-cons of figure 7.4. Upon termination, the updates of the last
subtransaction are applied to the local container, and this is followed by the posting

of these updates to all higher level containers. A higher level container on receiving

.these updates will queue them in its projection queue. The activation queue is then

checked to see if there are any more transactions at the container that need to be
started. If the queue is not empty, the next transaction at the head of the queue
is started. If the queue i1s empty, thé container knows that all transactions at lower
containers have terminated, and no xﬁore update projections will be forthcoming. The
container then empties any remaining entries in its projection queue and applies the

updates, and sends a WAKE-UP message to all immediate higher level containers.

The processing of WAKE-UP messages is illustrated in procedure wake-up-
rep-cons of ftgure 7.5. When a container receives a WAKE-UP message from all
immediate lower level containers, it: examines its activation queue, and if it is not
empty, dequeues the transactions one by one in forkstamp order. On the other hand, if
the queue is empty, the local projection queue is processed and a WAKE-UP message

is forwarded to all immediate higher: levels.

The processing of terminate and wake-up requests involves the use of a common
start-rep procedure to execute a queued transaction. When the procedure is invoked,
the local projection queue is examined and all update projections with forkstamps

less than that of the transaction to be executed, are applied to the local container.

In summarizing the above discussion on the conservative scheme, we see that
the logic and flow of the algorithms are very close to the algorithms used for the
kernelized architecture. In both cases the implementation is distributed in nature,

and involves the propagation of a WAKE-UP message upwards in security levels.

The proof arguments for deronstrating serial correctness and termination un-

der the kernelized architecture are applicable to the algorithms for the replicated
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architecture as well. Hence, for brevity we state the related theorems and omit the

proofs.

Theorem 7.1 The conservative (level-by-level) scheduling algorithms implemented

under the replicated architecture mainiain the invarignt inv-conservative-replicated.

Corollary 7.1 The conservative (level-by-level) scheduling implementation for the
replicated architecture under invarz’aﬁt inv-conservative-replicated maintains se-

rial correctness.

Theorem 7.2 Under the conservative scheduling scheme, all transactions in a ses-
sion and ereculing across various containers will eventually terminate and thus guar-

antee the termination of the user session.

[t now remains to show that? the conservative scheme preserves final-state-
equivalence. We state and prove this.

Theorem 7.3 The conservative sch'%eme preserves final-state-equivalence.

Proof: :

By induction on the number of cont%a.iners, n.

Basis: Consider the basis with n = l As there is only one container, mutual consis-
tency and final-state equivalence hojld trivially.

Induction Step: For the induction hfypothesis assume that when n is equal to m, the
algorithms preserve final-state equii;alence for the m containers. For the inductive
step consider m + 1 containers witlél the m +1% container Cp41 being at level Iy,

and where l,,41 is a maximal element in the security lattice and dominates some of

the m levels Iy ...ln of them cont{ixiners. We consider the levels dominated by lm+1
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to belong to the set dominated and the remaining levels to belong to the set noi-
dominated. It follows from the induction hypothesis that the container for a level Ii.
Ck. (in dominated) that is irnmediatelé_v lower than [, would have emptied its acti-
vation and projection queues and sent,;a WAKE-UP message to the container at [n1-
This is because if the activation queli:e were not empty, the projection queue woulc
not be emptied completely, and if the ?projection queue were not empty, the container
C would still not have applied the ia.st—updates from lower level transactions (see
procedure wake-up-rep-cons in ﬁgﬁ:re 7.5). This would make the container at s
mutually inconsi;tent with lower cont;ainers, contradicting the induction hypothesis.
Also, when container Cy has received jghe WAKE-UP message, it follows that it would
have received at that point all the upci:ate projections of lower level transactions, orig-

inating from containers in the set dominated. We now have to consider two cases:

1. Case 1: There are no transaciious .pending at Cpmny1, and thus the activatior
queue is empty. In this case t;he processing of the WAKE-UP message calls
for the projection queue at Cm;l to be emptied and applied to the contents az
Cp+1- When this has been doii;e, container Cp41 will be mutually consisten:

with all containers at the levels in the set dominated.

2. Case 2: If there are one or more pending transactions, the activation queue
will be dequeued one at a time and started in forkstamp order. Now evers
start of such a queued transa.CfQion will diminish the contents of the projecticz
queue, and thus when the la.stl transaction in the activation queue is startec.
the projection queue will be eﬁ}pty except for few last-updates from lower leve
transactions. These rema.iniﬁgf’ update projections will be applied to the coc-
tents at Cmy1 when the :last t‘rfz%msa.ction in the activation queue terminates, A:
this point the contents of cont%éxiner Crmsey will be mutually consistent with 1=¢

containers for the levels in theiset dominated.
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[ Procedure fork-rep-cons|level-parent, level-create, forkstamp,
update-projection) '

& Le: level-create be the level of the local transaction and container
Create a new transaction it at level-create with identifier id;

% Initialize variables for it
tt.id ~ id;
tt.level-parent « level-parent;
tt.]evel-create «— level-create;
tt.forkstamp «— forkstamp;
tt.status « ‘non-terminated’;

9% This is a priority queue of update projections
enqueue(projection-queue, update-projection, forkstamp);

% This is also a priority queue of transactions waiting to be activated
enqueue(activation-queue, tt); '

end procedure fork-rep-cons;

Figure 7.3: Processing fork requests under conservative scheduling

In either case above, mutual consistency is achieved at container Cr,+y and
this proves that final-state equivalenc:e is preserved across the m +1t container Crny1

and thus across all containers. O -

7.4.2 Aggressive Scheduling A:l:gorithms

We now briefly discuss the inﬁplementation of the aggressive scheduling scheme. In
addition to the comservative :’schemez, the implementation of the aggressive scheme

requires every container Cy at level_fi to maintain the following data structure:

Transaction-history;: this is a list ‘maintained for each level 7 < j, and maintains
for every transaction forked from level i, its id, forkstamp,
status and other information.

A transaction history is required to Le maintained at every container and keeps track

of the forked transactions at ?@domin;é,ted levels. 1t is important to note that this his-




05/09/05

Procedure term-rep-cons{level-term, last-update, term-forkstamp,
last-forkstamp)

{
% Update local container with the la.st set of updates issued by it
apply the updates in last-update to local container;

% Post these updates to higher levels
For each level > level-term do

post-update-rep-cons(level, last-update, increment(last-forkstamp));
End-For

% Dequeue and- start the nert iransaction at level level-term
If the activation-queue is not empty -
then YLet mm be the transaction at the head of the activation queue
dequeue(activation-queue, mm};
start-rep(rmm);
else
Repeat
dequeue (projection-queue, update-pro_]ectzon)
apply update-projection to local container;
Until projection-queue = empty,l
Send a WAKE-UP message to contamers at immediately higher levels;
End-If

end procedure term-rep-cons;

Figure 7.4: Processing terminate requests under conservative scheduling
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\ Procedure wake-up-rep-cons
{

% See if a wake-up message has been received from all immediate lower levels
1f 2 WAKE-UP message has been teceived from all immediate lower levels
then -
% Dequeue and start the nezt transaction at level level-term
If the activation-queue is not empty
then %Let tt be the transaction at the head of the local activation-
queue
dequeue(activation-queue, itj;
start-rep(it); ’
else’
Repeat ¥
dequeue (projection-queue, update-projection);
apply update-projection to local container;
Until projection-queué = emnpty;
Send a WAKE-UP message to containers at immediately higher levels;
End-If .
End-If

end procedure wake-up-rep-cons;

Figure 7.5 Processing waké—up requests under conservative scheduling

Procedure post-update—rep&?ons(Iocal-level, update-projection, forkstamp,
term-flag) . :

! { .
!

% The propagation-list { update projection) from the lower container is

unconditionally queued ;
enqueue(projection-queue, update-projection, forkstamp);

end procedure post-update-feip-cons; J

Figure 7.6: Processing ‘pébsted updates with conservative scheduling
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Procedure start-rep(tt)

{

9% Let tt be the transaction to be sterted
counter — 1; :
Repeat |
% Treat the projection-queue
element-uise .
Read (projection-queue[counter}
If pp.forkstamp < tt.forkstamp
then :
apply pp to local container; |
delete (projection-queue, pp);
End-If ‘ ’ .
counter «— counter + 1; : !
Until counter = length-of(projection-qu

PP);

% Begin ezecuting tt
execute(tt);

end procedure start-rep;

at the?l{évcl of tt as a list and ezamine it

=ue);

Figure 7.7: Updating the local container before starting a transaction
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tory itself is a replicated data structure and snapshot. The need for the maintenance
of this history arises from the fact'that a container cannot read-down information at
lower level containers. Recall that the front-end in the replicated architecture sends
messages only in an upwards direction in the lattice. Hence the relevant informa-
tion has to be gathered with the help of snapshots maintained by constantly sending
messages upwards in the lattice. Tt is the sending of such messages and the mainte-
nance of snapshots such as tra.nsaction histories that pose additional complexity in

implementing the aggressive schedulmg scheme.

The aggressive scheduling algonthm is governed by the followmg invariant:
Inv-aggressive-replicated: A iransaction is ezecuting at @ container ot level 1 only
if all non-ancestor transactions (in the corresponding transaction tree) with smaller

fork stamps.at containers for levels 1 or lower, have terminated.

The description of the schedulmg algonthrns s similar to that of the kernelized
architecture, with the dlfference.that we now have to post update projections at the
right time to the appropriate co;lta.iners. A container always looks at its transaction
histories for dominated levels toisee f the start-up of the next transaction would vio-
late the above invariant. The detalled algonthms are presented in figures 7.8,7.9,7.11,

and 7.12 and should be self—expla.natory

Proofs

For brevity, we omit the proofs to demonstrate that that our algorithms preserve serial
correctness. The arguments are? similar to those made for the aggressive scheme under

the kernelized architecture. We state the related theorems below for completeness.
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Procedure fork-rep-agg(level-parent, level-create, forkstamp, update-
projection)

{
O Let level-create be the level of the local transaction and container
Create a new transaction it at level-create with identifier id;

% Initialize variables for tt
tt.id « id;
tt.level-parent «— level-parent;
tt.level-create «— level-create;
tt.forkstamp < forkstamp;
tt.status « ‘non-terminated’;

% Update local transaction history
append(transaction-historyiever—parent » tth

%See if the update projection from the parent can be applied at the local con-
tainer and if tt can be started immediately
If VI < level-create, =3 any transaction ¢ € transaction-history;:
(c.level-create < level-create A c.forkstamp < tt.forkstamp
A e.status = ‘non-terminated’)
then
apply update-projection to local container;
start-rep(tt);
else
9% This is a priority queue maintained in forkstamp order
enqueue(projection-queue, update-projection, forkstamp);
% This is also a priority queue of transactions waiting to be activated
enqueue(activation-queue, t1);
end-if
}

end procedure fork-rep-agg;

Figure 7.8: Processing fork requests under aggressive scheduling

go22
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Procedure wake-up-rep-agg
O Let tt be the transaction at the head of the local activation-queue
dequeue(activation-queue, tt);

start-rep(tt);

end procedure wake-up-rep-agg;

Figure 7.9: Processing wake-up requests under aggressive scheduling
Theorem 7.4 The aggressive scheduling algorithms implemented uder the replicated

architecture maintain the invariant inv-aggressive-replicated.

Corollary 7.2 The aggressive scheduling implementation for the replicated architec-

ture under invariant inv-aggressive replicated maintains serial correciness.

Theorem 7.5 Under the aggressive scheduling scheme, all transactions in a session
and ezeculing across various containers will eventually terminate and thus guarantee

the termination of the user session.

We now show that the aggressive scheme preserves final-state-equivalence. We

state and prove this as a theorem.
Theorem 7.6 The aggressive scheme preserves final-state-equivalence.

Proof:

By induction on the number of possible terminations, n, in a session.

Basis: Consider the basis with n = 1. In this case we have only one termination,
that of the root transaction. The procedure term-rep-agg in figure 7.10 processes
terminate requests, and calls for the update projection of the root tramsaction to be

posted to the local container as well as all higher containers. Each higher container,
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Procedure term-rep-agg(level-term, last-update, term-forkstamp,
last-forkstamp)

% Record the termination of transaction it ai level-term
For each level 1 < level-term do
If (pp € transaction-history; A pp.forkstamp = tt.forkstamp)
then tf.status — ‘terminated’; End-If End-For

% Update local container with the last set of updates issued by tt
apply the updates in last-update to local container;
o, Post these updates to higher levels
verm-flag — ‘true’;
For each level > level-term do
' post-update-rep—agg(level, last-update, increment( last-forkstamp), term-flag, tt);
"End-For

%See if the update projections for last-updates from lower levels can be applied
quit-flag — ‘false’;
For all levels 1 < level-term do
If 3 any transaction q € transaction-history; :(q.status = ‘not-terminated’ A
q.level-create < level-term) then quit-flag ~— ‘true’;exit for;end-If; end-For;

If quit-flag = ‘false’ then
Repeat
dequeue {projection-queue, update-projection);
apply update-projection t0 local container;
Until projection-queue = empty; exit procedure; End-If

o, Check if a queued transaction at level level-term can be started

o Let am be the transaction at the head of the activation queue

If the activation-queue is not empty e

‘ then IfV !, ! < level-term, -3 apy transaction ¢ € tragsaction-hjstory;:
(c.forkstamp < mm.jorkstamp A c.status = ‘not-terminated”)

then dequeue(activation-queue, mm); start-rep(mm); End-If End-If

% Check if a transaction at levels 2 level-term can be started
For all levels | < level-term do
If 3 a transaction ¢ € transaction-history: with c.level-create > level-term A
cforkstamp > tt.forkstamp: =3 any non-ancestor transaction k
with (level(k) < level(c) A k forkstamp < c.forkstamp A
transaction-historyieyei(k)--status = ‘pot-terminated’)
% We checked to see if ¢ was not preceded by a lower-level active or queued
% non-ancestor trensaction in any of the transaction-histories searched
then Send a WAKE-UP message to the container at level(c); End-If End-For
} end procedure term-rep-age;
|

Figure 7.10: Processing terminate requests under aggressive scheduling
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’?rocedure post-update-rep-agg(local—level, update-projection, forkstamp,
term-flag, tt)

% See if the posted update can be applied
If V! < local-level, -3 any transaction ¢ € transaction-historyi:
(c.level-create < local-level A c.forkstamp < tt.forkstamp
A c.status = ‘non-terminated’)
then ‘
apply update-projection to local container;
else |
% This is a priorily queue maintained in forkstamp order
enqueue(projection-queue, update-projection, forkstamp);
end-if

If term-flag = ‘true’
then %Record the termination of transaction it

transaction-histoTY e levei—parent-bb.status — ‘terminated’;
end-if

end procedure post-update—rep-agg;

Figure 7.11: Procéssing posted updates

Procedure record-new-transaction(iransaction, level-parent)

% Update local transaction history for level level-parent
a.ppend(tra.nsaction—history;,.,e;_pa,.,n, , transaction);

end procedure record-transaction;

Figure 7.12: Recording the fork of computations at lower levels




05709705 20:09 FAX 703 993 1638

GEORGE MASON UNIVERSITY

026
L |
on receiving the projection, will find that there are no lower level transactions with
r smaller forkstamps than the terminated root, and apply the update projection from

its queue. Each higher container will thus be brought up-to-date with the updates of
the root transaction and thus preserving final-state equivalence.

Induction Step: For the induction hypothesis, assume that when n is equal to m, final-
state equivalence is guaranteed. For the induction step,let n =m+1. In other words,
there are m-+ 1 possible terminations, and given ﬁhat the first m terminations preserve
final-state equivalence, we have to show that the m + 1** termination preserves final-
state equivalence. Consider the transaction im41 at container Cm4q that causes the
m 4 1t termination. By the induction hypothesis, we are guaranteed that Cryy will
receive all update projections from dominated containers. Some of these pro jections
would be applied to the contents of Crmy1 as soon as they are received, while others
will be queued in the projection queue (as shown in procedure post-update-rep-agg
of figure 7.11). When tp, starts, all the queued update projections originating from
lower level transactions with smaller forkstamps than tm4; would also be applied to
Cm41. Finally when tmia terminates all remaining update projections will be emptied
and applied to Cm41 along with its last-updates. This guarantees the mutual consis-
tency of container Crme1 Will all lower level containers. It now remains to show that
mutual consistency is preserved with co:jlta.iners higher than Cm+1- This follows from
the fact when tm4; terminates, all its update projeci;ion would be sent to all higher
containers where they would be subsequently applied. Thus final-state equivalence is

preserved across all m + 1 terminations, and this concludes the proof. O

Discussion

We conclude this chapter on the replicated architecture with an observation. We have

assumed that a transaction 1s characterized by the property of failure atomicity. It 1s
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thus a unit of recovery. This may be inappropriate for emerging application environ-
ments where transactions tend be of long durations and cooperative in nature, and the
amount of work lost due to the abort of an entire transaction, unacceptable. If failure
atomicity can be relaxed, we may allow the updates of individual subtransactions to

commit (made permanent) independent of the outcome of other subtransactions.

Although it may be possible to relax the failure atomicity property of indi-
vidual transactions in a session without affecting confidentiality, one wonders if it is
feasible to achieve the inverse for an entire user session? In other words, is it possible
to maintﬁin at(;f;icity of an entire session without violating confidentiality? That is.
all of the component transactions in a session commit or abort without any impact
on security {confidentiality). As observed by Mathur and Keefe in {MK93], atomicity
and security are conflicting requirements. If a session has component transactions at
many levels, w;a cannot guarantee atomicity without introducing covert channels. At
best we can only hope to reduce the bandwidth of such channels. For a discussion

of an approach to do this using compensating transactions, the reader is referred to

[MK93).
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Chapter 8

Inter-session Synchronization

So far we have looked at the issues of concurrency and scheduling within a single
aser session. We now focus on how objecis can be shared across multiple concurrent
user sessions. In the database literature, schemes to achieve this generally fall under
the category of concurrency control and transaction management. Qur purpose here
is not to discuss a comprehensive concurrency comtrol scheme, but only to give a
basic usable secure solution to object sharing across user sessions. Discussion of a
comprehensive transaction model for multilevel systems is beyond the scope of this
dissertation. We address in detail inter-session concurrency for the kernelized and
replicated architectures, and briefly discuss how some of these algorithms can be
atilized in the trusted subject architecture in a secure {confidentiality preserving)

manier.

8.1 Inter-session Concurrency for the Kernelized Architec-
ture

Our approach to object sharing is based on a checkin/checkout access data model

[LP83]. There exists a public single-version database from which user sessions check-

out objects as needed. The objects are checked out into local workspaces (private

databases) of individual user sessions. When all activity associated with an object

has ceased, the object is checked back into the public database. Due to concurrent

131




05709705 20:12 FAX 703 993 1638 7 GEORGE MASON UNIVERSITY oo2

£ -
132
: activity in a user session, computations within a user session may view several ver-
sions of the same object. However, visibility across user sessions is limited to the

public database which maintains only the latest version of every object.

A
&
i

8.1.1 Multilevel Checkin/Checkout of Objects

One of the considerations in designing an object sharing and transaction management
scheme is that of formulating and maintaining some notion of inter-session correct-
ness. Conventional database management schemes primarily suppbrt transactions
that are short-lived and competitive. Interactions and visibility across such trans-
actions are curtailed and the correctness of concurrent transactions is governed by
serializability. However, if we examine the applications that are impelling the devel-
opment of object-oriented database technology, we: find that they are characterized
by requirements that diﬁgr from those utilizing conventional databases. These appli-
cations are generally found in environments that call for cooperative work, such as
computer-aided design. In such environments, serializability 2s a correctness crite-
rion needs to be relaxed, and interactions between concurrent transactions have to
be promoted rather than curtailed. In light of this, in our further discussions we do

not assume that serializability is enforced.

We now discuss how a checkin/checkout scheme can be coupled with the model
of r-transactions presented in the last chapter. Qur choice of a checkin/checkout
scheme as opposed to othe1: conventional schemes directly follows from the above
assumption that transactions are cooperative in nature. We provide the following

commands to implement a checkin/checkout scheme:

1. Public-checkout(R/W): Checks out an object from the public database.

9 Public-checkin: Checks in an object into the public database.
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3. Local-checkout(R/W): Checks out an object from the local workspace of a

user session.

4 Local-checkin: Checks in an object into a session’s local workspace.

The local commands differ from the public ones as their effects are internal to a session,
and thus do not affect the visibility or availability of objects to other concurrent user
sessions. A checkout operation can be requested in read (R) or write (W) mode. A
checkout in W mode is permitted only if the computation generating the requesting
subtransaction and the object to be checked out are at the same level. On the
other hand, whenever a computation {or more precisely a subtransaction) requests
a checkout of a lower level object, the request is granted in read {R) mode only.
Multiple subtransactions may checkout the same object (or version of an object) in
R mode. However, if a subtransaction first checks out a version in W mode, then
no subtransaction at the same or higher levels may check out the version in either R
or W mode (as checkouts in R mode conflict with those in W mode). On the other
hand, when a high subtransaction first checks out a lower level object in R mode, it
is understood that the high subtra.nsact?on is given a read-only snaphot of the object
at the time. A low subtransaction will be allowed to checkout the same object in
W mode before the high subtransaction has checked it in. Thus the checkout of low
subtransactions are always given prionty. While the checkin operation is necessary
for any object checked out in W mode, it is redundant and can be ignored for any

object checked out in R mode.

If a requested object has not been checked out by a user session so far, a public
checkout request is issued. If however the object had been previously checked out from

the public database by the session, it is simply checked out from the session’s local

workspace. In either case, when the subtransaction terminates, the object is checked
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back into the local workspace of the session. A final version of every object that has
been updated will eventually be checked back into the public database as explained

in the remainder of this section.

When a subtransaction |succeeds in checking out a version from a session’s
local workspace, it is guaranteed that the state of the object so read will never be
invalidated in the future. This 1s because once a version becomes available for checkout.
in R mode to higher level subtré.nsactic;ns within the same session, we are guarantee

_ that such a version will never be updatéd again. To put it another way in transaction
processing terminology, a checkout in R mode will always read committed values of
objects. The implication of this is basically that high level subtransactions cannot.
develop abort dependencies on lower ]ével ones, internally within a session. If such
dependencies were possible, then a higil level subtransaction would have to abort if

a low level subtransaction from which 1t read, aborts.

As mentioned before, serializability is not enforced across user sessions. How-
ever, a subtransaction in a session will see only committed states of objects that are

updated by other sessions. This is ensured by requiring all public checkin operatinns

é frqm a session to be deferred until the root computation in the session terminates. We
I consider a session to be logica.lly and éema.ntica.lly committed at the point the root
18 computation terminates normally (i.e., jnot due to an error or exception). This guar-
antees that no abort dependencies will %develop across user sessions. The absencs of
such dependencies ensures that ?a sessio%n A would not have to abort because ancther

session B from which it read, aborts.

8.1.2 Checkin/Checkout Variatiohs

We now give two variations of a checkin/checkout scheme. They differ basizziy

in how and when objects checl;:ed outifrom the public database are checked Sarz

|

|
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into the public database, for access by other user sessions. They thus offer different
granularities of interactions across user sessions. These variations can be applied to
both conservative and aggressive intra-session scheduling strategies. In a level-by-level
checkin/checkout variation, an object that is updated at a level [ by a session, is made
visible to another session only when all updates to all objects at level /, by the session,
have been completed. In the second computation-by-computation checkin/checkout
variation, an object is made visible (checked in) as soon as all the subtransactions

associated with a computation have terminated.

Level-by-level Checkin/Checkout Schemes

The basic idea is to checkin (commit) objects to the public database, one level at
a time. Thus_ conceptually, we can implement this with processing and propagation
of a level-has-committed message upwards in the security lattice. With a conserva-
tive scheduling scheme, the levef-has-committed message can be piggybacked onto
the wake-up message. On the other hand, with aggressive scheduling, the level-has-
committed message has to be exi)licitly propagated. We describe both variations

below.

The level-by-level checkin /:checkout scheme can be combined with the conser-

vative scheduling strategy as follows:

1. A subtransaction checks out the required objects from either its session’s local
workspace, or from the public database (the latter if any required object has

not been previously checked out by the session).

'

When a subtransaction terminates all checked out objects are checked back in

to the session’s local workspace.

3. Ifa wake-up/level-has-comvﬁz’tted message has been received from all immediate
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lower levels, and all computations and associated subtransactions at a level say
/, have terminated (i.e., when the level manager at I finds its local queue to be
empty), then the level manager at ! checks in the latest versions of all updated

objects into the public database. This is followed by step 4.

After all updated objects at level [ have been checked into the public database,
a wake-up/level-has-committed message is sent to all immediate higher levels by

the local level manager at levelj l.

In the conservative scheme above, the receipt of a wake-up/level-has-commatted

message from a lower level is a guarantee that no fork requests will be forthcoming

from the lower level, However, in an aggressive level-by-level scheme, this is no longer

true. In fact, a level may receive many wake-up messages from a lower level. A level-

has-committed message can thus no longer be piggybacked onto a wake-up message,

but rather has to be explicitly propigated, starting with the termination of the root

computation. In addition to steps (1) and (2) given above for the conservative scheme,

we require the following additional steps to achieve this:

3.

4.

When the root computation terminates, we check in all updated objects to the

‘public database and send a Ievél—has-committed message to all immediate higher

levels.

When a level-has-committed message has been received from all immediate
lower levels, and the local level manager finds its queue to be empty, it checksin

all updated objects to the public database. The level manager then propagates

the level-has-committed messaée to its immediate higher levels.
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Computation-by-computation Checkin/Checkout Schemes

A computation-by-computation checkin/checkout scheme releases (checks in) objects
to the public database much earlier in comparison to the level-by-level scheme. Thus
on the average, the availability of objects for checkout, across user sessions, is in-
creased as waiting times are reduced. The scheme can be combined again with both
conservative and aggressive scheduling. In either case the basic idea is the same. All
objects checked out by a computation, or more precisely the set of subtransactions
generated by the computation, are checked back into the public database as soon
as the Computati-dn, terminates. Contrast this with the levél-by-level checkin scheme
where we have to wait for all computations at the associated level to terminate. In
other words, when the last subtransaction associated with a computation terminates,
all checked out objects are checked back into the public database. However for objects
checked out in W mode, only the latest version of every object is checked back in. It
is obvious. that this variation can result in objects being shuffled back and forth from

the public database with much greater frequency than the level-by-level scheme.

8.2 Inter-session Concurrency for the Trusted Subject Ar-
. chitecture

The level-by-level and computation-by-computation checkin/checkout schemes can

also be implemented for the trusted subject architecture. However, we now have to

demonstrate that the concurrency control schemes are secure in that they cannot

be exploited for covert channels. In particular, we need assurance that a trusted

multilevel subject such as the session manager cannot introduce any interference.

The arguments for a confidentiality proof for our checkin/checkout scheme can

be built from the following:

e The checkout requests of low transactions never conflict with higher requests.
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This means that the checkout requests of low transactions are never delayed or rejected
due to the existence of higher level transactions. Intuitively, we can now establish
noninterference by purging the requests of high level transactions and showing that
they leave the order and timing bf low level requests unaffected within a session, as

well as across sessions.

8.3 Inter-session Concéurrency for the Replicated Architec-
ture |

Haviﬁg discussed the kernelized :a.nd replicated architectures, we now turn our at-

tention to inter-session concurrency control for the replicated architecture. We do

not address the issue of concurrency control between sessions at a single container,

rather focus on multiple containers. Every container is assumed to provide some local

concurrency control.

We assume the following:
» Every container C; at level j, uses some local concurrency control scheme L;.

¢ All containers share a system-iow real-time clock. This is a reasonable assump-
tion since the replicated architecture is not for a distributed system, but rather

to be implemented on a single (central) machine. The value read from this clock

is used to maintain a global serial order for sessions and transactions.

We discuss three approaches to inter-session synchronization and concurrency

N

control that provide increasing d%egrees of concurrency across user sessions. To elab-
orate, consider the four sessions .é'a, Sy, S., and Sy as shown in figure 8.1(a). Sessions
S, and S, originate at container CU at level U, while S and 5,4 originate at containers
Ce and Cs at levels C and S réspectively. The different transactions generated by

these sessions are shown in the figure. For example, session S, generates transactions

i
i
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T,, at level U, T,, at level C, and T;g at level S. Figures 8.1 (a), 8.1 (b), and 8.1 (c)
depict the histories that could be generated by the three inter-session schemes, at the

various contalners.

In the first scheme, sessions are serialized in a global order that 1s equivalent
to the serialization events of the sessions. If L; is based on two phase locking, we
can use the lock point, which is the last lock step of the root transaction of the
session, as its serialization event. If the local concurrency control scheme, L; is
based on timestamping, the timestﬁmp assigned to S; or the root transaction can
be used for the serialization event.: In the second approach, this serial order can
be successively redefined to interleave incoming newer sessions without affecting the
mutual consistency or correciness of the replicas and updates. In the third approach
we relax the serial order for the sessions, and instead serialize transactions on a level-

by-level basis. -

Protocol 1: Globally serial sessions

When a session §; starts at a container j (i.e., the root transaction executes . ;), the

following protocol is observed:

1, §; makes its resource requests to the local concurrency controller, and its trans-

actions compete with other local sessions that start at C;.

2. When §; reaches its serialization event as governed by L;, the real-time clock

is read and its value used to form a serial-stamp for S 5
3. The serial-stamp of S; is broadcast to all higher level containers.

4. When S; commits, a commit-session message is broadcast to all higher contain-

ers. This message may be piggy-backed with the commit-transaction message

from the root transaction of S;.
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Tal Tol | Te2 Td3(S)
(a)
Ta2(C) Ta3(§) THH0) Tb3(S)  Ted(s) TcA(TS)  Ta4(TS) Td5(TTS)
Session Sa Session Sb Session Sc Session Sd
Container U Container C Container S
Tal, Tl Tal, Tbi Tal, Tbl
® Ta2, Th2, Te2 Ta2, Tb2, Te2

Ta3, Tb3, Tc3, Td3

Tal, Tbl Tal, Tbl Tal, Tol
(© Ta2, Tc2, Tb2 Ta2, Te2, Tv2
Ta3, Tc3, Td3, Tb3
Tal. Thl Tal. Tbl Tel, Tbl
(d) | T2, Te2, Ta2 Tv2, Te2, Ta2
Tb3, Ta3, Te3. Td3

Figure 8.1: Illustrating histories generated with various inter-session synchronization
schemes




0570970 :
5 20:16 FAX 703 993 1638 GEORGE MASON UNIVERSITY o1l

141

On receiving the serial-stamp from a container at a lower level, a container,

C, at level k, observes the following rules:

5. All local sessions originating at Ck, and having a smaller serial-stamp than that
of §;, are allowed to commit according to their serial-stamps, and subsequently

propagate their updates to containers at levels higher than k.

6. The updates and transactions of §; are allowed to proceed.

7 All local sessions at Cj having a greater serial-stamp than §; are allowed to
commit only after the commit-session notification of S is received, and 1ts

updates applied as in step 2 above, to Ck.

Several optimizations and varations on the above protocol are possible. It
is obvious that the protocol provides minimum concurrency between sessions. In
particular, the scheme offers very poor performance if transactions are of long dura-
tions. To elaborate, consider what happens if session 5y has sent its serial-stamp to
container C but does not commit for a long time. If timestamping is used for the
serialization events of sessions at container C, a local session 5. starting at container
Cc after the serial-stamp of 5, has been received, will be assigned a greater serial-
stamp. Hence, Sc will not be allowed to commit until S, sends its commii-transaction
message. The decrease in such concurrency is directly proportional to the size of the

window between the serialization and commit events of session Sp.

We can easily improve the performance of the above scheme if S. were allowed
to go ahead and commit even if the commit-session message has not been received
from S;. This is possible if S, has not updated the container Cc at level C so far. We

can then re-assign to S an earlier serial-stamp than that of 5. Figure 8.1(b) shows a

possible history at the various containers with protocol 1, and figure 8.1(c) shows how
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the updates of session S can be placed ahead of 5, at container C by giving S, an
earlier serial-stamp than Sp. [t is important to note that the relative order between
the sessions S, and S, is still maintained, but only that S; is now allowed to come

between them. This idea is summarized in protocol 2 below.

Protocol 2: Globally serial sessions with successively redefinable serial-

orders

Steps 1 through 6 of Protocol 1 still apply to Protocol 2, but step 7 is modified as

below.

When a container Cy receives the serial-stamp from a session 5; at a lower container

C;, the following rules are followed:

7' 1f there exists a session Sy that has the smallest serial-stamp among the sessions
at Ci that have reached their serialization events but not yet committed, and

such that S; has a serial-stamp greater than 5, then do:

(a) If session S; has not yet updated C4, then reassign a serial-stamp to Sk

that is smaller than the stamp of S;.
(b) Broadcast this new serial-stamp to all higher containers.

(c) Allow Si to update C and propagate its updates to higher containers.

The ability of protocols 1 and 2 above, to ensure the mutual consistency of the
replicas at the various containers, can be attributed to the way updates are processed.
To be more specific, the updates represented in the propagation-lists sent by various
sessions, are processed at every:couta.iner in strict serial-stamp order. A single serial-

stamp is associated with the entire set of transactions (updates) that belong to a
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k - L] 1] ! - " v -
1 cession.! In other words, a session 1s the basic unit of concurrency for interleaving

|
updates from multiple sessions. To put it another way. the histories of the updates
|
generated by protocols 1 and 2, guarantee that the individual transactions of two
|

sessions, where each session starts at a different container, cannot be interleaved with

each other in any of these histories.

A further improvement to protocol 2 and protocol 1 which we might call pro-

tocol 3, can be achieved if the globajl serial order that is maintained for sessions, is

relaxed. Transactions are now serialized in some order on a level-by-level basis. This

allows us to exploit more ﬁﬁe;grainqd concurrency within the structure of a session.
The unit of concurreancy now is no 10111531‘ a session, but rather of finer granularity, and
thus a transaction. Of course, the l%.ey here is exploit such fine-grained concurrency
without compromising the mutual cfonsistency of the replicas. The intuition behind
' this approach is illustrated in figure 381(d) Thus we see that the transactions at level
U, namely T.,; and T, are seria,lizedi in the same order at all the containers. However,

transactions at level C, namely T, 2, T.2, Tb2 are serialized in a different order. In

particular, the updates from session Sy now come before sessions S, and S;. Protocol

o s

2 can easily be modified so that the updates at each level are serialized independently,

and made known to the higher containers. Unlike protocols 1 and 2, level-initiator

= |
’ transactions now have to compete wirith other transactions at the various containers to
’ access data. When an individual transaction reaches it serialization event, the real-

time clock is read to form a transaction-serial-stamp, which is subsequently broadcast

to higher containers. Mutual consi?tency of the replicas is achieved by ensuring that

updates in the propagation-lists are applied in strict transaction-serial-stamp order.

I'We assume that such associations are kept in some data structure. We also assume that a
transaction such as T2 in figure 8.1{c), r inhing at the container Cic, cannot update the local replicas
of data stored at the lower container Cy Protocols 1 and 2 can guarantee mutual consistency only
to the extent that integrity safeguards are available to prevent such events.

R
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We now briefly discuss the correctness of the above protocols. A well known
correctness criterion for replicated data i1s one-copy sertalizability [BHGS?j. Proto-
cols 1 and 2 guarantee what one might call one-copy session serializability. This
gives the illusion that the sessions ofiginating at the different containers execute se-
rially on a one-copy, non-replicated, éataba.se. The interactions between transactions
as governed by one-copy session serializability is much more restrictive in terms of
concurrency and interleaving than oﬁe-copy serializability, but implicitly guarantees

the latter. The final variation, ie., protocol 3, is less restrictive than the others and

does not guarantee one-copy session| serializability, but instead maintains one-copy

serializability.
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Chapter 9

Summary and Conclusions

In this final chapter we summarize the work in this dissertation and highlight future

directions for research.

9.1 Research Contributions

This dissertation has focused on the support for RPC-based write-up operations in

multilevel secure object-based computing environments. The major complication

Pl

arises due to the non-primitive nature of such operations. Qur solution is novel in that

it meets the conflicting goals of secrecy, integrity, and efficiency. We have discussed

T, be o E!

an asynchronous computational model that calls for concurrent computations to be
generated to service RPC-based write-up requests, and a multiversioning approach

to synchronizing such concurrent computations. The feasibility of implgmentiﬁg this

computational model under three high-assurance multilevel architectures was also

demonstrated. These architectures offer varying trade-offs in terms of complexity of

implementation.

We end this discussion by listing the specific contributions.

1. Elaboration of the message filter model. This dissertation has addressed
the architectural and other implementation issues required to map the message

filtering functions from an abstract to an executable specification. In doing
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this, our effort has demonstrated the feasibility of the message filter model and
increased its viability as a practical solution for multilevel secure object-oriented

systems.

_ Feasibility of Three Architectures. We have demonstrated the feasibility

of the message filter model in three popular high-assurance architectures that
represent the current focus in security research. These are namely the trusted
subject, kernelized, and replicated multilevel system architectures. In particu-
iar, the feasibility of a Lernelized architecture makes the message filter model

attractive for systems that need high assurance.

. Complexity of supporting write-up- We have demonstrated how support

of write-up actions although conceptually elegant and simple; is extremely com-
plicated when abstract operations are involved. In particular we have brought
to the forefront the trade-offs involved between confidentiality, integrity, and

performance.

. Concurrency and Synchronization. The work reported here has provided

~ an original understanding of message-passing, concurrency, and synchronization

issues for multilevel secure object-based systems. We have discussed an asyn-
chronous computing model, a multiversioning approach to synchronization, a
family of scheduling schemes, as well as a framework and metric for the com-

parative analysis of these scheduling schemes.

. Concurrency control schemes.We have also briefly discussed various con-

currency control schemes for inter-session synchronization. While these schemes
are not comprehensive or the most optimal, they do form a basis for further

work in multilevel secure ob ject-based concurrency control.
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Although our solution is fitting for object-oriented databases and cast in that
context, it is important to emphasize that it has wider applicability in any multilevel

environment that needs to support write-up operations.

In contrasting our work with other proposals for enforcing mandatory security
in multilevel object-oriented systems,:we note that while they all address confidential-
ity, the dimension of integrity is largely ignored. Many of the other solutions assume
that the TCB provides protection against signaling channels. But how will the TCB
do this? Solutions which are impleméntation dependent are highly vulnerable to the
changes and evolution of corﬁﬁuter hardware and performance characteristics. Even
if timing channels were closed, without synchronization the integrity problem remains
unsolved. We believe it is not easy to coin a complete implementation independent

solution without the rigor and detail that we have discussed in this paper.

9.2 Future Work

We now highlight some future directions for research.

Failure and Recovery

‘Clearly, failure and recovery issues need further investigation. Our approaches do

not ensure atomicity of user sessions. If we think of a user sesSi01_1 as a transaction,
then we have what has now been popularly called a multilevel transaction. This is
» transaction that reads and writes at multiple security levels. Perhaps the most
significant result here is that atomicity and confidentiality are conflicting goals, as
observed in [MK93]. If we are to all&w for failures and exceptions when computations .
are running, then guaranteeing atomicity would result in covert channels. More work
needs to be done to investigate a,ppfoa.ches to reduce such channels in the process of

ensuring atomicity.
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Beyond RPC Semantics

With synchronous RPC semantics, the intended semantics of concurrent computa-
tions is clear and can be used to prévide synchronization and to ensure correctness.
A future direction would be to go beyond RPC semantics. This would lead to an in-
vestigation of more elaborate synchronization, checkpointing, and recovery schemes,

given any user supplied notion of correctness.

Concurrency Control

The concurrency control schemes for inter-session synchronization given here are
rather rudimentary and need further investigation. While it is always possible to
invent another concurrency control scheme, we believe the real challenge would be
to develop a comprehensive ‘fra.mewérk to reason about confidentiality, integrity, and
availability of transactions in multiljevel environments. In object-based environments
we need to reason about atomicity, consistency, isolation, and durability (the so called
ACID properties) of transactions differently from traditional transactions. Some pre-

liminary effort in this direction has been undertaken by the author in [TS93].

Client-Server Implementation

Our architectural elaborations have not considered the impact of client-server archi-
tectures and technologies. Multilevel security for client-server systems are still an
open issue and it is not clear howf the general mechanisms for these systems will

impact object-based computing.
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he investigation of how discretionary access control

“lltef framework.
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