A Formal Model for Role-Based Access Control
using Graph Transformation *

Manuel Koch, Luigi V. Mancini and Francesco Parisi-Presicce

Dip. Scienze dell’Informazione, Universita degli Studi di Roma La Sapienza
Via Salaria 113, 00198 Roma, Italy, {carr,1lv.mancini,parisi}@dsi.uniromal.it

Abstract. Role-Based Access Control (RBAC) is supported directly or
in a closely related form, by a number of products. This paper presents a
formalization of RBAC using graph transformations which is a graphical
specification technique based on a generalization to nonlinear structures
of classical string grammars. The proposed formalization provides an
intuitive description for the manipulation of graph structures as they
occur in information systems access control, a specification of static and
dynamic consistency conditions on graphs and graph trasformations, a
uniform treatment of user roles and administrative roles, and a detailed
analysis of the decentralization of administrative roles. Moreover, the
properties of a given RBAC specification can be verified by employing
one of the graph transformation tools available.

1 Introduction

The activities within a computer system can be viewed as a sequence of opera-
tions on objects. One of the primary purposes of security mechanisms is access
control (AC) which consists of determining and enforcing which active entities,
e.g processes, can have access to which objects and in which access mode.

This paper focuses on Role-Based Access Control (RBAC), an AC mechanism
described in [SBM99]. It appears that RBAC tries to match the need of many
organizations to base AC decisions on the roles assigned to users as part of the
organization. In this context RBAC facilitates the administration of AC decisions
while making the process less error-prone. A formal analysis of RBAC would be
useful for the following reasons:

1. prove the properties of a given RBAC specification: RBAC consists of a
family of conceptual models and the most advanced ones include role hierarchies,
constraints, and decentralized administration of roles; this complexity requires
a formal setting to ensure that a RBAC specification meets basic correctness
properties of the system.

2. compare different AC models: for example, to better meet the needs of a
specific application one could compare the pros and cons of discretionary AC,

mandatory AC and RBAC;

* partially supported by the EC under TMR Network GETGRATS,Esprit WG APPLI-
GRAPH, and by the Italian MURST.

3. predict the system behavior in combining different AC policies: for exam-
ple, to support role transition, that is the means for moving towards RBAC in
coexistence with previous models of AC.

This paper presents a formalization of RBAC using graph transformations
which is a graphical specification technique based on a generalization of classical
string grammars [Roz97] to nonlinear structures. The advantages of using the
graph transformation formalism are: an intuitive visual description of the manip-
ulation of graph structures as they occur in the AC; an expressive specification
language, which allows, for example, the detailed specification of various schema
for decentralizing administrative roles; a specification of static and dynamic con-
sistency conditions on graphs and graph transformations; a uniform treatment
of user roles and administrative roles; an executable specification that exploits
existing tools [EEKR99] to verify the properties of a given graph-based RBAC
description.

The issues addressed in this paper include: the presentation of a formal frame-
work for RBAC which allows the specification and verification of consistency
requirements; the discussion of some open problems, such as the revocation cas-
cade of users membership when administrative roles are decentralized, and a
comparison of several possible solutions. In particular, this paper focuses on the
issue of (decentralized) administration of user/role assignment and revocation
in the RBAC model; the administration of permission/role assignment and re-
vocation, discussed in [NO99] for the case of one administrator, is not explicitly
treated here, but can be described in a similar way. The comparison of different
AC policies within the graph grammar formalism and the analysis of the system
behavior in combining different AC policies are the subject of another paper
[KMPPOO].

The rest of this paper is organized as follows. Section 2 overviews the basic
notions of graph transformations. Section 3 describes the graph based modeling
of RBAC. Section 4 shows how to prove the graph based correctness of a RBAC
specification and briefly discusses the use of constraints. In section 5, we show
that the formalism is sufficiently expressive to describe possible solutions to
some nontrivial open problems mentioned in [San98], such as the decentralized
administration of roles. To our knowledge, this was an open issue, now solved
here at the specification level with a proposal of different solutions, compared in
section 6. Section 7 contains some concluding remarks and additional comparison
with existing work.

2 Graph Transformation

A graph consists of a set of nodes and a set of edges. Edges are directed, i.e.
they run from a node (the source of the edge) to a node (the target of the edge).
Each node and each edge has a type. Several nodes and edges of the same type
may occur in one graph. Figure 1 depicts a graph with four node types and
only one edge type. The node types are u, s, » and ar and will be used to
describe the role-based access control model introduced later on. Nodes of type

u represent users, nodes of type r are roles, nodes of type ar are administrative
roles and nodes of type s model sessions. A detailed explanation of the graph
model follows in Sec. 3. This section focuses on the main components of graph
transformation, which are a transformation rule and a transformation step. We
introduce the concepts in this section only informally. A detailed (also formal)
introduction can be found in the handbook to graph transformation [Roz97]. A

0 o
& Y

; 5
W
7

<)
|

Fig.1. A RBAC state graph.

P

Fig. 2. Administrative role hierarchy graph
(left) and role hierarchy graph (right).

graph represents a state of a system, for example a security system based on roles
as shown in Fig. 1. State changes are specified by graph transformation rules,
called just rules in the following. A rule is formally given by a graph morphism
r: L — R, where both L and R are graphs, called left-hand side and right-hand
side, respectively. A graph morphism consists of an injective partial mapping 7,
between the sets of nodes and an injective partial mapping r. between the sets
of edges of L and R. The mappings must be compatible with the graph structure
and the types. Compatible with the graph structure means that whenever the
mapping for edges is defined for an edge e, the mapping for nodes is defined
for the source s and the target ¢ node of the edge e and ry(s) and r,(f) are the
source and target nodes of the edge r.(e) in the right-hand side. Compatible with
the type means that nodes and edges are mapped only to nodes and edges of
the same type. If the mappings are total, we call the graph morphism total. The
graph L describes which objects a graph G must contain for the rule r : L - R
to be applicable to G. Nodes and edges of L for which the partial mappings are
undefined are deleted by the rule. Nodes and edges of L for which the partial
mappings are defined are preserved and have an image in R. Nodes and edges
of R without a preimage in L are newly created.

The complete set of rules for the RBAC model is given in Section 3 and 5.
We choose now two of them to explain the application of rules. The first rule is

given by add to rolein Fig. 4. The intended meaning of this rule is to make a
user a member of a role. The membership of a user to a role is modeled by an
edge, from the u to the r node, that this rule must create. The assignment of
a user to a role takes place by an administrative role that is responsible for the
role. In our graph model, responsibility is indicated by an edge from the ar to
the r node. So, the left-hand side L consists of one node of type ar, one of type
r and one of type u, and an edge between the ar node and the r node to show
the responsibility. The dashed edge between the u and the r node represents
a negative application condition. A negative application condition represents a
structure that, as a whole, must not occur in G for the application of the rule.
For the rule add to role, a membership edge between the u and r nodes must
not exist in GG before the rule application. If the unwanted structure occurs, then
the negative application condition is not satisfied. Note that the presence of a
part only of the unwanted structure is acceptable: for example in the rule veto
deletion in Fig. 9, there could be a senior role, provided that it is not assigned
to the user.

Whereas add to role is a preserving rule (the graph morphism for the rule
is total, so that the rule does not delete anything), the rule remove user (see
Fig. 4) removes a user from the system. Since we do not want to have active
sessions that do not belong to any user, also all the sessions of the deleted user
must be closed. Therefore, the left-hand side of remove user consists of a user
node u connected to a session node s. The double circle around the s node (these
nodes are called set nodes) specifies that the rule has to be applied to all session
nodes s connected to the user; this means, in particular, that the rule can be
applied also to users without active sessions. The right-hand side of the rule is
empty to specify the deletion of the user with all her/his sessions.

The application of a rule 7 : L — R to a graph G takes place in four steps:
1. Find the left-hand side L as a subgraph in G. The subgraph is denoted by
L(G).
2. If there is a negative application condition that is not satisfied (that is, L(G)
can be extended in G to an unwanted structure) then stop.
3. Remove all nodes and edges from L(G) that are not present in R.
4. Add all nodes and edges in R that are not present in L. The nodes occuring
both in L and in R are used to connect the new parts to the old ones.

The left-hand side L of the rule add to role occurs several times in the
graph of Fig. 1. One possible matching is shown in Fig. 3 by the gray node
pattern. For simplicity, labels on nodes have been omitted from graph and rules
in the example and only their types are shown. In concrete graphs (like the one
in Fig. 6), nodes have unique labels (e.g., specific names for users and roles) and
there is no ambiguity on the application of a rule to a graph, since matching
nodes have the same labels. Next, we have to check the negative application
condition of the rule that requires that there is no edge between the u and the r
node. Since the edge does not exist for the given matching, the rule is applied. It
deletes nothing and inserts the edge between the nodes determined by the match

of L. The transformed graph contains a new edge indicating that the gray user
is a member of the gray role.

W (a) e ® - (@)
fa 2 > fR 2

©, ®

O @ apply rule) (=)
® p

Fig. 3. Application of rule add to role (top) and rule remove user (bottom).

We now apply the rule remove user to this new graph. We can apply it to the
upper or to the lower user node, and in Fig. 3 the lower node is chosen (again
node labels can be used to avoid ambiguity). Since this user has two active
sessions, they also have to be removed. The double circle in the rule remove
user requires that we match all the sessions of the user, and it is not enough
to match only one session or none at all. Note that set nodes can be given a
variable label that can match any label in a concrete graph [PEMS8T]. There is
no negative application condition to check. We delete the whole gray part, since
a node or an edge does not exist in the right-hand side of remove user. Notice
that the deletion of the right session node leaves a dangling edge, i.e., an edge
without a source node. The same is true for the edge between the gray user and
the connected role node. Since dangling edges are not allowed by the definition
of graphs, dangling edges are automatically deleted in the graph transformation
semantics as well.

In Section 3 the concept of a path is used. A path in a graph is a sequence
of edges, where the target node of each edge in the sequence coincides with the
source node of its successor edge in the sequence. We denote paths between two
nodes by an edge equipped by * for paths of arbitrary length including length 0
or a + for paths that have at least length 1 (see for example the rules in Fig. 4).

Graph transformations are supported by several tools described in [EEKR99].
They provide mainly graphical editors to insert/draw the graphs, to specify rules
with negative application conditions and a graph transformation machine to
apply rules.

3 Role-Based Access Control

This section concerns with the specification of the ARBAC97 model introduced
by Sandhu et al in [SBM99] using graph transformations. The graph model in-
cludes administrative roles as well as inheritance of roles. In the ARBAC97
model, the (administrative) role hierarchy is given by a partial order over (ad-
ministrative) roles. In Figure 2 an example of an administrative role hierarchy
(on the left-hand side) and a role hierarchy (on the right-hand side) is shown,
where the hierarchies are given by graphs. Roles as well as administrative roles
are given by nodes of type r and ar, respectively, and edges between roles show
the inheritance relation. Graphs generalize the notion of a partial order, and by
defining specific rules one could restrict the graph structure to any role hierarchy.
Additionally, Figure 2 shows edges between administrative roles and user roles,
representing the authorization to modify the user role by the administrative role.
The set of roles reachable by such edges from an administrative role is the range
of the administrative role. For instance, the range of the upper administrative
role is given by the upper five roles, whereas the lower administrator has the
authorization only for the lowest role. The use of a set of roles to represent a
range differs from the approach of [SBM99], where the range is represented by an
interval over the partial order, and ranges of junior administrators are required
to be subranges of the senior administrator. The approach proposed there is
not particularly suited to manage dynamic changes in administrator’s ranges.
We discuss these problems and others in a later section in more detail. Qur ap-
proach is more general since the concept of an interval can be seen as a particular
assignment of administrative roles to user roles. Moreover, our approach allows
the modelling of administrators with disjoint role responsibility.

A user can be a member of a role and authorized for a role: a user is authorized
for a role, if the role is inherited from a role to which the user is assigned. A
user can establish a session during which the user activates a subset of roles
of which she/he is a member. Note that the concept of sessions corresponds to
the notion of subjects in the classical AC terminology. Role management, that
is the creation and deletion of roles as well as assignment and revocation of
users and permissions to roles, is the responsibility of administrative roles. The
basic operations of the RBAC model are add user, remove user, add assignment,
remove assignment, add inheritance, remove inheritance, add role, remove role,
add session, remove session, actiwate role and deactivate role. All these operations
are now modeled by graph transformation rules (see Fig. 4). The resulting graph
specification uses a weak revocation, meaning that the deletion of a user from a
role is not propagated to roles higher in the hierarchy; this corresponds to the
URA97 model in [San98].

add user and remove user: The rule add user has an empty left-hand
side, since users can be created at any time. The result of the rule is a new
user represented by a node of type u. The rule remove user removes a user
by deleting the corresponding user node u. To ensure that there are no active
sessions of this user after the deletion of the user, all his/her sessions are deleted
as well. This is indicated by the double circled session node in the left-hand side

add role °
e @
remove session remove role @

remove user new session
add user

————— remove from role
add torole 0 ° W|thout loss of
@/ (@) athorization @)

B

@ @ actlvate role
remove from role
W|th loss of ° e
authon zation

deactivate role @
Q@@ o Q@

— °'“
—
©

remove connection
e OO ©)

Fig. 4. Graph rules for the RBAC Model.

of rule remove user. The interpretation is that all sessions connected to the user
are deleted. The deletion of the session implies the deletion of all the connections
to roles that the session has, this is guaranteed by the graph trasformation
approach chosen. The roles themselves remain.

add session and remove session: A session is graphically presented by a
node of type s. It has always a connection to one user. The rules for the creation
and deletion of sessions are new session and remove session. A session node s
is immediately connected by an edge to the user who is using s. A session can be
deleted at any time regardless of the presence of active roles of the session. The
session 1is deleted by removing the session node. This implies that all session-to-
role edges are deleted as well, automatically.

add role and remove role: The creation of roles is modeled by the rule
add role. Roles are added and removed by administrative roles. The new role
becomes an element of the administrator’s range indicated by the edge shown
in the rule. The deletion of a role is only possible by an administrative role
responsible for that role. Then, the r node and the connecting edge are removed.

add assignment and remove assignment: The assignment of users to
roles is modeled by the rule add to role. To ensure that only an administrator
responsible for the role assigns the user, an ar node connected to the r node is
required. An administrator assigns a user to a role by connecting the user node
and the role node by an edge, called assignment edge. Then, the user becomes
a member of this role. This is allowed if and only if the user is not already
a member of role 7, specified by the negative application condition indicated
by the dashed assignment edge. The deletion of the assignment edge does not
necessarily remove the authorization of the user u for the role r. In particular,
if there is an assignment edge to a higher role which is inherited by r, then u
remains authorized for r. This case 1s modeled by the graph rule remove from
role without loss of authorization. The rule requires that u is assigned to
a role higher in the hierarchy. The + at the edge between the two roles indicates
a non empty path in the role hierarchy. It ensures that the two role nodes are
different. In this case, the assignment edge can be simply deleted from the lower
role. No other actions are necessary since the user is still authorized for it. On
the contrary, if the higher role does not exist, the user looses the authorization
for the role r. This implies that » must leave all sessions of the user. Moreover,
all roles that are transitively authorized by the deleted assignment have to be
deactivated from all the user sessions unless user u gets the authorization from
another role of which u is a member. The left-hand side of the rule remove from
role with loss of authorization requires that the user not be a member of
a higher role in the hierarchy, as specified by the negative application condition
indicated by the dashed upper role. In addition, all roles that inherit the role
where the assignment edge is removed (indicated by the roles reachable by a +
path) and that are not authorized by other roles (indicated by the dashed lower
role) have to be removed from the sessions of the user as well.

activate role and deactivate role: A user can activate any role r for which
she/he is authorized. A user is authorized for r, if there is a path starting with
an assignment edge and ending in 7. The corresponding graph rule is activate
role. An edge between the session node and the role node shows that the role is
active in the session. This edge is created by the user of the session. The star *
at the edge between the roles indicate a (possibly empty) path through the role
hierarchy. An empty path indicates that a user can also activate a role to which
she/he is directly assigned. Role r can only join a session if r is not already a
member of that session, as indicated by the dashed edge between the session
node and the role node. The deactivation of a role from a session is specified by
deleting the edge between the session and the role node.

add inheritance and remove inheritance: if the administrative role is
authorized for two roles » and 7', then an administrative role can establish a
new inheritance relation between them. The inheritance relation is indicated by
an edge between the two roles. The rule add connection adds this edge if it
does not exist already. The deletion of an inheritance relation may cause a user
to loose the authorization for some of his inheriting roles. In particular, a user
looses these autorizations if and only if there are no other paths from that user

to the role 7’. In this case, the roles have to be deactivated from the sessions.
The corresponding rule remove connection removes edge (r,7’) and deactivates
the roles of all sessions of all users that do not have the authorization for this
role through another path of the role hierarchy (a negative application condition
indicated by the dashed objects). Note that an administrator can only add roles
within her/his range because a newly created role must be connected to roles for
which the administrator is already responsible (see the rule add connection).

4 Graph-based correctness of RBAC

We now show how the graphical formalism can be used to prove the correctness of
a RBAC specification. We clarify the graphical concepts with a running example
taken from [GB98]. There, a set of properties is given that defines the consistency
requirement for a RBAC database. A state of the RBAC database having these
properties is consistent. One property out of this set is

(1) Vu e USERS, V71,79 € ROLES, 71,74 € active_roles(u) = (r1,7r2) € dsd.

The dynamic separation of duties (dsd) is a relation on roles. Roles related by a
dsd relation must not be active in the same session of a user at the same time.
In [GB98], the semantics of the basic operations of the RBAC model is spec-
ified using both set theory and additional logical conditions. It is also shown
that a given RBAC specification is correct in the following sense: if the RBAC
database 1s in a consistent state, then the database remains in a consistent state
after the operation is performed. The specification of the activate roles operation
in [GB98] (where it is called addActiveRoles) is reported below. Note that to pre-
vent the operation activate roles from violating the property (1) an additional
logical condition must be used.
addActiveRoles
Arguments:
user,roleset
Semantics:
active_roles’ = (active_roles\
{user — active_roles(user)})U
{user — active_roles(user) U roleset}
Conditions:
user € USERS
roleset C authorized_roles(user)
Vr1, 7o €roleset Uactive_roles(user).(ry, rq) €dsd

Hence in [GBY8], the designer has to perform three steps: 1. define the con-
sistency properties on the entire system, 2. derive from step 1 the conditions for
each operation, and 3. prove that the execution of each operation, satisfying the
condition in step 2, preserves the consistency properties defined in step 1. In
contrast, in our approach the designer has to perform step 1 only, that is, the
definition of the consistency properties of the system. The derivation in step 2

of the conditions for each operation from the consistency properties can be per-
formed automatically following a theoretical construction proposed in [HW95].
The result of such an automatic construction is a set of graph rules which is
guaranteed to satisfy the given consistency properties and therefore the complex
proofs of step 3 are not needed anymore. Our approach also presents some ad-
vantages when the consistency properties must be modified in a system already
specified. In such a case the designer can define a new consistency property and
can use the automatic construction to change the existing rules for each oper-
ation to satisfy the new consistency properties. In [GB98], such an incremental
modification requires a human intervention in all three steps described above.

In the following, we explain the automatic construction of the condition
of an operation to guarantee the consistency properties, by discussing as an
example the activate role operation. Consistency properties are specified by
graphical constraints. A graphical constraint is a graph that depicts a forbidden
or a required structure. A graph is consistent w.r.t. a graphical constraint that
forbids (requires) a structure, if this structure does not occur (does occur)
in the graph. The property (1) is specified by the graphical constraint in
Fig. 5. The graphical constraint shows the structure that must not occur.

rule

activate role Q
* - —0 —@
Automatic construction of . acivaerole "

the consistent rule for

o

graphical constraint agraphical constraint g

NOT ALLOWED ||| consistence ensuring rule

Fig.5. Automatic construction of a consistent rule from a graphical constraint.

The double-headed edge between two roles specifies that the two roles are in
the dsd-relation. On the left-hand side of the figure, rule activate roles from
Fig. 4 is shown. This rule, if applied without modification, could produce an
inconsistent state by creating an edge between a session node and a role which
is in dsd-relation to another role of the session. Therefore, this rule has to
be completed by adding a negative application condition which prevents the
activation of incompatible roles. The negative application condition can be
constructed automatically during the design phase. Figure 5 shows the overall
scheme for this construction. We call the modified rule consistent w.r.t. the
graphical constraint in the sense of the following theorem:

Theorem: Given a rule r, a graphical constraint ge, a graph G consistent
w.r.t. ge, and the rule r(gc) modified as above, the graph H resulting from an

application of r(gc) to G is consistent w.r.t. ge.

In the example in Fig. 5, the automatic construction adds a negative appli-
cation condition to the rule. This condition forbids the rule application if an
edge exists between the session node and an active role (modeled by the dashed
role and the edge connected to the session node) in dsd-relation with the role
that shall be activated. This rule can never create a state graph that violates the
graphical constraint for the dsd-relation and therefore an “a posteriori check” in
not needed. In a similar way, all the properties defined in [GB98] can be modeled
by graphical constraints and for each of them a consistent rule can automatically

be derived.

5 Decentralized administration of roles

There are some open problems in the decentralized administration of roles of the
RBAC model stemming from the fact that the responsibility of a range of roles
is not sufficient to guarantee the desired effect of an action performed inside
the range by the administrative role for that range. To illustrate the problems,
consider the concrete role hierarchy in Fig. 6 in the following discussion.

o @x
&

Y

Fig.6. Problems of the RBAC model.

Deletion of a user from a role: if a user is a member of roles C'1 and
B, by inheritance, the user is authorized for roles B,C1,C2,D,Y and E. An
administrative role ar with range C'1, D can remove the user from role C'1.
However, since the user is still a member of B, by inheritance he still has the
permission of C'1. Since the role B is not in the range of the administrator ar,
he cannot remove the membership of the user from role B. The problem of this
kind of user assignment revocation is called weak revocation [San98]. The case
where the user must loose the authorization to the role if the assignment edge

is deleted (strong revocation) may be more desirable but it requires a greater
administrative effort.

Deletion of a permission from a role: This problem is dual to the pre-
vious one. A revocation of a permission from a senior role has no effect on the
senior if a junior role still has this permission.

Deletion of roles: In the RBAC model, the range for an administrator
is given by an interval over the partial order. Deleting the boundaries of the
interval destroys the range definition, therefore only roles inside the interval can
be deleted.

Special hierarchy graphs: If a special structure for the hierarchy graph
for (administrative) roles is required, changes to the graph may destroy it. For
example, if we require a partial order, an edge from EF to A in Fig. 6 creates
a cycle. Similarly if each range must have unique senior and junior roles (as in
Fig. 6, B is the unique senior and D is the unique junior of the diamond range),
the addition of the node X and an edge from X to C'2 violates the constraint of
the unique senior. The insertion of an edge (from C2 to C'l) may also create a
dependency between previously unrelated roles (X and Y'), and therefore a local
change by an administrator may have impact outside his/her range.

We propose now three models using graph transformation that tackle the
first three problems. We introduce here only the rules for the user assignment;
the rules for the assignment of permissions are similar. We will discuss in Sec. 6
how to deal with the last problem exploiting graph transformation concepts.

5.1 Static single assignment

The idea is to have at most one assignment per user, i.e. a user can be in at
most one role. The assignment is static in the sense that it can only be changed
by deleting it and inserting a new one. The deletion of the assignment implies
the loss of the authorization for roles that was given by the assignment edge.
The graph rules for the static single assignment are shown in Fig. 7. A user
can be assigned to a role if he is not yet a member of a role. Membership is
indicated by the color of the u node. A white u node indicates that the user
is not yet in a role; a black one indicates that he is a member of a role. The
rule add to role in Fig.7 changes the white user node to a black one when it
sets the assignment. The removal of the assignment is simpler than in the model
of Fig. 4, since the authorization of roles for this user is known, namely all
roles reachable from the unique assignment edge. The rule remove from role
removes the assignment edge and deactivates all sessions of the user. All sessions
are deactivated since all activated roles for a session are authorized by the one
assignment edge. There cannot be roles activated that are not authorized by this
assignment. The user node is changed to white again. Moreover, the case where
the removal of the assignment does not have an impact on the authorization is
not possible in this model. Therefore, we need no rule corresponding to remove
from role without loss of authorization. All other rules of the model in
Fig. 4 remain unchanged.

@ ° add torole ° o ? o e remove fromrole @
— —
@ @ |©

Fig. 7. Graph rules for static single assignment.

This idea could be generalized to more than one “color”. The model above
uses one “color”, namely black. The black color is valid for all roles in the hier-
archy graph, i.e. one user can take the black “hat” to be assigned to an arbitrary
role in the hierarchy graph. If there are several disjoint hierarchy graphs, each
of them has a unique color and we could allow many assignments provided that
there 1s only one assignment for each color. Problems occur in this model, if we
want to connect two disjoint hierarchy graphs. Then, the two colors have to be
“melt” into one color and assignments may have to be removed.

5.2 Dynamic single assignment

The approach of a dynamic single assignment follows the idea of one assignment
per user. The rule add to role for adding a user to a role is equal to the
corresponding rule in the static single assignment model. The difference of this
model is that the assignment edge is not static anymore, but it can move through
the role hierarchy graph. Only for the lowest role in the role hierarchy it is
possible to delete the assignment, since the assignment cannot be moved down
anymore. Whenever an administrator wants to assign the user to a role that is
higher in the role hierarchy than the current assigned role, the assignment is
simply moved up in the hierarchy. The authorization of roles for the user is only
enhanced and no changes in the sessions are necessary as modeled by rule move
up. When an administrator wants to remove a user from a role, the assignment is
not deleted, but it is moved down in the role hierarchy with the rule move down
and only this role has to be deactivated from all the sessions of the user. For the
lower role it can again be decided whether the assignment remains or is moved
down again. If a user was assigned to a role where there is no inheritance edge
to another role, the assignment is deleted and the user is changed to a white
node again. All sessions of the user can be deleted as well, since the user has no
authorization for any role. This is done by rule remove role.

5.3 (Strong) Multiple assignment

The idea is to allow an arbitrary number of assignments and to defer the decision
on the deletion of an assignment edge to a higher level in the role hierarchy. Any
administrator can stop the propagation if she/he wants to keep the assignment
and this decision is immediately propagated down. The actual deletion of the
assignment can take place only at the top of the role hierarchy: since there is no
higher role that may want to keep the assignment, the decision on the deletion

O, add torole °\<C§ move up

@ @ ﬁ
— o O (0@
@ ©) ©® o

Fig. 8. Graph rules for dynamic single assignment.

can be made. Since we do not require any structure for the hierarchy graph of
roles, there can be multiple branches. This means that one branch may decide
to delete the role, while another one decides to keep the user in the role. In this
case, the assignments of the branch which decided deletion are removed, since
the user is not needed in this branch anymore, while at the intersection point
the decision to keep the assignment is propagated down. The graph rules for this
model are shown in Figure 9.

If an administrator wants to remove an assignment of a user to a role, she/he
makes this visible to the administrators of higher roles by a special label. The
graph rule remove from role inserts the label d on the edge for the assign-
ment. This label can be seen from other administrators. By means of the rule
propagate up the label d is moved up to the next higher role of which the user
is a member. The rule ensures, by the negative application condition, that the
label is propagated to the immediately higher role assigned to the user (no roles
are skipped). This ensures that all memberships of the user in higher roles are
checked. Whenever the label is set on the assignment edge between a user and
a role, a responsible administrator can decide if the user shall be removed from
the role or kept. The graph rule veto no deletion is applied, if the adminis-
trator wants to keep the assignment. The label is changed from d to d— and
the propagation of the label d to higher roles is stopped (rule propagate up is
not applicable anymore). If the administrator wants to delete the assignment he
propagates the label d by means of rule propagate up to a higher role. If the
role is the highest role (w.r.t. a branch of the hierarchy) the up-propagation rule
is not applicable anymore and the corresponding administrator can decide (be-
side no deletion, which is possible always) to delete the assignment. This is done
by the graph rule veto deletion that changes the label d to d+. Its negative
application condition ensures that the role is the highest role in the hierarchy
w.r.t. one branch. After the decision, the label d— or the label d+ is propagated
down. The rule propagate veto d— propagates the label d— and the negative
application conditions guarantees again that this propagation does not forget
any assignment. The graph rule propagate veto d+ is more complex, since the
label d+ cannot be simply propagated down, because there may exist several
branches and in some of them the label d— is propagated down, in other ones

the label d+ is. Since in this model keeping the assignment is stronger than
removing the assignment, at an intersection point of two (or more) branches it
must be decided which label is propagated further. Only if all the branches want
to propagate the label d+, d+ is propagated further. If only one branch wants
to propagate d—, d— is propagated further. This condition is checked in the
negative application condition of rule propagate veto d+. Only if there is no
higher role with a d— or a d label at an assignment, the d+ label is propagated
by rule propagate veto d+. The step-wise propagation guarantees the second
negative application condition. If the labels d— and d+ are present, the graph
rules delete and no delete can be applied. The rule delete is applicable if
there is a label d+ and it removes the assignment edge, also deactivating the
role from all the sessions of the user. This rule is also applied to branches of
the hierarchy that have decided for deletion, even if the label d+ was not propa-
gated completely down since other branches had decided to keep the assignment.
When a label d— is encountered, indicating that the assignment shall be kept,
the label 1s simply deleted but the assignment remains.

(— (W)
remove from role
(@) (@)
° i ° veto @ . °
—
deleti . /
@ no deletion @

O

Fig. 9. Graph rules for multiple assignment.

6 Comparison of proposals for decentralized RBAC

The RBAC model has been described with the rules in Fig. 4 of Section 3 already
in a setting that allows multiple administrators (explicit nodes of type ar). In the
previous section, we have presented three graph specifications of the user-role
assignment and deletion in the case of decentralized administration of roles. We
discuss now how the four proposed specifications solve the issues of the RBAC
model mentioned at the beginning of the previous section.

Deletion of a user from a role: The graph model in Fig. 4 can be seen
as a weak multiple assignment model, because it models weak revocation and
allows many assignments for a user. The three models proposed in Section 5
specify a strong revocation. Different assumptions are made to simplify the
administrative effort. Adding an assignment is easy in all models. In the case of
many assignments, no restrictions are needed for creation. In the case of a single
assignment, creation is easy, since one has to check only, whether the user is
already a member of a role or not. The main differences occur in the deletion of
assignments. The single assignment models provide an easy deletion, since there
is only one assignment and all authorization relations for the user are known.
In the static case, the assignment is simply deleted. The many assignment
models are more complex w.r.t. deletion of assignments, since the authorization
relations for a user are not known. A more complex procedure is necessary to
decide if the deletion of an assignment requires the deletion of other assignments
or not. Altogether, the multiple assignment models are more flexible, but have
a greater administrative effort. The following table summarizes the results.

policy add assignment|remove assignment|comment |
static single easy very easy unflexible, restricted
dynamic single [easy easy more flexible
weak multiple |easy not easy more flexible

but weak revocation
strong multipleleasy complex flexible and veto

Deletion of a permission from a role: This problem can be solved in a
manner similar to the deletion of user from a role, by replacing user assignment
with permission assignment.

Deletion of roles: This problem is solved by modeling the range of an ad-
ministrator by a set of edges pointing to the roles the administrator is responsible
for. By replacing the interval definition of a range in [SBM99] by a set definition,
the deletion of a boundary role does not destroy the range of an administrator.

Comparing our model with [NO99], the algorithms presented there deal with
the centralized administration of privileges (permissions) and roles. By explicitly
introducing permission nodes, we could specify their model. For example, the
deletion of a role while retaining its privileges could require the redirection of the
edges to its permission nodes to other role nodes with a set of rules mimicking
their algorithms.

Special hierarchy graphs: Our model does not require any structure for
the hierarchy graph for (administrative) roles. Therefore, there are no special

rules for maintaining a graph structure. If a special graph structure is required,
the rules have to be constructed in such a way that they do not destroy the
structure. Since these rules depend on the structure required, no general rules
can be given. However, this problem could be solved by considering graphical
constraints [HW95], which are a graphical means to express constraints like
cardinality, mutual exclusion, prerequisite roles etc, and in particular, they can
be used to define the desired structure of the hierarchy graphs. Constraints
are also an important component of the RBAC model. Different constraints
yield different access control models (see [San98,SBM99]). Graphical constraints
can be automatically translated into negative application conditions for rules.
The rules ensure the consistency w.r.t. the graphical constraint. That means for
example, that the rules preserve the required graph structure.

7 Concluding Remarks

We propose a formalization of RBAC using graph transformations which is a
graphical specification technique giving an intuitive visual description of the
dynamic structures that occur in AC models. The use of graph structures allows
a uniform treatment of user roles and administrative roles without the need for a
meta-model to describe possible evolutions in the administrator structure. This
formalization of the RBAC model can benefit from well-established results in
graph transformations systems [Roz97]. Among them, the possibility of studying
the sequential independence of rules (i.e. the final state is the same regardless
of the order of application of two rules), the parallel application of rules (i.e.
the simultaneous application of two rules to produce an effect not attainable by
their separate application), and in general the interference of rules.

Our approach is suitable for the specification and verification of the consis-
tency requirement, as in [GB98], with the added feature of being able to sys-
tematically derive the new rules to reflect changes in the consistency conditions
due to the evolution of an already designed system. Given a concrete specifica-
tion (e.g., an assignment of names to roles and users) of a particular role-based
system, properties can be verified using tools for graph transformations.

In [NO99], the authors present a specific way of implementing role-role rela-
tionships, representing as a graph the inclusion hierarchy generated by (part of)
the powerset of the set of privilegies. Here graph transformations are used as a
general formalism to specify access control policies based on roles. No specific
assumptions are made on the (arbitrary) structure of the role graph: if a particu-
lar structure is required, the graph rules can be adapted to satisfy the additional
requirements. The algorithms there deal with the centralized administration of
roles, while we focus on a decentralized administration of roles. By explicitly
introducing permission nodes, we could specify their model. For example, the
addition of a role node could require that it be explicitly connected to all the
nodes representing its permissions (called effective privilegies in [NO99]); the
connection with other role nodes could be defined by a set of rules mimicking

their algorithms, instead of being an arbitrary choice of the administrator as in
add connection of Fig. 4

We also discuss and compare here several possible solutions to some of the
issues left open in [San98]. In particular, we address the revocation cascade of
users membership when administrative roles are decentralized, the out-of-range
impact of local changes, and the removal of endpoint roles in an administrative
range.

The proposed general framework is adequate for (but not restricted to) role-
based access control policies. We are developing a methodology to compare dif-
ferent access control models within the graph grammar formalism and to analyse
the effect of combining different access control policies [KMPPO00]. A tool is un-
der development to assist the systematic modification of rules in a system where
the consistency condition may change.

Acknowledgement. Thanks to the anonymous reviewers for their pointed
comments and usefull suggestions.

References

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook
of Graph Grammars and Computing by Graph Transformations. Vol. II:
Applications, Languages, and Tools. World Scientific, 1999.

[GB9g] Serban I. Gavrila and John F. Barkley. Formal Specification for Role Based
Access Control User/Role and Role/Role Relationship Management. In
Proc. of 3rd ACM Workshop on Role-Based Access Control, 1998.

[HW95] Reiko Heckel and Annika Wagner. Ensuring consistency of conditional
graph grammars - a constructive approach. In Proc. of SEGRAGRA 95
Graph Rewriting and Computation, number 2. Electronic Notes of TCS,
1995. http://www.elsevier.nl/locate/entcs/volume2.html.

[KMPPO0O0O] M. Koch, L. V. Mancini, and F. Parisi-Presicce. On the specification
and evolution of access control policies. Technical Report SI1-2000/05,
Dip.Scienze dell’Informazione, Uni. Roma La Sapienza, May 2000.

[NO99] M. Nyanchama and S.L.. Osborne. The Role Graph Model and Conflict of
Interest. ACM Trans. of Info. and System Security, 2(1):3-33, 1999.

[PEM&7] F. Parisi-Presicce H. Ehrig and U. Montanari. Graph Rewriting with Uni-
fication and Composition. In Proc. 3rd Workshop on Graph Grammars.
Lecture Notes in Computer Science 291, Springer-Verlag, 1987, pp.496-514.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformations. Vol. I: Foundations. World Scientific, 1997.

[San9g] Ravi S. Sandhu. Role-Based Access Control. In Advances in Computers,
volume 46. Academic Press, 1998.

[SBM99] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97
model for role-based administration of roles. ACM Transactions on Infor-
mation and System Security, 2(1):105-135, Feb. 1999.

