
7KH�5&/���� /DQJXDJH�IRU�
6SHFLI\LQJ�5ROH�%DVHG�

$XWKRUL]DWLRQ�&RQVWUDLQWV

Gail-Joon Ahn

2© Gail J. Ahn 2000

ABSTRACT

◆ This presentation includes
● The first formal (and intuitive) language

for role-based authorization constraints
● A formal semantics for this language
● Demonstration of the expressive power

of the language
● Characterization of role-based

constraints into prohibition and
obligation constraints

3© Gail J. Ahn 2000

RBAC96

ROLES

USERS

PERMISSIONS

...

CONSTRAINTSSESSIONS

4© Gail J. Ahn 2000

RBAC96

ROLES

USERS

PERMISSIONS

...

CONSTRAINTS

SESSIONS

User-role assignment

Role Hierarchy

Permission-role
assignment

Session

5�
 Gail J. Ahn 2000

SEPARATION OF DUTY (1)

◆ SOD is fundamental technique for
preventing fraud and errors

◆ Related Work
● Enumerate several forms of SOD
● Little work on specifying SOD in a

comprehensive way

6�
 Gail J. Ahn 2000

SEPARATION OF DUTY (2)

PURCHASING
MANAGER

ACCOUNTING PAYABLE
MANAGER

7�
 Gail J. Ahn 2000

PROHIBITION

◆ Separation of Duty constraints

8�
 Gail J. Ahn 2000

OBLIGATION

◆ Every faculty member must be
assigned to at least one departmental
committee

9�
 Gail J. Ahn 2000

RESEARCH PLAN

◆ Need to specify these constraints
● Language

◆ Show the meaning of expression
● Formal semantics

◆ Expressive power of the language
● Well-known constraints and simulations

◆ Analysis of the work
● Characterization

10�
 Gail J. Ahn 2000

BIG PICTURE

Constraint Specification

Constraint Analysis

Constraint Enforcement

11�
 Gail J. Ahn 2000

WHO IS THE USER

◆ Security Researcher
◆ Security Policy Designer
◆ Security Architect

12�
 Gail J. Ahn 2000

RCL 2000

◆ RCL 2000 (Role-based Constraints
Language 2000)

◆ Specification Language
● to formally express constraints in role-

based systems

◆ Most components are built upon
RBAC96

13�
 Gail J. Ahn 2000

BASIC ELEMENT
(from RBAC96)

◆ U : a set of users
◆ R : a set of roles

● RH ⊆ R × R : role hierarchy

◆ OBJ : a set of objects
◆ OP : a set of operations
◆ P = OP × OBJ : a set of permissions
◆ S : a set of sessions

14�
 Gail J. Ahn 2000

BASIC ELEMENT
(from RBAC96)

◆ UA : a many-to-many user-to-role
assignment relation

◆ PA : a many-to-many permissions-to-
role assignment relation

15�
 Gail J. Ahn 2000

SYSTEM FUNCTIONS
(from RBAC96)

◆ user : R → 2U

◆ roles : U ∪ P ∪ S → 2R

◆ sessions : U → 2S

◆ permissions : R → 2P

◆ operations : R × OBJ → 2OP

◆ object : P → 2OBJ

16�
 Gail J. Ahn 2000

BASIC ELEMENT
(beyond RBAC96)

◆ CR : all conflicting role sets
◆ CU : all conflicting user sets
◆ CP : all conflicting permission sets

17�
 Gail J. Ahn 2000

NON-DETERMINISTIC
FUNCTIONS (beyond RBAC96)

◆ introduced by Chen and Sandhu
(1995)

◆ oneelement (OE)
■ oneelement(X) = xi, where xi∈X

◆ allother (AO)
■ allother(X) = X - {OE(X)}

= X - {xi}
● should occur along with OE function

18�
 Gail J. Ahn 2000

SYNTAX

19�
 Gail J. Ahn 2000

EXAMPLES OF CONSTRAINT
EXPRESSION

Conflicting roles cannot have common users
● |roles(OE(U)) ∩ OE(CR)| ≤1

Conflicting users cannot have common roles

● roles(OE(OE(CU))) ∩ roles(AO(OE(CU))) = φ

Users cannot activate two conflicting roles
● |roles(sessions(OE(U))) ∩ OE(CR)| ≤1

Users cannot activate two conflicting roles in a single session
● | roles(OE(sessions(OE(U)))) ∩ OE(CR)| ≤1

20�
 Gail J. Ahn 2000

FORMAL SEMANTICS

◆ Reduction Algorithm
● to convert a constraint expression to a

restricted form of first order predicate
logic (RFOPL)

◆ Construction Algorithm
● to construct a constraint expression

from RFOPL

21�
 Gail J. Ahn 2000

REDUCTION ALGORITHM
OE(OE(CR))∈roles(OE(U)) ⇒ AO(OE(CR)) ∩ roles(OE(U)) =∅

1. OE(OE(CR))∈roles(OE(U)) ⇒ (OE(CR) - {OE(OE(CR))})
∩ roles(OE(U)) = ∅

2. ∀cr∈CR : OE(cr)∈roles(OE(U)) ⇒ (cr - {OE(cr)}) ∩ roles(OE(U)) = ∅

3. ∀cr∈CR, ∀r∈cr : r∈roles(OE(U)) ⇒ (cr - {r}) ∩ roles(OE(U)) = ∅

4. ∀cr∈CR, ∀r∈cr, ∀u∈U : r∈roles(u) ⇒ (cr - {r}) ∩ roles(u) = ∅

22�
 Gail J. Ahn 2000

RFOPL STRUCTURE

◆ sequence part : predicate
◆ ∀ r∈R, ∀ u∈U : r∈roles(u)
◆ ∀ x2∈x1, ∀ x3∈x2, ∀ x4∈x3 : predicate

23�
 Gail J. Ahn 2000

CONSTRUCTION ALGORITHM
∀cr∈CR, ∀r∈cr, ∀u∈U : r∈roles(u) ⇒ (cr - {r}) ∩ roles(u) = ∅

1. ∀cr∈CR, ∀r∈cr : r∈roles(OE(U)) ⇒ (cr - {r}) ∩ roles(OE(U)) = ∅

2. ∀cr∈CR : OE(cr)∈roles(OE(U)) ⇒ (cr - {OE(cr)}) ∩ roles(OE(U)) = ∅

3. OE(OE(CR))∈roles(OE(U)) ⇒ (OE(CR) - {OE(OE(CR))})
∩ roles(OE(U)) = ∅

4. OE(OE(CR))∈roles(OE(U)) ⇒ AO(OE(CR)) ∩ roles(OE(U)) =∅

24�
 Gail J. Ahn 2000

SOUNDNESS AND
COMPLETENESS

◆ Theorem 1 Given RCL2000 expression α, α can be
translated into RFOPL expression β. Also α can be
reconstructed from β.

C(R(α)) = α

◆ Theorem 2 Given RFOPL expression β, β can be
translated into RCL2000 expression α. Also β´ which is
logically equivalent to β can be reconstructed from α.

R(C(β)) =β´

25�
 Gail J. Ahn 2000

SEPARATION OF DUTY
CONSTRAINTS

◆ Specification of SOD constraints
identified by Simon and Zurko (1997)
and formulated by Virgil et al (1998)

◆ Identify new SOD properties
● Role-centric
● User-centric
● Permission-centric

26�
 Gail J. Ahn 2000

ROLE-CENTRIC SOD
CONSTRAINT EXPRESSION

◆ Static SOD
: Conflicting roles cannot have common users

U = {u1,u2,…un} , R = {r1,r2,…rn},

CR = {cr1,cr2} : cr1 = {r1,r2,r3} , cr2 = {ra,rb,rc}

● |roles(OE(U)) ∩ OE(CR)| ≤1

27�
 Gail J. Ahn 2000

PERMISSION-CENTRIC SOD
CONSTRAINT EXPRESSION

◆ SSOD-CP
● |permissions(roles(OE(U))) ∩ OE(CP)| ≤1

◆ Variations of SSOD-CP
● SSOD-CP ∧

|permissions(OE(R)) ∩ OE(CP)| ≤1

28�
 Gail J. Ahn 2000

USER-CENTRIC SOD
CONSTRAINT EXPRESSION

◆ SSOD-CU (User-centric)
● SSOD-CR ∧ |user(OE(CR)) ∩ OE(CU)| ≤1

29�
 Gail J. Ahn 2000

DYNAMIC SOD

◆ User-based DSOD
● |roles(sessions(OE(U))) ∩ OE(CR)| ≤1

◆ User-based DSOD with CU
● |roles(sessions(OE(OE(CU)))) ∩ OE(CR)| ≤1

◆ Session-based DSOD
● |roles(OE(sessions(OE(U)))) ∩ OE(CR)| ≤1

◆ Session-based DSOD with CU
● |roles(OE(sessions(OE(OE(CU))))) ∩ OE(CR)| ≤1

30�
 Gail J. Ahn 2000

CASE STUDIES

◆ Lattice-based access control
● Ravi Sandhu (1993, 1996)

◆ Chinese Wall policy
● Ravi Sandhu (1992)

◆ Discretionary access control
● Sandhu and Munawer (1998)

31�
 Gail J. Ahn 2000

LATTICE-BASED ACCESS
CONTROL

H

L HW

HR LW

LR
◆ Subject s can write object o only if λ(s) ≤ λ(o)
◆ Subject s can read object o only if λ(o) ≤ λ(s)

Constraints on UA: Each user is assigned to exactly
two roles xR and LW

32�
 Gail J. Ahn 2000

LATTICE-BASED ACCESS
CONTROL

● AR = {ar1, ar2}
■ ar1={HR, HW}, ar2={LR, LW}

● ASR = {asr1, asr2}
■ asr1={HR, LW}, asr2={LR, LW}

◆ Constraint on UA:
● roles(OE(U)) = OE(ASR)

◆ Constraint on sessions:
● roles(OE(sessions(OE(U)))) = OE(AR)

33�
 Gail J. Ahn 2000

PROHIBITION CONSTRAINTS

◆ Forbid the RBAC component from
doing (or being) something which is
not allowed to do (or be)
● Separation of duty constraints

34�
 Gail J. Ahn 2000

OBLIGATION CONSTRAINTS

◆ Force the RBAC component to do
(or be) something
● LBAC-RBAC, Chinese Wall-RBAC

simulation

35�
 Gail J. Ahn 2000

CONSTRAINTS
CHARACTERIZATION

CONSTRAINTS

PROHIBITION OBLIGATION

36�
 Gail J. Ahn 2000

SIMPLE PROHIBITION
CONSTRAINTS

◆ Type 1
● expr ≤ 1

◆ Type 2
● expr = φ or expr= 0

◆ Type 3
● expr1<expr2

37�
 Gail J. Ahn 2000

SIMPLE OBLIGATION
CONSTRAINTS

◆ Type 1
● expr ≠ 0 or expr> 0

◆ Type 2
● Set X = Set Y

◆ Type 3
● obligation constraints ⇒ obligation constraints

◆ Type 4
● expr  = 1

■ expr  = 1 ≡ expr ≤ 1 ∧ expr> 0

38�
 Gail J. Ahn 2000

CONTRIBUTIONS

◆ Developed the first formal and intuitive
language for role-based authorization
constraints

◆ Provided a formal semantics for this
language

◆ Demonstrated the expressive power of the
language by

■ specifying well-known separation of duty constraints
■ identifying new role-based SOD constraints
■ showing how to specify constraints identified in the

simulations of other policies in RBAC

◆ Characterized role-based constraints into
prohibition and obligation constraints

39�
 Gail J. Ahn 2000

FUTURE WORK

◆ Extension of RCL 2000
● Applying it the formalization of some

realistic security policies

◆ Implementation Issue
● Tool for checking syntax and semantic

as well as visualization of specification

◆ Enforcement of constraints

