INFS 766
Internet Security Protocols

Lecture5
SSL

Prof. Ravi Sandhu

SECURE SOCKETSLAYER
(SSL)

<« layered on top of TCP
<« SSL versions 1.0, 2.0, 3.0, 3.1
<+ Netscape protocol

< later refitted as IETF standard TLS
(Transport Layer Security)

+TLS 1.0 very close to SSL 3.1

© Ravi Sandhu 2000-2004 2

SECURE SOCKETSLAYER
(SSL)

SSL ARCHITECTURE

< application protocol independent

<+ does not specify how application
protocols add security with SSL
> how to initiate SSL handshaking
> how to interpret certificates

< left to designers of upper layer
protocols to figure out

©Ravi Sandhu 2000-2004

SSL SSL Change SSL Other
Handshake | Cipher Spec Alert HTTP | Application
Protocol Protocol Protocol Protocols

SSL Record Protocol
TCP
IP

© Ravi Sandhu 2000-2004 4

SSL ARCHITECTURE

SSL/TLS DIFFERENCES

<+ Handshake protocol: complicated
» embodies key exchange & authentication
> 10 message types
< Record protocol: straightforward
» fragment, compress, MAC, encrypt
<+ Change Cipher Spec protocol: straightforward
> single 1 byte message with value 1
» could be considered part of handshake protocol
< Alert protocol: straightforward

> 2 byte messages
- 1byte alert level- fatal or warning; 1 byte alert code

© Ravi Sandhu 2000-2004

+ TLS uses HMAC, SSL uses a precursor

<« TLS MAC covers compression version
field in addition to what SSL MAC covers

< TLS defines additional alert codes
< other minor differences
<+ TLS has a mode to fall back to SSL

© Ravi Sandhu 2000-2004 6

SSL SERVICES

SSL SESSIONS AND
CONNECTIONS

< peer entity authentication

<+ data confidentiality

<+ data authentication and integrity

<« compression/decompression

<« generation/distribution of session keys
> integrated into protocol

< security parameter negotiation

©Ravi Sandhu 2000-2004

<+ Every connection is associated with
one session

+ Session can be reused across
multiple secure connections
<+ Handshake protocol

» establishes new session and connection
together

> uses existing session for new connection

© Ravi Sandhu 2000-2004 8

SSL SESSION

SSL CONNECTION STATE

%+ SSL session negotiated by handshake protocol
> session ID
- chosen by server
> X.509 public-key certificate of peer
-+ possibly null
compression algorithm
cipher spec
- encryption algorithm
- message digest algorithm
> master secret
- 48 byte shared secret
is resumable flag
+ can be used to initiate new connections

v

v

v

©Ravi Sandhu 2000-2004

< connection end: client or server
< client and server random: 32 bytes each
< keys generated from master secret, client/server random
> client_write_MAC_secret server_write_MAC_secret
> client_write_key server_write_key
> client_write_IV server_write_IV
% compression state
<« cipher state: initially IV, subsequently next feedback block
« sequence number: starts at 0, max 2%-1

© Ravi Sandhu 2000-2004 10

SSL CONNECTION STATE

SSL RECORD PROTOCOL

< 4 parts to state
> current read state
> current write state
> pending read state
> pending write state
<+ handshake protocol
> initially current state is empty

> either pending state can be made current and
reinitialized to empty

© Ravi Sandhu 2000-2004

11

< 4 steps by sender (reversed by receiver)
> Fragmentation
> Compression
> MAC
> Encryption

© Ravi Sandhu 2000-2004 12

SSL RECORD PROTOCOL

SSL HANDSHAKE
PROTOCOL

< each SSL record contains
> content type: 8 bits, only 4 defined
- change_cipher_spec
. alert
« handshake
- application_data

> protocol version number: 8 bits major, 8 bits minor
> length: max 16K bytes (actually 214+2048)

> data payload: optionally compressed and encrypted
> message authentication code (MAC)

©Ravi Sandhu 2000-2004 13

<« initially SSL session has null
compression and cipher algorithms

<« both are set by the handshake
protocol at beginning of session

<« handshake protocol may be repeated
during the session

SSL HANDSHAKE
PROTOCOL

<+ Type: 1 byte

» 10 message types defined
<+ length: 3 bytes
< content

©Ravi Sandhu 2000-2004 15

SSL HANDSHAKE
PROTOCOL

Client Server
Phase 1
ClientHello =--------3
ServerHello
Certificate*
ServerKeyExchange*
Phase 2 CertificateRequest*
,,,,,,,,, ServerHellobon
Certificate*
Phase 3 ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished
Phase 4 [ChangeCipherSpec]
Finished
Application Data Application Data
Record Fig. 1 - Message flow for a full handshake
Protocol
* Indicat tional or situat that are not
always sent.
© Ravi Sandhu 2000-2004 17

© Ravi Sandhu 2000-2004 14
SSL HANDSHAKE
PROTOCOL
Client Server
ClientHello =====-=u>
ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*
--------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished = ceeee-aa>
[ChangeCipherSpec]
......... Finished
Application Data <-------> Application Data
Fig. 1 - Message flow for a full handshake
always sent.
© Ravi Sandhu 2000-2004 16
SSL HANDSHAKE
PROTOCOL
<+ Phase 1:
» Establish security capabilities
<+ Phase 2:
> Server authentication and key exchange
<+ Phase 3:
» Client authentication and key exchange
<+ Phase 4:
» Finish
© Ravi Sandhu 2000-2004 18

SSL 1-WAY HANDSHAKE
WITH RSA

SSL 2-WAY HANDSHAKE
WITH RSA

Client Server
Phase 1
ClientHello =—=----n-o >
ServerHello
Certificate*
——=SarverKeyExchangat
Phase 2 o
Q=======o ServerHelloDone
—CertrtTate———————
Phase 3 ClientKeyExchange
Coertifi ify*
[Changecs T
Finished @ ce----a- >
Phase 4 [ChangeCipherSpec]
Cmmmmmmmn Finished
Application Data I > Application Data
Record Fig. 1 - Message flow for a full handshake
Protocol

* Indicates optional or situation-dependent messages that are not
always sent.

©Ravi Sandhu 2000-2004

19

Client Server
Phase 1
ClientHello = ===-=---- >
ServerHello
Certificate*
Phase 2 CertificateRequest*
<-------- ServerHelloDone
Certificate*
Phase 3 ClientKeyExchange
CertificateVerify*
T T
Finished @ -------- >
Phase 4 [ChangeCipherSpec]
--- Finished
Application Data Application Data
Record Fig. 1 - Message flow for a full handshake
Protocol

* Indicates optional or situation-dependent messages that are not
always sent.

SSL HANDSHAKE
PROTOCOL

<+ these 9 handshake messages must occur
in order shown

<+ optional messages can be eliminated

<+ 10th message explained later
> hello_request message

+ change_cipher_spec is a separate 1
message protocol

> functionally it is just like a message in the
handshake protocol

©Ravi Sandhu 2000-2004

21

© Ravi Sandhu 2000-2004 20
Client Server
ClientHello =------- >

ServerHello
[ChangeCipherSpec]
P p——— Finished
[ChangeCipherSpec]
Finished

Application Data Application Data

Fig. 2 - Message flow for an abbreviated handshake

SSL HANDSHAKE
PROTOCOL

< hello_request (not shown) can be sent
anytime from server to client to request
client to start handshake protocol to
renegotiate session when convenient

+ can be ignored by client
> if already negotiating a session
» don’t want to renegotiate a session

- client may respond with a no_renegotiation alert

© Ravi Sandhu 2000-2004

23

© Ravi Sandhu 2000-2004 22
Client Server
Phase 1
ClientHello = ====---- >
ServerHello
Certificate*
ServerKeyExchange*
Phase 2 CertificateRequest*
P ServerHelloDon
Certificate*
Phase 3 ClientKeyExchange
CertificateVerify*
[ChangeCipherspec]
Finished
Phase 4 [ChangeCipherSpec]
- Finished
Application Data - Application Data
Record Fig. 1 - Message flow for a full handshake
Protocol
+ Indicat tional or situati that are mot
always sent.
© Ravi Sandhu 2000-2004 24

SSL HANDSHAKE: PHASE 1
ESTABLISH SECURITY CAPABILITIES

SSL HANDSHAKE: PHASE 1
ESTABLISH SECURITY CAPABILITIES

< client hello
> 4 byte timestamp, 28 byte random value
> session ID:
- non-zero for new connection on existing session
. zero for new connection on new session
client version: highest version
cipher_suite list: ordered list
> compression list: ordered list

v

v

©Ravi Sandhu 2000-2004

25

< server hello
> 32 byte random value
> session ID:
+ New or reuse
> version
- lower of client suggested and highest supported
> cipher_suite list: single choice
> compression list: single choice

© Ravi Sandhu 2000-2004

26

SSL HANDSHAKE: PHASE 1
ESTABLISH SECURITY CAPABILITIES

SSL HANDSHAKE: PHASE 1
ESTABLISH SECURITY CAPABILITIES

< cipher suite
> key exchange method

- RSA: requires receiver's public-key certificates

- Fixed DH: requires both sides to have public-key
certificates

- Ephemeral DH: signed ephemeral keys are
exchanged, need signature keys and public-key
certificates on both sides

« Anonymous DH: no authentication of DH keys,
susceptible to man-in-the-middle attack

- Fortezza: Fortezza key exchange
we will ignore Fortezza from here on

©Ravi Sandhu 2000-2004

27

< cipher suite
> cipher spec
- CipherAlgorithm: RC4, RC2, DES, 3DES, DES40,
IDEA, Fortezza
« MACAIlgorithm: MD5 or SHA-1
- CipherType: stream or block
- IsExportable: true or false
- HashSize: 0, 16 or 20 bytes
- Key Material: used to generate write keys
« IV Size: size of IV for CBC

© Ravi Sandhu 2000-2004

28

SSL HANDSHAKE
PROTOCOL

SSL HANDSHAKE: PHASE 2
SERVER AUTHENTICATION & KEY EXCHANGE

Client Server
Phase 1
ClientHello =—=-----o >
ServerHello
Certificate*
ServerKeyExchange*
Phase 2 CertificateRequest*
PR ServerHellobon
Certificate*
Phase 3 ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished
Phase 4 [ChangeCipherSpec]
Finished
Application Data Application Data
Record Fig. 1 - Message flow for a full handshake
Protocol
* Indicat tional or situati that are not

always sent.

© Ravi Sandhu 2000-2004

29

< Certificate message

> server's X.509v3 certificate followed by optional chain of
certificates

> required for RSA, Fixed DH, Ephemeral DH but not for
Anonymous DH
< Server Key Exchange message
> not needed for RSA, Fixed DH
> needed for Anonymous DH, Ephemeral DH
> needed for RSA where server has signature-only key
-« server sends temporary RSA public encryption key to client

© Ravi Sandhu 2000-2004

30

SSL HANDSHAKE: PHASE 2
SERVER AUTHENTICATION & KEY EXCHANGE

SSL HANDSHAKE
PROTOCOL

+ Server Key Exchange message
> signed by the server
> signature is on hash of
« ClientHello.random, ServerHello.random
- Server Key Exchange parameters
< Certificate Request message
> request a certificate from client
> specifies Certificate Type and Certificate Authorities
- certificate type specifies public-key algorithm and use
<« Server Done message
> ends phase 2, always required

©Ravi Sandhu 2000-2004 31

Client Server
Phase 1
ClientHello -=---oe- >
Serverfello
Certificate*
ServerKeyExchange*
Phase 2 CertificateRequest*
<-m-m-m-- Serve 110D
Certificate*
Phase 3 ClientKeyExchange
CertificateVerify*
[ChangeCipherspec]
Finished @ -------- >
Phase 4 [ChangeCipherSpec]
--- Finished
Application Data Application Data
Record Fig. 1 - Message flow for a full handshake
Protocol

* Indicates optional or situation-dependent messages that are not
always sent.

© Ravi Sandhu 2000-2004 32

SSL HANDSHAKE: PHASE 3
CLIENT AUTHENTICATION & KEY EXCHANGE

SSL HANDSHAKE: PHASE 3
CLIENT AUTHENTICATION & KEY EXCHANGE

+ Certificate message
> send if server has requested certificate and client has
appropriate certificate
- otherwise send no_certificate alert
« Client Key Exchange message
> content depends on type of key exchange (see next slide)
+ Certificate Verify message
> can be optionally sent following a client certificate with signing
capability
» signs hash of master secret (established by key exchange) and
all handshake messages so far

provides evidence of possessing private key corresponding to
certificate

v

©Ravi Sandhu 2000-2004 33

+ Client Key Exchange message
> RSA
- client generates 48-byte pre-master secret, encrypts
with server's RSA public key (from server certificate

or temporary key from Server Key Exchange
message)

» Ephemeral or Anonymous DH
- client’s public DH value
> Fixed DH
« null, public key previously sent in Certificate Message

© Ravi Sandhu 2000-2004 34

SSL HANDSHAKE: POST PHASE 3
CRYPTOGRAPHIC COMPUTATION

SSL HANDSHAKE: POST PHASE 3
CRYPTOGRAPHIC COMPUTATION

<+ 48 byte pre master secret
> RSA
- generated by client
- sent encrypted to server
> DH
- both sides compute the same value

- each side uses its own private value and the
other sides public value

© Ravi Sandhu 2000-2004 35

master_secret = PRF(pre master secret, "master secret",
ClientHello.random + ServerHello.random)
[0..471;

pre _master secret: 48 bytes

PRF is composed of a sequence and nesting of HMACs

© Ravi Sandhu 2000-2004 36

SSL HANDSHAKE
PROTOCOL

SSL HANDSHAKE: PHASE 4
FINISH

Client Server
Phase 1
Clienthello -sec-oeo >
ServerHello
Certificate*
ServerKeyExchange*
Phase 2 CertificateRequest*
€-mmmm oo Serve 110D
Certificate*
Phase 3 ClientKeyExchange
CertificateVerify*
TChangeCipherSpec]
Finished @ ------o- >
Phase 4 [ChangeCipherSpec]
- Finished
Application Data > Application Data
Record Fig. 1 - Message flow for a full handshake
Protocol

* Indicates optional or situation-dependent messages that are not
always sent.

<+ Change Cipher Spec message
> not considered part of handshake
protocol but in some sense is part of it
<+ Finished message
» sent under new algorithms and keys

> content is hash of all previous messages
and master secret

© Ravi Sandhu 2000-2004 38

SSL HANDSHAKE: PHASE 4
FINISH

Finished message

verify data
PRF (master_secret, finished label, MDS(handshake messages)+
SHA-1 (handshake messages)) [0..11];

finished_ label
For Finished messages sent by the client, the string "client
finished". For Finished messages sent by the server, the
string "server finished".

handshake_messages
All of the data from all handshake messages up to but not
including this message. This is only data visible at the
handshake layer and does not include record layer headers.

© Ravi Sandhu 2000-2004 40

SSL ALERT MESSAGES

© Ravi Sandhu 2000-2004 37
SSL HANDSHAKE: PHASE 4
FINISH
+ Change Cipher Spec message
> 1 byte message protected by current state
> copies pending state to current state
- sender copies write pending state to write current
state
- receiver copies read pending state to read current
state
» immediately send finished message under new
current state
© Ravi Sandhu 2000-2004 39
SSL ALERT PROTOCOL
<+ 2 byte alert messages
> 1 byte level
- fatal or warning
> 1 byte
- alert code
© Ravi Sandhu 2000-2004 41

© Ravi Sandhu 2000-2004

Warning or fatal

close_notify(0),
unexpected message (10) ,
bad_record mac(20),
decryption_failed(21),
record_overflow(22),
decompression_failure(30),
handshake_failure (40),
bad_certificate(42),
unsupported certificate(43),
certificate_revoked(44),
certificate expired(45),
certificate unknown (46),
illegal parameter (47),
unknown_ca (48) ,
access_denied(49),
decode_error (50),
decrypt_error (51),
export_restriction(60),
protocol_version(70),
insufficient security(71),
internal error (80),
user_canceled(90),
no_renegotiation(100), 42

SSL ALERT MESSAGES

APPLICATIONS AND SSL

< always fatal

» unexpected_message

> bad_record_mac

»decompression_failure

» handshake_failure
> illegal_parameter

©Ravi Sandhu 2000-2004

< use dedicated port numbers for
every application that uses SSL
> de facto what is happening

<« use normal application port and
negotiate security options as part of
application protocol

<+ negotiate use of SSL during normal
TCP/IP connection establishment

© Ravi Sandhu 2000-2004

APPLICATION PORTS
OFFICIAL AND UNOFFICIAL

< https 443
+ ssmtp 465
«snntp 563
<+ sldap 636
+ spop3 995

©Ravi Sandhu 2000-2004

« ftp-data 889
< ftps 990
«imaps 991
+ telnets 992
% ircs 993

