INFS 767 Fall 2001

RBAC Architectures and Mechanisms

Prof. Ravi Sandhu

AUTHORIZATION, TRUST AND RISK

- Information security is fundamentally about managing
 - > authorization and
 - > trust

so as to manage risk

© Ravi Sandhu 2001

THE OM-AM WAY A What? S **Objectives** S u Model r **Architecture** a Mechanism n cHow? e 3 © Ravi Sandhu 2001

LAYERS AND LAYERS

2

- * Multics rings
- Layered abstractions
- Waterfall model
- Network protocol stacks
- * Napolean layers
- RoFi layers
- * OM-AM
- * etcetera

OM-AM AND ROLE-BASED ACCESS CONTROL (RBAC)

DISTRIBUTED RBAC (DRBAC) CASE STUDY

- * Approximately a dozen physical sites
- * Approximately 2-3 simulation models/site
- Fewer than 100 roles structured in a very shallow hierarchy
 - > A subset of roles is used in any single simulation model
- Fewer than 100 users
- * A user uses only one role at a time
 - > Convenient but not critical
- * Moderate rate of change

© Ravi Sandhu 2001

8

DISTRIBUTED RBAC (DRBAC) CASE STUDY

- Permission-role assignment
 - > Locally determined at each simulation model
- * User-role assignment
 - > A user can be assigned to a role if and only if all simulation models using that role agree
 - A user is revoked from a role if and only if any simulation model using that role revokes the user

© Ravi Sandhu 2001

9

DISTRIBUTED RBAC (DRBAC) CASE STUDY

- Each simulation model has a security administrator role authorized to carry out these administrative tasks
- A simulation model can assign permissions to a role X at any time
 - > even if X is previously unused in that simulation model
- Consequently any simulation model can revoke any user from any role!

© Ravi Sandhu 2001 10

RBAC3 ROLE HIERARCHIES USER-ROLE ASSIGNMENT ROLES PERMISSIONS PERMISSIONS CONSTRAINTS 11

MODEL CUSTOMIZATION

- * Each session has a single role
- * SM = {sm1, ..., smk}, simulation models
- * OP = {op1, ..., opl}, operations
- ❖ P= SM X OP, permissions
- * SMA = {sma1, ..., smk}, administrative roles
- * R C SMA = Æ
- * Admin: SM « SMA

MODEL CUSTOMIZATION

- Can formalize the administrative rules given earlier
- For each simulation model designate a unique user to be the chief security administrator who is authorized to assign and revoke users from the security administrator role for that model

© Ravi Sandhu 2001

DRBAC ARCHITECTURES

- * Permission-role
 - > Enforced locally at each simulation model
- · Permission-role administration
 - > Enforced locally at each simulation model
 - > May need to communicate to other simulation models
- User-role

13

- > See following slides
- User-role administration
 - > Centralized or decentralized

Secure Attribute Services on the Web

- * WWW (World Wide Web)
 - widely used for electronic commerce and business
 - > supports synthesis of technologies
 - > mostly, Web servers use identity-based access control
 - · scalability problem

© Ravi Sandhu 2001 20

Background

- * An attribute
 - \succ a particular property of an entity
 - e.g., role, identity, SSN, clearance, etc.
- * If attributes are provided securely,
 - > Web servers can use those attributes
 - e.g., authentication, authorization, access control, electronic commerce, etc.
- A successful marriage of the Web and secure attribute services is required

© Ravi Sandhu 2001

21

User-Pull Architecture

User-Pull Architecture

- - > pulls appropriate attributes from the Attribute Server
 - presents attributes and authentication information to Web servers
- * Each Web server
 - requires both identification and attributes from users
- High performance
 - > No new connections for attributes

© Ravi Sandhu 2001 23

Server-Pull Architecture

Related Technologies

- * Cookies
 - > in widespread current use for maintaining state of HTTP
 - > becoming standard
 - > not secure
- ❖ Public-Key Certificates (X.509)
 - > support security on the Web based on PKI
 - > standard
 - > simply, bind users to keys
 - > have the ability to be extended

© Ravi Sandhu 2001

25

27

Security Threats to Cookies

- * Cookies are not secure
 - > No authentication
 - > No integrity
 - > No confidentiality
- * can be easily attacked by
 - > Network Security Threats
 - > End-System Threats
 - > Cookie Harvesting Threats

© Ravi Sandhu 2001

Secure Cookies on the Web | S

A Set of Secure Cookies

How to Use Secure Cookies

Applications of Secure Cookies

- * User Authentication
- * Electronic Transaction
- * Eliminating Single-Point Failure
- Pay-per-Access
- * Attribute-based Access Control

© Ravi Sandhu 2001

31

33

© Ravi Sandhu 2001

Authentication Cookies / IF_Ookie 129.174.100.88 FALSE 1309.99 32 © Ravi Sandhu 2001

Server-Pull Architecture

- Each user
 - presents only authentication information to Web servers
- * Each Web server
 - > pulls users' attributes from the Attribute Server
- * Authentication information and attribute do not go together
- * More convenient for users
- Less convenient for Web servers

© Ravi Sandhu 2001

Secure Cookies for **Electronic Transactions** 34

Kerberos-Based Authentication by Secure Cookies 1. Request TGT $TGT = \{S_n, ABco\}K \text{ osc} \\ TSK_Cockie = \{finestamp | S_n, Alice, Bob \} \\ T_{Cd} = \{Alice, K_{Cd}\}K_i (ficher to Bob) \\ TSS_Cockie = \{finestamp+1\}K_{Cd} \\ TSS_Cockie = \{finestamp+1\}K_{Cd} \\ \end{bmatrix}$ 2. TGT_Cookie = |TGT_Sq/Kc__ 3. TGT_Cookie = TGT TSK_Cookie 4. KT_Cookie «Tes Server (Bob) 35 © Ravi Sandhu 2001

Secure Cookies for RBAC 37 © Ravi Sandhu 2001

X.509 Certificate

- Digitally signed by a certificate authority
 to confirm the information in the certificate belongs to the holder of the corresponding private key
- * Contents
 - version, serial number, subject, validity period, issuer, optional fields (v2)
 subject's public key and algorithm info.
 extension fields (v3)

 - digital signature of CA
- * Binding users to keys
- ❖ Certificate Revocation List (CRL)

© Ravi Sandhu 2001

39

X.509 Certificate

Smart Certificates

* Short-Lived Lifetime

- > More secure
 - · typical validity period for X.509 is months
 - · users may leave copies of the corresponding keys behind
 - · the longer-lived certificates have a higher probability of being attacked

> No Certificate Revocation List (CRL)

· simple and less expensive PKI

41 © Ravi Sandhu 2001

Smart Certificates

- Containing Attributes Securely
 - > Web servers can use secure attributes for their purposes
 - > Each authority has independent control on the corresponding information
 - basic certificate (containing identity information)
 - each attribute can be added, changed, revoked, or reissued by the appropriate authority
 - e.g., role, credit card number, clearance, etc
 - > Short-lived certificate can remove CRLs

42 © Ravi Sandhu 2001

Separate CAs in a Certificate

Smart Certificates

- Postdated Certificates
 - The certificate becomes valid at some time in the future
 - possible to make a smart certificate valid for a set of duration
 - > supports convenience
- Confidentiality
 - > Sensitive information can be
 - · encrypted in smart certificates
 - e.g. passwords, credit card numbers, etc.

© Ravi Sandhu 2001

44

A Smart Certificate

Applications of Smart Certificates

- * On-Duty Control
- * Compatible with X.509
- * User Authentication
- * Electronic Transaction
- * Eliminating Single-Point Failure
- * Pay-per-Access
- Attribute-based Access Control

© Ravi Sandhu 2001

46

48

Injecting RBAC to Secure a Web-based Workflow System

Gail-Joon Ahn and Ravi Sandhu George Mason University

Myong Kang and Joon Park Naval Research Laboratory

WORKFLOW MANAGEMENT SYSTEMS

- Control and coordinate processes that may be processed by different processing entities
- Received much attention
- **Marriage with Web technology**
- **☞ Minimal security services**

© Ravi Sandhu 2001

OBJECTIVE

Inject role-based access control (RBAC) into an existing web-based workflow system

© Ravi Sandhu 2001

49

WHY RBAC?

- A mechanism which allows and promotes an organization-specific access control policy based on roles
- Has become widely accepted as the proven technology

© Ravi Sandhu 2001

50

SIMPLIFIED RBAC MODEL

ROLE-BASED SECURE WORKFLOW SYSTEM

- **ভ Workflow Design Tool**
- **ভ Workflow (WF) System**
- **≅ Role Server**

© Ravi Sandhu 2001 52

Role Server | Service | S

ARCHITECTURES

- **USER-PULL STYLE**
- **SERVER-PULL STYLE**

NRL (Naval Research Lab.) DESIGN TOOL

- s design workflow model
- se create role and role hierarchies
- assign role to task
- exporting role hierarchies to role server

© Ravi Sandhu 2001

57

59

WORKFLOW SYSTEM

- each task server is web server
- user should present client authentication certificate
- user's privilege is authorized by content of certificate (specially client's role information)

© Ravi Sandhu 2001

ROLE AUTHORIZATION ON WORKFLOW SYSTEM 1. accounts the resource (Web Server) 2.1 get client certificate 2.2 retrieve role information 2.3 check authorization status resources client

ROLE SERVER

- **User Role Assignment**
- **ভ Certificate Server**

© Ravi Sandhu 2001

61

USER ROLE ASSIGNMENT

- maintain role hierarchies and user database
- assign users to roles
- generate user-role database

© Ravi Sandhu 2001

62

USER ROLE ASSIGNMENT (Cont'd)

CERTIFICATE SERVER

- authenticate client
- ▼ retrieve client's role information from user-role database
- issue certificate with client's role information

© Ravi Sandhu 2001 64

X.509 CERTIFICATE Serial number: scu89084jdys varidity: 01011999 01012000 Subject/Name/Organization Common Name = Gail J. Ahn Organization Unit: state Public key: 1c354276s5afatwv76585098327 djichn9974-72ks78610092wef3 Singed By: List, CMU kljsuyto/90874875919jdj288 ddjso475-28ejd7-18re08751 © Ravi Sandhu 2001 655

CERTIFICATE ISSUE 1. Client 2-difficate Request 2.3. Challenge-Response based on Password 4.5. Retrieving Role Information of a User 6-7. Creating Certificate Enrollment Form and Public-key Embeded 8-9. Issuing Cilent Certificate 10. Downloding Cilent Certificate 11. Logging Certificate Information **Part Sandhu 2001** **O Ravi Sandhu 20

