Theorem

Given framework morphisms f : SPy — SP; and g : SPy — SP;
with SP; and SP, coherent, the pushout framework

SP = (TG™, (P"™ rpin), Pos™, Neg'™) is coherent w.r.t. the set

of negative constraints Neg".

Theorem

Given framework morphisms f: SFPy — SP, and g : SPy — SP;
with SP; and SP, coherent, the pushout

SP = (TG™, (P™ rpint, Pos™ Neg™) of f and g is incoherent
if and only if SP is incoherent w.r.t. positive constraints of Pos™

containing types in T'Gy.

CONCLUDING REMARKS

We have started the development of a method for specifying Access
Control policies in terms of allowed and disallowed state graphs
and constructive rules

We can begin to perform meaningful analyses of the relationships

among different policies.

NEXT ?
e Transition between policies
e More general meta-policies
e Tool to verify properties of a specification

e Tool to convert a specification into policy enforcement code

If the integration of constraints is the union of the corresponding
sets Pos and Neg, the integrated system graph may not be
coherent. If the integrated system graph does not satisfy a

constraint:

Changing the integrated system graph: The system graph
can be changed. If not possible (constraints are contradictory, a
change is not desired, etc.), the set of constraints must be changed.

Reducing the set of constraints:The constraint could be also
deleted to get coherence. Removing of constraints is necessary if
constraints are contradictory. Several strategies for removing

constraints depending on the application domain.

Among the formal results

Theorem The category SP of security policy frameworks and
sp-morphisms is cocomplete.

Theorem Let SP’ be evolved from a coherent security policy
framework SP and C(SP’) the security policy framework after
modifying S P’ according to the table then C'(SP’) is coherent.

To resolve rule conflicts in policy integration, several possibilities:

Priority for one policy. This strategy sets the priority to one
policy by choosing a major and a minor policy.

Radical solution: deletion of the conflicting rule of policy B from
the set of available graph rules. Policy A “survives” during the
subsequent evolution of the system, whereas policy B “dies”.
Weak solution: the radical strategy can be weakened by keeping
the conflicting rule of policy B, but changing it so that it is not
applicable at conflict points. At non-conflict points the rule is still

applicable.

Priority for rules. Instead of favoring one security policy in
general, the choice is limited to the pair of conflicting rules.

Static solution: For each pair of conflicting rules, the preferred rule
is chosen.

Dynamic solution: This strategy chooses the rules at run-time at
each occuring conflict point. The rules of both policies remain

unchanged.

type graph for ACL

.

common types

i)w - @ %@/%%

integrated type graph

type graph for LBAC

/

Figure 16: Integrated type graph for the combined LBAC and ACL.

system graph for the ACL model

system graph for the LBAC model

security lattice

Figure 17: Integrated system graph for the combined framework.

create Obj ect

New process
—
v ==
remove obJect

remove process

O) ey D o0

givewrite @ @
—>

v Wx
) removewrlte @’

giveread @ @
— &

o e Rx
 remove read @

give execution %@

_>

\) remove eXGCUtI on @,

Figure 15: Graph rules for the ACL model.

The merging of two systems

- at the syntactical level with the security policy frameworks, and
- at the semantical level with the system graphs representing the
state at the point of the merge.

The integrated type graph TGyt is given by the gluing of the
type graphs T'GG; and T'G2 along common objects.

On the semantical level, need to identify instances common to both
system graphs (of a common type !). After the system graphs are
‘translated’ into the new type graph, they are merged.

Arbitrary changes in a security policy framework do not preserve
coherence. To obtain a coherent evolution

type of change step to ensure coherence
add rule r construct application condition for r w.r.t. Neg
remove rule r construct application condition for r w.r.t. Pos

add negative constraint ¢ | construct application conditions for Rules w.r.t. ¢
add positive constraint ¢ | construct application conditions for Rules w.r.t. ¢

remove neg. constraint ¢ | no effect on coherence

remove pos. constraint ¢ | no effect on coherence

Table 1: How the basic steps of transformation can be made coherent.

X

Figure 13: Type graph for ACL.

positive constraint:
) — (P~
negative constraints:
/@ /@ @S} W (RX)
"o Y@ G

Figure 14: Positive and Negative ACL Constraints.

®— @ O
@ — @ G

Figure 12: Graphical constraints for LBAC.

1. Evolution of one policy. A security policy can be restricted
by new constraints, new rules can be introduced to provide new

features, etc.

2. Integration of policies. Two models must be combined into a
unique model. Problems may occur if both policies are available for
parts of the combined model. The theory of graph transformations
provides results to decide statically how and when rules may
conflict.

3. Transition of policies. This strategy changes completely from
one policy to another one.

Lattice Based Access Control

security lattice graph LBAC type graph
Security lattice

N e
% @/%hg

Figure 10: A security lattice, its graph representation, and the type

graph.
newobject

00 Z o0
delete object

o &= e b [To=FE

08 - B[O f .o
O IS o
v <D

< -

Figure 11: Graph rules for the LBAC model.

A security policy framework consists of four components:

e A type graph that provides the type information of the security
policy.

e A set of graph rules for the specification of the policy rules that
generate the system graphs accepted by the security policy.

e two sets of constraints that specify graphs that shall not be
constructed (negative constraints) and graphs that must be

explicitly constructed (positive constraints).

In the actual implementation the constraints are redundant (only
acceptable states are those explicitly built).

Positive and negative constraints are a formal documentation of the
initial requirements and the development process of rules.

Definition A security policy framework is a tuple

SP = (TG, (P,rp), Pos, Neg), where TG is a type graph, the pair
(P,rp) consists of a set of rule names and a total mapping

rp : P — |Rule(T'G)| mapping to each rule name a rule, Pos is a

set of positive and Neg is a set of negative constraints.

The graphs that can be constructed by the rules of a security
policy framework are the system graphs.
A security policy framework is coherent if all system graphs satisfy

the constraints in Pos and Neg.

Three models are proposed to tackle the first three problems

e Static single assignment At most one assignment per user;

static means changed by deleting it and inserting a new one.

The deletion of the assignment implies the loss of the

authorization for roles.

e Dynamic single assignment One assignment per user, but

assignment edge can move through the role hierarchy graph.

Only the lowest role in the hierarchy can delete the assignment,

since it cannot be moved down.

e (Strong) Multiple assignment Arbitrary number of

assignments, deferring the decision on the deletion of an

assignment edge to a higher level in the role hierarchy. Any

administrator can stop the propagation of the deletion by

keeping the assignment. Actual deletion takes place only at the

top of the hierarchy. There can be multiple branches.

Comparing the four proposed specifications with respect to the

addition and the deletion of assignments

policy add assignment | remove assignment | comment
static single easy very easy unflexible, restricted
dynamic single | easy easy more flexible
weak multiple | easy not easy more flexible

but weak revocation
strong multiple | easy complex flexible and veto

In the decentralized administration of roles, the responsibility of a
range of roles is not sufficient to guarantee the desired effect.

A ?
:) x
c1 c2,

@ ’

Figure 9: Possible Problems in the RBAC model.

Deletion of a user from a role: The removal of a user from a
role may not have an effect if the user is a member of a senior role
(weak revocation)

Deletion of a permission from a role: A revocation of a
permission from a senior role has no effect on the senior if a junior
role still has this permission.

Deletion of roles: The range for an administrator is given by an
interval over the partial order and deleting the boundaries of the
interval destroys the range definition: only roles inside the interval
can be deleted.

Special hierarchy graphs: If a special structure for the hierarchy
graph for (administrative) roles is required, changes to the graph

may destroy it.

The basic operations of the RBAC model are
add user, remove user,

add session, remove session,

add assignment, remove assignment,

add inheritance, remove inheritance,

add role, remowve role,

activate role, deactivate role.

-
remove session

remove user (u) new session
add user

add role o
@ remove roIe e

————— remove from role
add torole o ° Wlthout loss of T
&.@.ﬁ@ authorlzan on @

4’® activate role 4'@
FE=r53

remove from role
W|th loss of ° e
authonzan on

@ deacMoIe @\ @

-

remove connection o 77777 o
@ add connection
—e
80

Figure 8: Graph rules for the RBAC Model.

In the ARBAC97 model, the (administrative) role hierarchy is
given by a partial order over (administrative) roles.

Edges between administrative roles and user roles represent the
authorization to modify the user role. The set of roles reachable by

such edges is the range of the administrative role.

Role management (creation and deletion of roles, assignment and
revocation of users and permissions to roles) is the responsibility of

admanistrative roles.

\ \
O

[@%@ﬂ/ﬁ/ﬁ
e
SNV E

-
-

In our approach the designer has to perform step 1 only !
The derivation of the conditions in step2 can be performed
automatically and the result is guaranteed to satisfy the given

consistency properties.

Algorithm:

INPUT rule r : L =+ R and a graphical constraint C;

OUTPUT a set A(C) of application conditions

Step 1: Construction of all possible non-empty overlappings K of
the right-hand side R of the rule r» and the graphical constraint C.
Step 2: For each gluing found in Step 1 an application condition
(L, N) is constructed by applying the inverse rule of r to each
overlapping K.

Step 3: The algorithm minimizes the set of application conditions
found in Step 2 by removing application conditions that are always
satisfied in consistent graphs.

rule

wivaeroe (00
g - @: :5 1 J Aulomatic'constructionof L % g mMe @

the consistent rule for
graphical constraint J agraphical constraint
j NOT ALLOWED ||| consistence ensuring rule

Lol

Figure 7. Construction of a consistent rule from a constraint.

Theorem: Given a rule r, a graphical constraint gc, a graph G
consistent w.r.t. gc, and the rule r(gc) modified as above, the graph
H resulting from an application of 7(gc) to G is consistent w.r.t. gc.

Rules to add a new role and to assign a permission to a role

¥
I B0 acw

direct permission

*

)

-~
/ \

= -
y /

Figure 6: Rules for role/permission management: role insertion.

Rules have been defined to model role deletion (with permission
elimination or with permission distribution), and role partition

(both horizontally and vertically)

How can we prove the correctness of a RBAC specification ?

In the approach by GavrilaBarkley98, consistency requirements are
defined in logical terms and a state is consistent if it satifies the

requirements.

The designer has to:

1. define the consistency properties on the entire system,

2. derive from stepl the conditions for each operation, and
3. prove that the execution of each operation, satisfying the
condition in step2, preserves the properties of stepl.

Our framework is suitable to specify the Role Graph Model of
NyanchamaOsborne 1999.

Permissions are modeled by nodes of type p connected to objects.

The role-permission assignment is also modeled by edges.

The authorization of a user for an object is given by the existence
of a path from the user to the object.

Our graph model is similar to Baldwin90 privilege graphs (PG). A
PG is a three-layered acyclic graph:

Users Roles Permissions

Figure 5: The graphical specification of user-role, role-permission

and permission-object assignment.

Centralised RBAC model: only one administrative role

responsible for any role in the role graph.

A user can be assigned to or revoked from a role.
A user is a member of a role if directly assigned to a role.
She/he is authorized for a role, if the role is inherited from a role to

which the user is assigned.

The basic operations of the RBAC model are add user, remowve
user, add to role, remove from role, add session, remove session,

activate role and deactivate role.

/f]

new session
add user emove user @\
I ©,
remove session
'* addtorole
@ @ — W—0O

b @ .
() o (o — @ O
g Yo %@D @\d RS

Figure 4: Graph rules for the centralized RBAC model.

@

R
Onn I ittore (W—
—
(=)

Figure 2: Application of rule add to role.

() "
remove user
O,

l l

H H’

%?/ — : brz

Figure 3: Application of rule remove user.

A negative application condition (NAC) for aruler: L — Ris a
pair (L, N), where the graph L is a subgraph of N. .

A graph G satisfies a rule r : L — R with NAC (L, N) if L occurs
in GG and it is not possible to extend L to V.

The application of a rule r : L — R to a graph G takes place in
four steps:

1. Find L as subgraph L(G) in G;

2. If every negative application condition (L, N;) is satisfied, then:
(a) Remove all nodes and edges from L(G) that are not in R.
(b) Add all nodes and edges in R that are not in L. (The nodes

both in L and in R are used ”as glue”).

A total graph morphism f = (fn, fe) : G — G’ is a pair of total
functions fy : N — N’ and fg : E — E' such that

src’ o fp = fy osrc and tar’ o fp = fy o tar

(conditions on labels and attributes as well)

A partial graph morphism f : G — G' is a total graph morphism
f : dom(f) — G' from a subgraph dom(f) C G to G.

for a fixed typed graph TG € Graph
a TG-typed graph (G,tg) is a graph G and a graph morphism
ta : G — TG.

A graph rule p : r is given by a rule name p € RNames, and a label

preserving morphism r : L — R.
e [describes what a graph must contain for p to be applicable;
e Parts of L for which r is undefined are intended to be deleted;
e Parts of L in dom(r) are intended to be preserved,;
e Parts of R without a pre-image in L are newly created.

The actual deletions/additions are performed on the graphs to
which the rule is applied.

Advantages of using a graph based formalism for RBAC

an intuitive visual description of the manipulation of graph
structures as they occur in AC;

an expressive specification language (for a detailed specification

of various schema for decentralizing administrative roles);

a specification of static and dynamic consistency conditions on
graphs and graph transformations;

a uniform treatment of user roles and administrative roles;

a symmetric treatment of user-role assignment and

permission-role assignment;

an executable specification that exploits existing tools to verify
the properties of a given graph-based RBAC description.

BACKGROUND

A graph G is (N, E, src, tar) where
N is the set of nodes, FE is the set of edges and

src,tar : E— N are the source and target functions

Nodes and edges are typed, labelled and can be attributed

Figure 1: A RBAC state graph.

A framework for the Specification and Evolution

of Access Control Policies

Francesco Parisi-Presicce

Univ.Roma La Sapienza (visiting GMU)

joint work with L.V.Mancini and M.Koch

Partially supported by the European Community under TMR
GETGRATS and WG APPLIGRAPH

The aim of this line of research is

e the development of a uniform and precise framework for the
specification of Access Control Policies and the comparison of
different policy models,

e the definition of a methodology to systematically generate
conditions on operations to guarantee consistency, and

e the formalization of the notion of evolution of a policy and of
integration of policies.

