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Trust management is a form of distributed access control that allows one principal to delegate
some access decisions to other principals. While this makes trust management more flexible than
the access matrix model, it makes safety and security analysis more important. We show that in
contrast to the undecidability of classical HRU safety properties, our primary security properties
are decidable. In particular, most safety properties we study are decidable in polynomial time.
The computational complexity of containment analysis, the most complicated security property

we study, forms a complexity hierarchy based on the expressive power of the trust management
language.
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1. INTRODUCTION

Access control techniques, which govern whether one party can access resources and ob-
jects controlled by another party, are useful in protectingthe confidentiality, integrity, and
availability of information. Traditional access control schemes make authorization deci-
sions based on the identity of the requester. However, in decentralized or multicentric
environments, the resource owner and the requester often are unknown to one another,
making access control based on identity ineffective. For example, although a certificate
authority may assert that the requester’s name is John Q. Smith, if this name is unknown to
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the access mediator, the name itself does not aid in making anauthorization decision. What
is needed is information about the rights, qualifications, responsibilities and other charac-
teristics assigned to John Q. Smith by one or more authorities, as well as trust information
about the authorities themselves.

Trust management [Blaze et al. 1996; Blaze et al. 1999a; 1999b; Rivest and Lampson
1996; Ellison et al. 1999; Clarke et al. 2001; Gunter and Jim 2000; Jim 2001; Li et al. 2003;
Li et al. 2003; Li et al. 2002; Li and Mitchell 2003; Weeks 2001] is an approach to access
control in decentralized distributed systems with access control decisions based on policy
statements made by multiple principals. In trust management systems, statements that are
maintained in a distributed manner are often digitally signed to ensure their authenticity
and integrity; such statements are calledcredentialsor certificates. A key aspect of trust
management is delegation: a principal may transfer limitedauthority over one or more
resources to other principals. While the use of delegation greatly enhances flexibility and
scalability, it may also reduce the control that a principalhas over the resources it owns.
Since delegation gives a certain degree of control to a principal that may be only partially
trusted, a natural security concern is whether a resource owner nonetheless has some guar-
antees about who can access their resources. If we think of the union of all policies of all
principals as the state of a TM system, then a state may changeas the result of a single step
that adds or removes a policy statement, or as the result of a finite sequence of such steps.
A resource owner generally has control over some part of the state, but cannot control all
possible changes. In this paper, we consider thesecurity analysisproblem, which asks
what accesses may be allowed or prevented by prospective changes in the state of a TM
system.

A few definitions are useful for stating the security analysis problem more precisely. In
general, a TM language has a syntax for specifyingpolicy statementsandqueries, together
with an entailment relatioǹ. We call a setP of policy statements astateof a TM system.
Given a stateP and a queryQ, the relationP ` Q means thatQ is true inP. When
Q arises from an access request,P ` Q means that accessQ is allowed inP; a proof
demonstratingP ` Q is then called aproof-of-compliance.

Recognizing that a principal or a coalition of cooperating principals may control only
a part of the global state, we assume there is arestriction rule, R, that defines how states
may be changed. For example, the principal in question may consider the part of the state
controlled by fully trusted principals to be fixed, while considering that other principals
may remove some policy statements and/or add new ones. Givena stateP and a restriction
ruleR, we writeP 7→R P

′ if the change fromP to P ′ is allowed byR, andP
∗
7→R P

′

if a sequence of zero or more allowed changes leads fromP to P ′. If P
∗
7→R P

′, we say
thatP ′ isR-reachablefrom P , or simplyP ′ is reachable, whenP andR are clear from
context.

DEFINITION 1. LetP be a state,R a restriction rule, andQ a query. Existential se-
curity analysistakes the form: Does there existP ′ such thatP

∗
7→R P

′ andP ′ ` Q?
When the answer is affirmative, we sayQ is possiblegivenP andR. Universal security
analysistakes the form: For everyP ′ such thatP

∗
7→R P

′, doesP ′ ` Q? If so, we sayQ
is necessarygivenP andR.

Here are some motivating examples of security analysis problems.

Simple Safety.(Existential) Does there exist a reachable state in which a specific (pre-
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sumably untrusted) principal has access to a given resource?

Simple Availability.(Universal) In every reachable state, does a specific (presumably
trusted) principal have access to a given resource?

Bounded Safety.(Universal) In every reachable state, is the set of all principals that have
access to a given resource bounded by a given set of principals?

Liveness.(Existential) Does there exist a reachable state in which noprincipal has ac-
cess to a given resource?

Mutual Exclusion.(Universal) In every reachable state, are two given properties (or two
given resources) mutually exclusive, i.e., no principal has both properties (or access to both
resources) at the same time?

Containment.(Universal) In every reachable state, does every principalthat has one
property (e.g., has access to a resource) also have another property (e.g., is an employee)?
Containment can express safety or availability (e.g., by interchanging the two example
properties in the previous sentence).

Simple safety analysis was first formalized by Harrison et al. [Harrison et al. 1976] in
the context of the well-known access matrix model [Lampson 1971; Graham and Den-
ning 1972]. Simple safety analysis was referred to assafety analysissince other analysis
problems were not considered. The model in [Harrison et al. 1976] is commonly known
as the HRU model. In the general HRU model,safety analysisis undecidable [Harrison
et al. 1976]. A number of protection models were developed tomake safety analysis more
tractable. Lipton and Snyder introduced the take-grant model [Lipton and Snyder 1977],
in which simple safety can be decided in linear time. Sandhu introduced the Schematic
Protection Model [Sandhu 1988], and the Typed Access Matrixmodel [Sandhu 1992]. In
these previous works, only simple safety analysis are considered; the other kinds of analy-
sis listed above were not. Since some of the analysis problems are about properties other
than safety (e.g., availability), we use the termsecurity analysisrather than safety analysis.

To the best of our knowledge, security analysis for TM systems has not been investigated
previously as such. In this paper, we define a precise model for security analysis in trust
management. The policy languages we consider are languagesin theRT family of Role-
based Trust-management languages [Li et al. 2003; Li et al. 2002; Li and Mitchell 2003].
TheRT family combines the strengths of Role-Based Access Control(RBAC) [Sandhu
et al. 1996] and previous trust-management (TM) systems. Semantics for theRT family
is defined by translating each statement into a logic programming clause. In this paper,
we consider four languages in theRT family; they are denoted byRT[ ], RT[∩], RT[�],
andRT[�,∩]. RT[ ] is the most basic language in the family; it has two types of state-
ments:simple memberandsimple inclusion. RT[∩] adds toRT[ ] intersection inclusion
statements.RT[�] adds toRT[ ] linking inclusionstatements, which can be used to express
attribute-based delegation.RT[�,∩] has both intersection inclusion and linking inclusion;
RT[�,∩] is a slightly simplified (yet expressively equivalent) version of theRT0 language
described in [Li et al. 2003].

All the security analysis problems listed above are considered. While the TM language
we are studying supports delegation and is more expressive than the access matrix model
in certain ways, and the kinds of analysis problems we consider are more general, some-
what surprisingly, they are decidable. Simple safety, simple availability, bounded safety,
liveness, and mutual exclusion analysis forRT[�,∩] (and hence for the other three sub-
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languages ofRT[�,∩]) can all be answered in time polynomial in the size of the state
P. These analysis problems are answered by evaluating queries against logic programs
derived from the stateP and the restriction ruleR.

Containment analysis is the most interesting case, both in terms of usefulness and in
terms of technical challenge. The computational complexity of containment analysis de-
pends on the language features. InRT[ ], the most basic language, containment analysis is
in P. Containment analysis become more complex when additionalpolicy language fea-
tures are used. Containment analysis iscoNP-complete forRT[∩], PSPACE-complete
for RT[�], and decidable incoNEXP for RT[�,∩]. These complexity properties are
proved using techniques and results from logic programming, formal languages, and au-
tomata theory. ForRT[ ], we use logic programs derived fromP andR to do containment
analysis. These logic programs use negation-as-failure ina stratified manner [Apt et al.
1988]. ForRT[∩], we show that containment analysis is essentially equivalent to determin-
ing validity of propositional logic formulas. TheRT[�] language is expressively equiv-
alent to SDSI (Simple Distributed Security Infrastructure) [Rivest and Lampson 1996;
Clarke et al. 2001], and is related to a class of string rewriting systems modelled using
pushdown systems [Bouajjani et al. 1997]. We show that containment analysis inRT[�]
can be reduced to determining containment among reachable configurations of pushdown
systems, which is again reduced to determining containmentof languages accepted by
Nondeterministic Finite Automata (NFAs). For the case ofRT[�,∩], we show that if a
containment does not hold, then there must exist a counter-example state (i.e., a reachable
state in which the containment does not hold) of size at most exponential in the size of the
input.

The rest of this paper is organized as follows. In Section 2, we define the model we use
to study security analysis in TM. In Section 3, we handle simple safety, simple availability,
liveness, and mutual exclusion. In Section 4, we present results about containment analy-
sis. We discuss related work in Section 5, and conclude in Section 6. An appendix contains
proofs that are not included in the main body.

2. A CONCRETE SECURITY ANALYSIS PROBLEM

The abstract definition of security analysis in Definition 1 has three parameters: the lan-
guage used to express the stateP, and the form of queryQ and the form of restriction
ruleR. In this section, we define concrete security analysis problems by supplying these
parameters, discuss our choices, give an example that will be used throughout the paper,
and discuss how security analysis can be used in practical situations to achieve security
objectives.

2.1 Syntax of The TM Language

The policy languages we consider are in theRT family of Role-based Trust-management
languages. More specifically, we considerRT[�,∩] and its three sub-languages:RT[ ],
RT[�], andRT[∩]. The basic constructs ofRT[�,∩] includeprincipalsandrole names.
In this paper, we useA, B, D, E, F , X, Y , andZ, sometimes with subscripts, to denote
principals. A role name is a word over some given standard alphabet. We user, u, and
w, sometimes with subscripts, to denote role names. Arole takes the form of a principal
followed by a role name, separated by a dot, e.g.,A.r andX.u. A role defines a set of
principals that are members of this role. Each principalA has the authority to designate
the members of each role of the formA.r. An access control permission is represented as
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a role as well; for example, thatB is a member of the role ofA.r may represent thatB has
the permission to do actionr on the objectA.

There are four types of policy statements inRT[�,∩], each corresponding to a different
way of defining role membership:

— Simple Member: A.r ←− D
This statement means thatA asserts thatD is a member ofA’s r role. We read “←−” as
“includes”.

— Simple Inclusion: A.r ←− B.r1
This statement means thatA asserts that itsr role includes (all members of)B’s r1 role.
This represents a delegation fromA to B, sinceB may affect who is a member of the
roleA.r by issuing statements aboutB.r1.

— Linking Inclusion: A.r ←− A.r1.r2
We callA.r1.r2 a linked role. This statement means thatA asserts thatA.r includes
B.r2 for everyB that is a member ofA.r1. This represents a delegation fromA to all
the members of the roleA.r1.

— Intersection Inclusion: A.r ←− B1.r1 ∩B2.r2
We callB1.r1 ∩ B2.r2 an intersection. This statement means thatA asserts thatA.r
includes every principal who is a member of bothB1.r1 andB2.r2. This represents
partial delegations fromA toB1 and toB2.

A role expressionis a principal, a role, a linked role, or an intersection. We say that each
policy statementdefinesthe roleA.r. Given a setP of policy statements, we define the
following: Principals(P) is the set of principals inP, Names(P) is the set of role names
in P, andRoles(P) = {A.r | A ∈ Principals(P), r ∈ Names(P)}. RT[�,∩] is a slightly
simplified (yet expressively equivalent) version ofRT0 [Li et al. 2003].1 In this paper,
we also consider the following sub-languages ofRT[�,∩]: RT[ ] has only simple member
and simple inclusion statements,RT[�] adds toRT[ ] linking inclusion statements, and
RT[∩] adds toRT[ ] intersection inclusion statements.

The four types of statements inRT[�,∩] cover the most common delegation relation-
ships in other TM languages such as SPKI/SDSI [Ellison et al.1999; Clarke et al. 2001]
and KeyNote [Blaze et al. 1999a]. The sub-languageRT[�] can be viewed as a simpli-
fied yet expressively equivalent version of SDSI. SDSI allows long linked names, which,
as observed in [Li et al. 2003], can be broken up by introducing new role names and
statements. With the exception of thresholds, the delegation relationships (though, not the
s-expression-based representation of permission) in SPKI’s 5-tuples, can be captured by
using simple member statements and a restricted form of simple inclusion statements. A
SPKI 5-tuple in whichA delegates a permissionr toB can be represented asA.r ←− B.
A SPKI 5-tuple in whichA delegatesr to B and allowsB to further delegater can be
represented as twoRT[�,∩] statements:A.r ←− B andA.r ←− B.r. Similar analogies
can be drawn for KeyNote.

AlthoughRT[�,∩] is limited in that role names are constants, extending role names in
RT[�,∩] to have internal structures does not change the nature of security analysis. As we

1
RT[�,∩] simplifiesRT0 in that intersection inclusion statements inRT[�,∩] allow the intersection of only

two roles; inRT0, the intersection may containk components, each can be a principal, a role, or a linked
role. RT0 statements using such intersections can be equivalently expressed inRT[�,∩] by introducing new
intermediate roles and additional statements. This simplification helps simplify the proofs in this paper.



6 ·

will see, security analysis is mostly affected by the structure of the delegation relationships.
We believe that many results and techniques developed forRT[�,∩] can be carried over
to more expressive languages, e.g.,RT1 [Li et al. 2002], which adds toRT0 the ability to
have parameterized roles,RTC

1 [Li and Mitchell 2003], which further adds constraints to
RT1, and, to a certain extent, SPKI/SDSI and KeyNote.

The security analysis problem forRT[�,∩] involves new concepts and techniques. Se-
mantics and inference for SDSI, which is essentially the sub-languageRT[�], has been
extensively studied [Abadi 1998; Clarke et al. 2001; Halpern and van der Meyden 2001;
Jha and Reps 2002; Li 2000; Li et al. 2003]. Some of these studies only consider answering
queries in a fixed state. Some consider universal analysis where no restriction is placed on
how the state may grow [Abadi 1998; Halpern and van der Meyden2001]. However, the
most interesting aspect of security analysis, answering queries when restrictions are placed
on state changes, has not been addressed in the previous studies.

2.2 Semantics of the TM Language

We give a formal characterization of the meaning of a setP of policy statements by trans-
lating each policy statement into a datalog clause. (Datalog is a restricted form of logic
programming (LP) with variables, predicates, and constants, but without function sym-
bols.) We call the resulting program thesemantic programof P. We use the LP-based
approach to define semantics because we will formulate safety computation rules by using
a similar approach, and the LP-based approach generalizes easily to the case in which role
names contain parameters (see [Li et al. 2002]).

DEFINITION 2 SEMANTIC PROGRAM. Given a setP of policy statements, theseman-
tic program, SP(P), ofP, has one ternary predicatem. Intuitively,m(A, r,D) means that
D is a member of the roleA.r. The programSP(P) is the set of all datalog clauses pro-
duced from policy statements inP as follows, where symbols that start with “?” represent
logical variables:

For eachA.r←−D in P, add
m(A, r,D) (m1)

For eachA.r←−B.r1 in P, add
m(A, r, ?Z) :− m(B, r1, ?Z) (m2)

For eachA.r←−A.r1.r2 in P, add
m(A, r, ?Z) :− m(A, r1, ?Y ), m(?Y, r2, ?Z) (m3)

For eachA.r←−B1.r1 ∩B2.r2 in P, add
m(A, r, ?Z) :− m(B1, r1, ?Z), m(B2, r2, ?Z) (m4)

In general, a datalog program is a set of datalog clauses. Given a datalog program,DP,
its semantics can be defined through several equivalent approaches. The model-theoretic
approach viewsDP as a set of first-order sentences and uses the minimal Herbrand model
as the semantics. We writeSP(P) |= m(X,u, Z) whenm(X,u, Z) is in the minimal Her-
brand model ofSP(P). This semantics corresponds exactly to the set-theoretic semantics
of RT0 in [Li et al. 2003].

We now summarize a standard fixpoint characterization of theminimal Herbrand model,
which we will use in the proofs in this paper. Given a datalog programDP, letDPinst

be the ground instantiation ofDP using constants inDP; the immediate consequence
operator, TDP , is defined as follows. Given a setK of ground logical atoms,TDP(K)
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consists of all logical atoms,a, such thata :− b1, . . . , bn ∈ DP
inst, wheren ≥ 0, and

eithern = 0 or bj ∈ K for 1 ≤ j ≤ n. The least fixpoint ofTDP is given by

TDP↑
ω=

∞⋃

i=0

TDP↑
i, whereTDP↑

0= ∅ andTDP↑
i+1= TDP(TDP↑

i), i ≥ 0

The sequenceTDP ↑
i is an increasing sequence of subsets of a finite set. Thus there

exists anN such thatTDP(TDP ↑
N ) = TDP ↑

N. TDP ↑
ω is identical to the minimal

Herbrand model ofDP [Lloyd 1987]; therefore,SP(P) |= m(X,u, Z) if and only if
m(X,u, Z) ∈ TSP(P)↑

ω.
It has been shown that the minimal Herbrand model ofDP can be computed in time

linear in the size ofDPinst [Dowling and Gallier 1984]. If the total size ofDP isM , then
there areO(M) constants inDP. Assuming that the number of variables in each clause is
bounded by a constant,v, the number of instances of each clause is thereforeO(Mv), so
the size ofDPinst isO(Mv+1). Thus, the worst-case complexity of evaluatingSP(P) is
O(|P|3), since|SP(P)| = O(|P|) and each rule inSP(P) has at most two variables.

2.3 Restriction Rules on State Changes

Before discussing how we model restrictions on changes in policy state, we consider one
motivating scenario. Additional discussion of ways that security analysis can be used in
practical situations appears in Section 2.6. Suppose that the users within an organization
control certain principals, and that these principals delegate partial control to principals
outside the organization. In this situation, roles defined by principals within the organi-
zation can be viewed as unchanging, since the analysis will be repeated before any future
candidate change is made to those roles. Roles defined by principals outside the organi-
zation, however, may change in arbitrary ways, since they are beyond the organization’s
control. By using security analysis, the organization can ensure that delegations to princi-
pals outside the organization do not violate desired security properties, which are specified
by a collection of security analysis problem instances and the correct answers to them.

To model control over roles, we use restriction rules of the formR = (GR,SR), which
consist of a pair of finite sets of roles. (In the rest of the paper we drop the subscripts from
G andS, asR is clear from context.)

—Roles inG are calledgrowth-restricted(or g-restricted); no policy statements defin-
ing these roles can be added. Roles not inG are calledgrowth-unrestricted(or g-
unrestricted).

—Roles inS are calledshrink-restricted(or s-restricted); policy statements defining these
roles cannot be removed. Roles not inS are calledshrink-unrestricted(ors-unrestricted).

One example ofR is (∅, ∅), under which every role is g/s-unrestricted, i.e., both g-
unrestricted and s-unrestricted. Another example isR = (∅,Roles(P)), i.e., every role
may grow without restriction, and no statement defining roles inRoles(P) can be removed.
This models the case of having incomplete knowledge of a fixedpolicy state. A third
example, corresponding to the scenario discussed above, isR = (G,S), whereG = S =
{X.u | X ∈ {X1, . . . ,Xk}, u ∈ Names(P)}, i.e.,X1, . . . ,Xk are trusted (controlled);
therefore, every roleX.u such thatX ∈ {X1, . . . ,Xk} is restricted, all other roles are
unrestricted. If a principalX does not appear inR, then for every role namer, by definition
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X.r is g/s-unrestricted. This models the fact that the roles of unknown principals may be
defined arbitrarily.

We allow some roles controlled by one principal to be g-restricted while other roles
controlled by the same principal may be g-unrestricted. This provides more flexibility
than simply identifying principals as trusted and untrusted, and permits one in practice to
perform security analysis only when changing certain roles. Similarly, we allow a role
to be both g-restricted and s-unrestricted, which has the effect of making a safety check
necessary when modifying the definition of the role only if adding a new statement.

These restrictions arestaticin the sense that whether or not a state-change step is allowed
byR does not depend on the current state. A dynamic restriction could, for instance, have
B.r2 be g-restricted ifB is a member ofA.r1, which depends on the current state. Security
analysis with dynamic restrictions is potentially interesting future work.

2.4 Queries

In this paper, we consider the following three forms of queryQ:

— Membership: A.r w {D1, . . . ,Dn}

Intuitively, this means that all the principalsD1, . . . ,Dn are members ofA.r. Formally,
P ` A.r w {D1, . . . ,Dn} if and only if{Z | SP(P) |= m(A, r, Z)} ⊇ {D1, . . . ,Dn}.

— Boundedness: {D1, . . . ,Dn} w A.r

Intuitively, this means that the member set ofA.r is bounded by the given set of prin-
cipals. Formally,P ` A.r w {D1, . . . ,Dn} if and only if {D1, . . . ,Dn} ⊇ {Z |
SP(P) |= m(A, r, Z)}.

— Inclusion: X.u w A.r

Intuitively, this means that all the members ofA.r are also members ofX.u. Formally,
P ` X.u w A.r if and only if {Z | SP(P) |= m(X,u, Z)} ⊇ {Z | SP(P) |=
m(A, r, Z)}.

A membership queryA.r w {D1, . . . ,Dn} can be translated to an inclusion query
A.r w B.u, in which B.u is a new role, by addingB.u ←− D1, . . . , B.u ←− Dn to
P and makingB.u g/s-restricted. Similarly, boundedness queries can be translated to
inclusion queries as well. We include membership and bounded queries because they can
be answered more efficiently.

Each form of query can be generalized to allow compound role expressions that use
linking and intersection. However, these generalized queries can be reduced to the forms
above by adding new roles and statements to the policy. For instance,{} w A.r∩A1.r1.r2
can be answered by addingB.u1←−A.r ∩B.u2,B.u2←−B.u3.r2, andB.u3←−A1.r1
toP, in whichB.u1,B.u2, andB.u3 are new g/s-restricted roles, and by posing the query
{} w B.u1.

The three forms of queries can be varied to consider cardinality of roles rather than exact
memberships. A cardinality variant of membership queries has the form “|A.r| ≥ n”,
which means that the number of principals who are members ofA.r is no less thann. A
cardinality variant of boundedness queries has the form “n ≥ |A.r|”. Cardinality variants
of membership and boundedness queries can be answered similarly to the base queries. We
do not consider a cardinality variant of inclusion queries in this paper.
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2.5 An Example

EXAMPLE 1. The system administrator of a company, SA, controls access to some
resource, which we abstractly denote by SA.access. The company policy is the following:
managers always have access to the resource, managers can delegate the access to other
principals, but only to employees of the company. HRU is trusted for defining employees
and managers. The stateP consists of the following statements:

SA.access←− SA.manager
SA.access←− SA.delegatedAccess∩ HR.employee
SA.manager←− HR.manager
SA.delegatedAccess←− SA.manager.access
HR.employee←− HR.manager
HR.employee←− HR.programmer
HR.manager←− Alice
HR.programmer←− Bob
HR.programmer←− Carl
Alice.access←− Bob

Given the stateP above, Alice and Bob have access, Carl does not. One possiblerestric-
tion rule hasG = { SA.access, SA.manager, SA.delegatedAccess, HR.employee} andS
= { SA.access, SA.manager, SA.delegatedAccess, HR.employee, HR.manager}. We now
list some example analysis problem instances, together with the answers:

Simply safety analysis: Is “SA.accessw {Eve}” possible? (Yes.)
Simple availability analysis: Is “SA.accessw {Alice}” necessary? (Yes.)
Bounded safety analysis: Is “{Alice, Bob} w SA.access” necessary. (No.)
Containment analysis: Is “HR.employeew SA.access” necessary? (Yes.)

2.6 Usage of Security Analysis

Security analysis provides a means to ensure that safety andavailability requirements are
met and will continue to be met after policy changes are made by autonomous authorities.
Security analysis is also useful when the global state of a TMsystem is fixed, but only
partially known. For instance, previously unknown statements may be presented along
with new access requests. Thus, although the global state does not change, one’s view
of that state is changing. Thus there are many reasons why an individual or organization
using a TM system may be unable to determine a fixed state of that system. Whatever that
reason, security analysis techniques can be used to ensure that basic safety and availability
requirements are not violated by prospective changes one isconsidering making, before
putting those changes into effect. Let us make this more concrete.

A security analysis problem instance is given by a stateP, a queryQ, a quantifier for the
query (universal or existential), and a restriction ruleR. Basic security requirements can
be formalized as security analysis problem instances, together with answers to them that
are acceptable for secure operation. For instance, one safety requirement might be formal-
ized as asking whether anyone outside the organization can access a particular confidential
resource, in which case the acceptable answer would be “no.”Once a policy state has
been established that leads the analysis to produce no unacceptable answers, if prospective
changes to g/s-restricted roles result in any unacceptableanswers, the changes are con-
sidered to be in violation of the corresponding requirement, and should not be applied.
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By definition of the analysis, changes to g/s-unrestricted roles cannot cause unacceptable
answers when starting from a policy state that gives none.

One possible usage scenario for this approach is as follows.An organization’s Sys-
tem Security Officer (SSO) writes a restriction rule restricting change of some of the roles
that are under the control of principals in the organization, as well as a set of analysis-
instance/acceptable-answer pairs. The SSO then uses thesepairs and obtains the assistance
of principals within the organization to bring the current policy into compliance. This is
done by changing the policy as needed to make the analysis yield acceptable answers for
all the analysis instances. If this cannot be done, the requirements are inconsistent or out-
side the organization’s control, and must be revised. Once the policy has been brought into
compliance, principals that control restricted roles are trusted to ensure that subsequent
changes to such roles do not lead to unacceptable answers. Byrestricting only roles con-
trolled within the organization, the SSO may be able to rely on software enforcement and
other means to ensure that this trust is justified.

In the above usage, the SSO determines an analysis configuration consisting of a set
of analysis-instance/acceptable-answer pairs and a restriction rule. In general, many such
configurations can be used, each specified by a different interested party having a differ-
ent set of principals it is willing to trust to run the analysis and to enforce the analysis-
instance/acceptable-answer pairs, and hence having a different restriction rule.

It is significant to note that the usage pattern we are suggesting enables the enforce-
ment of requirements that cannot be enforced by constructs in RT[�,∩], or most other
trust management languages. This is because those languages are monotonic in the sense
that policies with more statements derive more role membership facts. By contrast, many
of the requirements expressible using analysis-instance/acceptable-answer pairs are anti-
monotonic, in the sense that adding statements to a policy that satisfies such a requirement
can yield a policy that does not. Thus there is no way to enforce such a requirement within
the language itself. This is illustrated by the example of mutual exclusion of two roles.
Monotonicity makes it impossible to express withinRT[�,∩] that a principal cannot be
added to both roles. However this is easily prevented through the usage pattern described
above.

3. ANSWERING MEMBERSHIP AND BOUNDEDNESS QUERIES

Monotonicity properties of logic programming allow us to derive efficient algorithms for
membership and boundedness queries. First,RT[�,∩] and its sub-languages are mono-
tonic in the sense that more statements will derive more rolemembership facts. This fol-
lows from the fact that the semantic program is a positive logic program. Second, mem-
bership queries are monotonic; given a membership queryQ, if P ` Q, then for every
P ′ such thatP ⊆ P ′, P ′ ` Q. Third, boundedness queries are anti-monotonic; given a
boundedness queryQ, if P ` Q, then for everyP ′ such thatP ′ ⊆ P, P ′ ` Q.

Intuitively, universal membership (simple availability)analysis and existential bound-
edness (liveness) analysis can be answered by considering the set of principals that are
members of a role in every reachable state. We call this set the lower boundof a role.
Because the restrictionR is static, there exists a minimal state that is reachable from P
andR. This is obtained fromP by removing all statements defining s-unrestricted roles.
We denote this state byP|R. Clearly,P|R is reachable; furthermore,P|R ⊆ P ′ for ev-
ery reachableP ′. SinceRT[�,∩] is monotonic, one can compute the lower bound by
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computing the role memberships inP|R.
Similarly, existential membership (simple safety) analysis and universal boundedness

(bounded safety) analysis can be answered by computing an “upper bound” of role mem-
berships. The upper bound of a role is the set of principals that could become a member of
the role in some reachable state. Intuitively, such bounds can be computed by considering
a “maximal reachable state”. However, such a “state” is not well-defined since it would
contain an infinite set of policy statements, and we only allow a state to contain a finite set
of policy statements. We will show that one can simulate the “maximal reachable state” by
a finite state and derive correct answers.

3.1 The Lower Bound

DEFINITION 3 THE LOWER BOUND PROGRAM. GivenP andR, thelower bound pro-
gram for them,LB(P,R), is constructed as follows:

For eachA.r←−D in P|R, add
lb(A, r,D) (b1)

For eachA.r←−B.r1 in P|R, add
lb(A, r, ?Z) :− lb(B, r1, ?Z) (b2)

For eachA.r←−A.r1.r2 in P|R, add
lb(A, r, ?Z) :− lb(A, r1, ?Y ), lb(?Y, r2, ?Z) (b3)

For eachA.r←−B1.r1 ∩B2.r2 in P|R, add
lb(A, r, ?Z) :− lb(B1, r1, ?Z), lb(B2, r2, ?Z) (b4)

The worst-case complexity of evaluating the lower bound program isO(|P|3), as noted at
the end of Section 2.2.

Observe that the above lower bound program is essentially the same as the semantic
program for the minimal stateP|R. They differ in that anywhereLB(P,R) uses the
predicatelb, SP(P|R) uses the predicatem. Therefore, we have the following fact.

FACT 3.1. LB(P,R) |= lb(A, r,D) if and only ifSP(P|R) |= m(A, r,D).

PROPOSITION 3.2. LB(P,R) |= lb(A, r,D) if and only if for every reachableP ′,
SP(P ′) |= m(A, r,D).

PROOF. The “only if” part: If LB(P,R) |= lb(A, r,D), then from Fact 3.1,SP(P|R) |=
m(A, r,D). For everyP ′ that is reachable,P|R ⊆ P ′. Furthermore, the language
RT[�,∩] is monotonic; therefore,SP(P ′) |= m(A, r,D).

The “if” part: if for every reachableP ′, SP(P ′) |= m(A, r,D), thenSP(P|R) |=
m(A, r,D), sinceP|R is reachable. From Fact 3.1,LB(P,R) |= lb(A, r,D).

Proposition 3.2 means that the lower bound program can be used to handle universal
membership analysis and existential boundedness analysis. This fact is formally stated
as the following two corollaries. Cardinality variants of these queries can be answered
similarly.

COROLLARY 3.3. GivenP andR, a membership queryA.r w {D1, . . . ,Dn} is nec-
essary if and only ifLB(P,R) |= lb(A, r,Di) for everyi, 1 ≤ i ≤ n.

COROLLARY 3.4. GivenP andR, a boundedness query{D1, . . . ,Dn} w A.r is pos-
sible if and only if{D1, . . . ,Dn} ⊇ {Z | LB(P,R) |= lb(A, r, Z)}.
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PROOF. For the “if” part, we must show that if{D1, . . . ,Dn} ⊇ {Z | LB(P,R) |=
lb(A, r, Z)}, then there exists a reachableP ′ such that eachD satisfyingP ′ |= m(A, r,D)
also satisfiesD ∈ {D1, . . . ,Dn}. It is easily seen by using Fact 3.1 thatP|R is such aP ′.

The “only if” part follows from Proposition 3.2 as follows. Suppose there existsZ such
that LB(P,R) |= lb(A, r, Z) andZ 6∈ {D1, . . . ,Dn}. By Proposition 3.2, for every
reachableP ′, SP(P ′) |= m(A, r, Z); therefore, the query is not possible.

Consider Example 1. The simple availability analysis instance “is SA.accessw {Alice}
necessary” is true when SA.access, SA.manager, and HR.manager are s-restricted, since
then the statements “SA.access←− SA.manager”, “SA.manager←− HR.manager”, and
“HR.manager←− Alice” exist in the minimal state. On the other hand, it is notnecessary
that Bob has access, even when SA.delegatedAccess, HR.employee, and HR.programmer
are also s-restricted, since Alice could remove her statement “Alice.access←− Bob”.

3.2 The Upper Bound

To compute the upper bound of roles, we introduce the following terminology: A role isg-
unboundedif for every principalZ, there exists a reachable stateP ′ such thatSP(P ′) |=
m(A, r, Z). In other words,A.r could have every principal as its member. A g-unrestricted
role is clearly g-unbounded. A g-restricted role may also beg-unbounded, as it may include
a g-unbounded role.

The following fact about g-unbounded roles says that one only needs to consider one
principal that does not occur inP (instead of every principal) to determine whether a role
is g-unbounded.

FACT 3.5. GivenP,R, a roleA.r, and a principalE that does not occur inP,A.r is g-
unbounded if and only if there exists a reachable stateP ′ such thatSP(P ′) |= m(A, r,E).

See Appendix A.1 for the proof. We now show how to compute the upper bound, which
simulates an infinite state.

DEFINITION 4 THE UPPERBOUND PROGRAM. GivenP, R = (G,S), their upper
bound program,UB(P,R), is constructed as follows. (> is a special principal symbol not
occurring inP,R, or any queryQ.)

Add ub(>, ?r, ?Z) (u)
For eachA.r ∈ Roles(P)− G, add

ub(A, r, ?Z) (u0)
For eachA.r←−D in P, add

ub(A, r,D) (u1)
For eachA.r←−B.r1 in P, add

ub(A, r, ?Z) :− ub(B, r1, ?Z) (u2)
For eachA.r←−A.r1.r2 in P, add

ub(A, r, ?Z) :− ub(A, r1, ?Y ), ub(?Y, r2, ?Z) (u3)
For eachA.r←−B1.r1 ∩B2.r2 in P, add

ub(A, r, ?Z) :− ub(B1, r1, ?Z), ub(B2, r2, ?Z) (u4)

As noted at the end of Section 2.2, the computational complexity for evaluating
UB(P,R) is linear in the size of the ground instantiation ofUB(P,R). There areO(|P|)
rules inUB(P,R) corresponding to(u), (u1), (u2), (u3), and(u4), which have at most
two variables per rule; therefore, the ground instantiation of these rules has total size
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O(|P|3). There areO(|P|2) instance rules of(u0), because there areO(|P|) principals and
O(|P|) role names inP. However, each such rule has only one variable, and so the ground
instantiation of these rules has sizeO(|P|3). Therefore, the computational complexity for
evaluatingUB(P,R) isO(|P|3).

PROPOSITION 3.6. Given anyP,R = (G,S),A.r ∈ Roles(P), andZ ∈ Principals(P)
∪{>}, UB(P,R) |= ub(A, r, Z) if and only if there exists a reachableP ′ such that
SP(P ′) |= m(A, r, Z).

See Appendix A.1 for the proof. From Fact 3.5 and Proposition3.6, we have the follow-
ing corollaries.

COROLLARY 3.7. A roleA.r is g-unbounded if and only ifUB(P,R) |= ub(A, r,>).

COROLLARY 3.8. GivenP andR = (G,S), a membership queryA.r w {D1, . . . ,Dn}
is possible if and only if one of the following three conditions hold: (1)A.r 6∈ G, (2)
UB(P,R) |= ub(A, r,>), or (3) UB(P,R) |= ub(A, r,Di) for everyi, 1 ≤ i ≤ n.

PROOF. WhenA.r 6∈ Roles(P), the second and the third condition will not hold; the
query is possible if and only ifA.r is g-unrestricted, i.e.,A.r 6∈ G. WhenA.r ∈ Roles(P),
the first condition implies the second condition. Condition(2) or (3) both imply that the
query is possible. If none of the three conditions holds, thequery is not possible. Condition
(2) is needed to deal with the case that some of theDi’s in the query do not occur inP.

COROLLARY 3.9. GivenP andR = (G,S), a boundedness query{D1, . . . ,Dn} w
A.r is necessary if and only ifA.r ∈ G and{D1, . . . ,Dn} ⊇ {Z|UB(P,R) |= ub(A, r, Z)}.

Consider Example 1 again and observe that the policy is not safe according to either
the simple safety instance or the bounded safety instance. One reason is that the role
HR.manager is g-unrestricted, meaning that new managers may be added. Another reason
is that the role HR.programmer is g-unrestricted; therefore, new programmers may be
added and access may be delegated to them. However, if the company knows that Eve is
an enemy, then the company probably will not hire Eve as a manager or a programmer. In
fact, simple safety is quite unnatural: to use it effectively, one has to be able to identify the
principals that should never have access, the number of suchprincipals could be arbitrary
large. Bounded safety is also unnatural, one does not know, for example, who in the future
the company will hire as a manager. A more natural policy is toensure that, for example,
only employees of the company are allowed to access the resource. This can be done by
using inclusion queries.

4. CONTAINMENT ANALYSIS: ANSWERING UNIVERSAL INCLUSION QUERIES

Inclusion queries are neither monotonic nor anti-monotonic. Given an inclusion query
X.u w Z.w and three statesP ′ ⊆ P ⊆ P ′′, it is possible thatP ` Q, but bothP ′ 6` Q and
P ′′ 6` Q. As a result, the approach taken with membership and boundedness queries is not
applicable. We cannot simply look at a specific minimal (or maximal) state and answer the
query.

In this paper, we restrict our attention to universal inclusion queries, this is the more
interesting case in terms of security properties. We say that a roleX.u containsanother
roleA.r if X.u w A.r is necessary, i.e.,X.u includesA.r in every reachable state. We
call the problem of determining whether a role contains anothercontainment analysis.
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The case where one ofX.u andA.r is not in Roles(P) is uninteresting, as follows.
If A.r 6∈ Roles(P), thenX.u containsA.r if and only if A.r is g-restricted. IfA.r ∈
Roles(P) andX.u 6∈ Roles(P), thenX.u containsA.r if and only if A.r has an upper
bound that is empty. In the rest of this section, we only consider the case that bothX.u
andA.r are inRoles(P).

Intuitively, there are two cases in which a roleX.u contains a roleA.r. The first case is
that this containment isforcedby the statements that are inP. For example, if a statement
X.u ←− A.r exists and cannot be removed, thenX.u containsA.r. A containment may
be forced by a chain of statements. Forced containment can becomputed by a method
similar to role memberships.

In the second case, containment is caused by the nonexistence of statements inP. In the
extreme case, ifA.r has no definition and is g-restricted, thenA.r is contained in every
role, since the member set ofA.r is empty in every reachable state. To compute this kind of
containment, observe that a g-restricted roleA.r is contained in another roleX.u if every
definition ofA.r is contained inX.u. If A.r has no definition at all, then it is contained in
every role. However, a straightforward translation of thisinto a positive logic program does
not work. Consider the following example:P = {A.r←−B.r1, A.r←−D, B.r1←−
A.r, X.u←−D} andR is such thatG = {A.r,B.r1} andS = {A.r,B.r1,X.u}. In any
P ′ that isR-reachable fromP, the member sets ofA.r andB.r1 are always{D}, and so
both roles are contained byX.u. A straightforward positive logic program cannot derive
this, sinceX.u containsA.r only if it containsB.r1 and vice versa. As a result, neither
containment relationship will be in the minimal model. To deal with this problem, we take
the approach to prove non-containment using the minimal model of a logic program, and
derive containment using negation-as-failure. Intuitively, X.u containsA.r unless we can
find a witness principalE that is a member ofA.r in some state but not a member ofX.u
in the same state.

Intuitively, containment analysis instances that have theflavor of availability should be
proven by forced containment. That a manager always has access to a resource should
be due to a statement chain forcing this. In Example 1, SA.access contains HR.manager
as long as SA.access and SA.manager are s-restricted. On theother hand, policy state-
ments are unlikely to force everyone who has access to a resource to be an employee;
the orientation of the forced containment does not naturally correspond to this practical
dependency. In Example 1, HR.employee contains SA.access as long as SA.access and
SA.manager are g-restricted and HR.employee is s-restricted. This is because, as long as
no new rule defining SA.access or SA.mamnager is added, any member of SA.access is
either a member of HR.manager or a member of HR.employee; if furthermore, the state-
ment “HR.employee←− HR.manager” cannot be removed, then HR.employee contains
SA.access.

4.1 Containment Analysis in RT[ ] is in P

In this section, we give algorithm to do containment analysis in RT[ ] efficiently. Recall
that the languageRT[ ] has only simple member and simple inclusion statements.

DEFINITION 5. (The Role Containment Program for RT[ ]) Given aRT[ ] stateP
andR, the role containment program,BCP(P,R), includes the lower bound program
LB(P,R) in Definition 3. In addition, it defines two 4-ary predicates:fc andnc. An atom
fc(X,u, Z,w) means thatX.u is forced to containZ.w. An atomnc(X,u, Z,w) means
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thatX.u does not containZ.w. The programBCP(P,R) is derived fromLB(P,R) as
follows. (P|R is the minimal state that isR-reachable fromP.)

Add fc(?X, ?u, ?X, ?u) (c)
For eachA.r←−B.r1 in P|R, add

fc(A, r, ?Z, ?w) :− fc(B, r1, ?Z, ?w) (c1)
For eachA.r ∈ Roles(P)− G, add

nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r) (n0)
For eachA.r ∈ G, do the following:

For eachA.r←−D in P, add
nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r),∼ lb(?X, ?u,D) (n1)

For eachA.r←−B.r1 in P, add
nc(?X, ?u,A, r) :− ∼ fc(?X, ?u,A, r),nc(?X, ?u,B, r1) (n2)

Rule (c) says that every role is forced to contain itself. The intuition behind(c1) is that,
if A.r←− B.r1 exists in every reachable state, thenA.r is forced to containB.r1. The
intuition behind(n0) is that forX.u to contain a g-unrestricted roleA.r, X.u has to be
forced to containA.r, since arbitrary new members may be added toA.r. The intuition
behind(n1) is that, sinceA.r containsD, if X.u’s lower bound does not containD, then
X.u does not containA.r unlessX.u is forced to containA.r. The “∼ fc” part is needed,
since it may be the case thatA.r ←− D can be removed andX.u ←− A.r exists and
cannot be removed, in which caseD may not be inX.u’s lower bound butX.u contains
A.r nontheless. Rule(n2) means thatX.u does not containA.r if it does not containB.r1
and is not forced to containA.r.

We now discuss the semantics of the logic programBCP(P,R), which uses negation-
as-failure, but in a stratified manner. Given a logic programDP, a predicatep (directly)
depends on another predicateq if p is defined usingq in the body. A predicatep negatively
depends onq if ∼q (the negation ofq) is used to definep. For example, inBCP(P,R), fc
depends on itself,nc depends on itself and negatively depends onfc andlb. A program is
stratifiedif the predicates defined in it can be classified into strata such that each predicate
depends only on predicates in the same or lower strata and negatively depends only on
predicates in lower strata. A program without negation is trivially stratified, as no predicate
depends negatively on any predicate at all. The programBCP(P,R) is also stratified.
Predicates in the first stratum arelb andfc, and the only predicate in the second stratum is
nc.

Most commonly accepted semantics for logic programming with negation-as-failure
agree on stratified programs. Given a stratified datalog programDP, letDP1 ∪ · · · ∪DPs

be a partition ofDPInst such thatDPj consists of clauses defining predicates in thej’th
stratum; we callDP1∪· · ·∪DPs a stratification ofDPInst. The semantics is obtained by
first computing the minimal Herbrand model ofDP1 and then use this model to determine
truthfulness of negative literals inDP2 while computing a fixpoint forDP1∪DP2, and so
on. Formally, we define an operatorΦ, which is parameterized by a ground logic program
DP ′ and a set of ground atomsM . Given a set of ground logical atomsK, ΦDP′,M (K)
consists of all ground logic atoms,a, such thata :− b1, . . . , bn,∼bn+1, . . . ,∼bn+m ∈
DP ′ andbi ∈ K andbn+j 6∈ M . Given a logic programDP andDP1 ∪ · · · ∪ DPs a
stratification ofDPInst, defineΓ1

DP to beΦDP1,∅↑
ω, i.e., the least fixpoint ofΦDP1,∅.
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DefineΓk+1
DP to beΦDP1∪···∪DPk+1,Γk

DP

↑ω for 1 ≤ k ≤ s − 1. Then the model ofDP

is Γs
DP . EachΓi

DP can be calculated in polynomial time, so the semantics of a stratified
program can also be computed in polynomial time.

The following lemma says that thefc predicate inBCP is always sound for role con-
tainment, and it is complete when the second role is g-unrestricted.

LEMMA 4.1. Given aRT[ ] stateP, R, two rolesX.u andA.r, if BCP(P,R) |=
fc(X,u,A, r), thenX.u containsA.r. If X.u containsA.r andA.r is g-unrestricted, then
BCP(P,R) |= fc(X,u,A, r).

See Appendix A.2 for the proof. The following proposition says that role containment in
RT[ ] can be answered by using the programBCP(P,R).

PROPOSITION 4.2. Given aRT[ ] stateP,R, and two rolesX.u andA.r in Roles(P),
BCP(P,R) |= nc(X,u,A, r) if and only ifX.u does not containA.r.

See Appendix A.2 for the proof.

4.2 Containment Analysis in RT[∩] is coNP-complete

RT[∩] adds toRT[ ] intersections, which have the effect of conjunction. A rolecan be
defined by multiple statements, which have the effect of disjunction. As a result,RT[∩] can
simulate formulas in propositional logic, and containmentanalysis subsumes determining
validity of propositional formulas, which iscoNP-complete.

THEOREM 4.3. Containment analysis inRT[∩] is coNP-complete.

See Appendix A.3 for the proof. ThecoNP-hard part is by reducing the monotone 3SAT
problem, which isNP-complete, to the complement of containment analysis inRT[∩].
The reduction does not use s-unrestricted roles, and it is straightforward to change the
proof to not use g-unrestricted roles. This shows that containment analysis inRT[∩] where
all roles are g-restricted or where all roles are s-restricted is stillcoNP-complete.

4.3 Containment Analysis in RT[�] is PSPACE-complete

RT[�] adds linked roles toRT[ ]. We first prove that containment analysis inRT[�]
without roles that can grow iscoNP-complete.

THEOREM 4.4. Containment analysis inRT[�] where all roles inRoles(P) are g-
restricted iscoNP-complete.

See Appendix A.3 for the proof. The key observation used in the proof is that linked
roles, similar to intersection, can simulate logical conjunction. Recall that the semantic
rule for linking inclusion statements,(m3), has a conjunction in the body, similar to that
for intersection inclusion statements,(m4).

The case in which some roles inRoles(P) are g-unrestricted is more interesting. The
main result of this section if the following theorem.

THEOREM 4.5. Containment analysis inRT[�] where all roles inRoles(P) are s-
restricted isPSPACE-complete.

Theorem 4.5 enables us to establish the exact complexity bound for containment analysis
in RT[�].

THEOREM 4.6. Containment analysis inRT[�] is PSPACE-complete.
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PROOF. Since the cases where all roles inRoles(P) are s-restricted are special cases of
the problems here,PSPACE-hardness follows immediately from Theorem 4.5.

Given a containment analysis problem instance:RT[�] stateP, a restriction ruleR =
(G,S), and an inclusion queryQ, use the following algorithm. For eachP ′ such thatP ′ ⊆
P andP ′ is R-reachable fromP, do containment analysis forP ′, R′ = (G,Roles(P)),
andQ. The algorithm answers “no” if there exists aP ′ such that containment analysis
answers no. Otherwise, the algorithm answers “yes”.

¿From Theorem 4.5, we know that containment analysis withP ′ andR′ takes space
polynomial inn = |P ′| + |R′|, Sincen is polynomial in|P| + |R|, this algorithm takes
space polynomial in the size of the original input. If the containment does hold, then
clearly this algorithm answers “yes”. If the containment does not hold, then there exists
a reachable stateP1 and a principalE such thatSP(P1 ) |= m(A, r,E) andSP(P ′) 6|=
m(X,u,E). ConsiderP0 = P ∩ P1, P0 is reachable; furthermore,P1 is R′-reachable
fromP0; therefore, the algorithm answers “no”.

In the rest of this section, we prove Theorem 4.5. Our proof uses the relationships
between statements inRT[�] and string rewriting systems, which we introduce now.

4.3.1 RT[�] as String Rewriting Systems.Statements inRT[�] can be viewed as
rewriting rules. For example, the statementA.r←−B.r1 can be viewed as the rewriting
rule A r 7→ B r1. The alphabet consists of all principals and role names. We only
consider rewriting over the set ofname strings, i.e., strings that have the form of a principal
followed by zero or more role names. When rewriting a name stringω using rewriting rules
corresponding to statements inRT[�], the rewriting only occurs on the left most, and the
resulting string is also a name string.

DEFINITION 6 RS[P]. Given a setP of RT[�] statements, letRS[P] be the rewriting
system generated by viewing each statement inP as a rewriting rule. Given two name
stringsω1 andω2, we writeRS[P] � ω1 � ω2 if one can rewriteω1 into ω2 in one step

using a rewriting rule inRS[P]. We writeRS[P] � ω1
∗

� ω2 if using rewriting rules in
RS[P], one can rewriteω1 into ω2 in zero or more steps.

We definestrP(A.r) to denote the set{ω | RS[P] �A.r
∗

� ω}. We definememP(A.r)
to denote the set of principals instrP(A.r).

PROPOSITION 4.7. Given a setP of RT[�] statements,SP(P) |= m(A, r,D) if and

only if RS[P] �A r
∗

� D.

See Appendix A.4 for the proof.
RT[�] is equivalent to SDSI [Clarke et al. 2001]. Jha and Reps [Jha and Reps 2002]

pointed out that SDSI string rewriting systems correspond exactly to the class of string
rewriting systems modelled using push-down systems [Bouajjani et al. 1997]. The same
applies to the rewriting systems generated byRT[�] statements.

Pushdown systems (PDSs) are similar to pushdown automata; however, unlike push-
down automata they do not have an input alphabet. Thus PDSs should not be viewed
as language recognizers, but as mechanisms that specify possibly infinite-state transition
systems.

A pushdown system is a triplet(Π,Γ,∆), whereΠ is a finite set of control locations,Γ
is a finite stack alphabet, and∆ ⊆ (Π× Γ)× (Π× Γ∗) is a finite set of transition rules. If
((q, γ), (q′, ω)) ∈ ∆, then we write it as〈q, γ〉 ↪→ 〈q′, ω〉.
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A configurationof a PDS is a pair〈q, ω〉, whereq ∈ Π is a control location andω ∈ Γ∗

represents the stack contents (from the top of the stack to the bottom of a stack). We say
that a configuration〈q, ω1〉 can directly reach a configuration〈q′, ω2〉 if 〈q, γ〉 ↪→ 〈q′, ω〉,
ω1 = γω′

1, andω2 = ωω′
1, i.e., there . We then define reachability among configurations

in the straightforward manner.
Esparza et al. [Esparza et al. 2000] showed that given a PDS(Π,Γ,∆), the set of all

configurations reachable from a regular set of configurations that is recognized by an NFA
A is recognized by an NFA that has size polynomial inn = |Π|+ |Γ|+ |∆|+ |A| and that
can be constructed in time polynomial inn.

4.3.2 Containment analysis inRT[�] without shrinking is inPSPACE . The key
relationship between an instance of containment analysis and string rewriting lies in the
following definition of characteristic sets.

DEFINITION 7 CHARACTERISTIC SET. Given aRT[�] stateP, a restriction ruleR,
and a roleA.r, the characteristic set ofA.r, denoted byχP,R(A.r), is defined to be
strP(A.r) ∩ κ[P,R], where

κ[P,R] = Principals(P) ∪ {B r γ |B.r is g-unrestricted andγ ∈ Names(P)∗}

The roleX.u contains the roleA.r if no matter how one adds a principal as a new mem-
ber toA.r, X.u also gets the principal as a member. Intuitively, each string in χP,R(A.r)
represents a distinct source of adding new members to the roleA.r. Furthermore, the set
χP,R(A.r) describes all the ways of adding new members of the roleA.r. Therefore, one
can use characteristic sets to solve containment analysis.

LEMMA 4.8. GivenP andR,X.u containsA.r if and only ifχP,R(X.u) ⊇ χP,R(A.r).

PROOF. We first prove that ifχP,R(X.u) 6⊇ χP,R(A.r) thenX.u does not contain
A.r. If χP,R(X.u) 6⊇ χP,R(A.r), then there exists a stringω = B r1 · · · rk such that
ω ∈ χP,R(A.r) andω 6∈ χP,R(X.u). ConsiderP ′ = P ∪ {B.r1 ←− C1, C1.r2 ←−
C2, · · · , Ck−1.rk←−Ck}, whereC1, C2, · · · , Ck do not occur inP orR. P ′ is a reach-

able state.RS[P ′] � A r
∗

� B r1 · · · rk
∗

� Ck. From Proposition 4.7,SP(P ′) |=
m(A, r, Ck). We now show thatSP(P ′) 6|= m(X,u,Ck). Suppose, for the sake of con-

tradiction, thatSP(P ′) |= m(X,u,Ck). From Proposition 4.7,RS[P ′] � X u
∗

� Ck.
Consider the rewriting sequence, the rule applied in the last step has to beCk−1 rk 7→ Ck,
since that is the only rule having aCk on its right hand side. The rule applied in the second
to last step has to beCk−2 rk−1 7→ Ck−1, since that is the only rule havingCk−1 on its
right-hand side, and so on. Therefore, the rewriting sequence must contains in its middle
a sequence rewriting fromX u to B r1 · · · rk. Further observe that the rules inP ′ but

not inP cannot be applied in this middle sequence. Therefore,RS[P] �X u
∗

� ω. This
contradicts the assumption thatω 6∈ χP,R(X.u).

We now prove that ifX.u does not containA.r thenχP,R(X.u) 6⊇ χP,R(A.r). If X.u
does not containA.r, then there exists a reachable stateP ′ and a principalE such that
SP(P ′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). From Proposition 4.7, it follows that

RS[P ′] � A r
∗

� E. Consider the rewriting sequence that rewritesA r into E; let the

sequence beA r
∗

� ω1 � ω2
∗

� E, such that the step fromω1 to ω2 is the first step that
uses a statement not inP. Clearly,ω1 ∈ χP,R(A.r) andω1 6∈ χP,R(X.u).
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¿From the above lemma, we know that whether a role contains another can be deter-
mined by checking containment among character sets.

PROPOSITION 4.9. Containment analysis inRT[�] where all roles inRoles(P) are
s-restricted is inPSPACE.

PROOF. Given aRT[�] stateP, a restriction ruleR, to determine whetherX.u contains
A.r, it suffices to check whetherχP,R(X.u) ⊇ χP,R(A.r). One can construct an NFA to
recognizeχP,R(A.r) in time polynomial in|P| + |R|, and the NFA has size polynomial
in |P|+ |R|. This is becauseχP,R(A.r) = strP(A.r) ∩ κ[P,R], and bothstrP(A.r) and
κ[P,R] are recognized by NFAs that can be constructed in time polynomial in |P|+ |R|.
Similarly, one can construct a poly-size NFA to recognizeχP,R(X.u). It is known that
determining containment of languages accepted by NFAs is inPSPACE [Hunt et al.
1976].

4.3.3 Containment Analysis inRT[�] is PSPACE-hard. It is known that contain-
ment among regular languages that are represented using NFAs isPSPACE-complete,
even when the alphabet has just two elements. (When regular languages are described us-
ing DFAs, the complexity isNLOGSPACE-complete.) We consider empty-string-free
regular languages over{0, 1}. They can be represented by a form of right linear gram-
mars such that each production rule has one of the following two forms:N1 ::= N2b, and
N1 ::= b, whereN1 andN2 are nonterminals andb ∈ {0, 1}.

PROPOSITION 4.10. Containment Analysis inRT[�] where all roles inRoles(P) are
s-restricted isPSPACE-hard.

PROOF. Given two empty-string free regular languages over{0, 1}, L1 andL2. They
can be represented using one setG of production rules, but with different start symbolsS1

andS2. For any nonterminalN in G, we writeLG(N) to denote the language generated
byG when usingN as the start symbol.

We now reduce the problem of determining whetherLG(S1) ⊇ LG(S2) to a contain-
ment analysis problem. We use two principalsA,B, two role namesu0 andu1, and one
role namerN for each nonterminalN . We definePG to have the following statements.
For each productionN ::= N ′b in G, PG hasA.rN ←−A.rN ′ .ub. For each production
N ::= b, introduce a statementA.rN ←− B.ub. We defineRG to be such that all roles
started withA are g/s-restricted, and all roles started withB are g-unrestricted.

It is not hard to see that a stringb1b2 · · · bk ∈ L(N) if and only if RS[PG] � A rN
∗

�

B.ub1 .ub2 . · · · .ubk
. One can further verify that there exists a one-to-one mapping from

strings in LG(N) to χPG,RG
(A.rN ) such thatLG(N1) ⊇ LG(N2) if and only if

χPG,RG
(A.rN1

) ⊇ χPG,RG
(A.rN2

). From Lemma 4.8, it follows thatLG(N1) ⊇
LG(N2) if and only ifA.rN1

containsA.rN2
.

4.4 Containment Analysis for RT[�,∩] is in coNEXP

THEOREM 4.11. Containment analysis inRT[�,∩] is in coNEXP.

See Appendix A.5 for the proof. The proof shows that if there exists a counter example to
the containment relation, i.e., there exists a reachable state in which the inclusion does not
holds, then there exists such a reachable state of size at most exponential in the input size.
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We have shown that containment analysis forRT[�,∩] is PSPACE-hard (from The-
orem 4.5) and is incoNEXP. The exact complexity is still unknown. We tried applying
the approach forRT[�] to the case ofRT[�,∩], and we now discuss the difficulties
of this approach. There is a natural mapping betweenRT[�] and pushdown systems.
RT[�,∩], which adds toRT[�] intersection inclusion statements, can be mapped to al-
ternating pushdown systems. An alternating pushdown system (APDS for short) is a triplet
(Π,Γ,∆), whereΠ andΓ are the same as for PDSs, and∆ is a function that assigns to
each element of(Π × Γ) a negation-free boolean formula over elements ofΠ × Γ∗. If
∆(q, γ) = (q1, ω1) ∧ (q2, ω2), then for everyω ∈ Γ∗, the immediate successor of〈q, γω〉
is the set{〈q1, ω1ω〉, 〈q2, ω2ω〉}. Intuitively, at the configuration〈q, γω〉 the APDS forks
into two copies in the configurations〈q1, ω1ω〉 and 〈q2, ω2ω〉. Because of the mapping
from RT[�,∩] to APDSs, theRT[�,∩] containment analysis problem is reduced to de-
termining containment of the reachable frontiers of two APDSs. Each frontier is a set of
configurations of a set of PDSs. Unfortunately, in this case the reduction does not currently
assist us in determining a tighter upper bound than the one wehave already. In particular,
it is not clear how to encode all the reachable frontiers (a set of sets of strings) succinctly.2

5. DISCUSSIONS AND RELATED WORK

We have shown that containment analysis is intractable inRT[∩], RT[�], andRT[�,∩].
This means that it is extremely unlikely that we will find an algorithm that is both sound
and complete, and also has a worst-case polynomial time complexity. However, heuristic
approaches are still possible. For example, it is not difficult to extend our LP-based ap-
proach for containment analysis inRT[ ] to the case ofRT[�] andRT[�,∩], such that
containment relationships in Example 1 can be proved correctly. A possible approach is
to use a sound but incomplete method and a complete but unsound method together to ap-
proximate the exact answer. Such a heuristic approach may beuseful in practice, as it can
give an exact answer in most cases. How to evaluate the effectiveness of such methods is
interesting future work.

On the other hand, we have shown that in our TM model, simple safety analysis can
be solved efficiently. As discussed in Section 1, security analysis in the form of simple
safety analysis has been studied in the HRU model [Harrison et al. 1976], and shown to
be undecidable there. In this section we study the relationships between the two models,
arguing informally that the HRU model does not include our TMmodel as a special case,
and showing that there is an intuitive reason why security analysis in our model is decid-
able. We also seek to clarify the relationship between how trusted users are modelled in
the two approaches. After this discussion of related work insafety analysis, we go on to
discuss related work in trust management.

5.1 Comparison with the HRU Access Matrix Model

In the HRU model [Harrison et al. 1976], aprotection systemhas a finite set of rights and a
finite set of commands. Aconfigurationof a protection system is an access control matrix,
with rows corresponding to subjects, and columns corresponding to objects; each cell in
the matrix is a set of rights. A command takes the form of “if a list of conditions hold,
execute a sequence of primitive operations.” Each condition tests whether a right exists in

2The difficulty of encoding such a set of frontiers was pointedout to us by Ahmed Bouajjani in personal com-
munication.
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a cell in the matrix. There are six kinds of primitive operations: enter a right into a specific
cell in the matrix, delete a right from a cell in the matrix, create a new subject, create a
new object, destroy an existing subject, and destroy an existing object. A command may
be parameterized, with parameters being subjects or objects. In [Harrison et al. 1976],
Harrison et al. proved that for the HRU model, the safety question is undecidable, by
showing that any Turing machine can be simulated by a protection system. For a fixed set
of mono-operational commands, safety can be determined in time polynomial in the size
of the access control matrix. However, if commands are a parameter to the problem, the
safety problem isNP-complete.

In our model, given a stateP, the minimal Herbrand model ofSP(P) is a set of ground
logical atoms. An atomm(A, r,D) means thatD is a member ofA’s r role. When
A represents a resource, this can be viewed asD having the rightr overA. Therefore,
one can view principals as both subjects and objects and viewrole names as rights. This
defines a straightforward mapping between the semantics ofP and an access matrix. If all
we have are simple member statements, then adding (or removing)A.r←−D corresponds
to adding (or removing)r to the cell on rowD and columnA. Adding a simple inclusion
statementA.r←− B.r1 can be viewed as adding a trigger program, which for each row
D, use parametersA,B,D to execute the following command: “a2(x, y, z) { if r1 in cell
(y, z), addr to cell(x, z) }”. Note that this trigger program needs to be executed whenever
the matrix changes. For example, if afterA.r ←− B.r1 is added, addingB.r1 ←− E

will need to result inr being added to the cell(A,E). The statementA.r ←− B.r1
givesB the power to add things toA’s column, which represents a delegation. Similarly,
adding a linking inclusion statementA.r←− A.r1.r2 can be viewed as adding a trigger
program that executes the following command with parametersA,D,E for everyD and
E: “a3(x, y, z) { if r1 in cell (x, y), andr2 in cell (y, z), addr to cell (x, z) }”. Adding
intersection inclusion statement can be viewed in a similarmanner. It is not clear how to
model removing a statement using this approach.

There might be other ways of encoding our TM model in the HRU access matrix model,
but the above encoding seems quite natural. From it, we make the following observations.

It seems unlikely that the HRU model subsumes the TM model as aspecial case. First,
in the TM model, creating and removing principals are implicit. A principal can be viewed
as created if it is used. A principal is considered removed ifno statement mentions it. One
could view the matrix as having an infinite number of rows and columns; however, only
finitely many cells are nonempty. Second, one step of change in the TM model corresponds
to executing many (one for every object when adding a simple inclusion or an intersection
inclusion statement, or one for every pair of objects when adding a linking inclusion state-
ment) simple commands in the HRU model. Third, triggers needto be used in order to
achieve the effect of propagation. The last two are the main power of the TM model, and
they do not exist in the HRU model.

That our TM model cannot subsume the HRU model is immediate from the complexity
bounds. The underlying reason is that the HRU commands we useto partially simulate our
TM model have fixed schemas, instead of being arbitrary programs. As a result, we can
exploit the properties of these fixed schemas. This seems to be the main reason that safety
analysis, or the even more powerful containment analysis, is decidable in our model, but
not in the HRU model.
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Handling Trusted Subjects.Intuitively, a specific protection system is “safe” if access
to resources without concurrence of the owner is impossible. However, protection systems
often allow the owner to share rights to the resources. In that sense, they are not safe; the
HRU model uses a weaker notion of safety: a user should be ableto tell whether what he is
about to do can lead to the further leakage of that right to untrusted subjects. The following
is quoted from [Harrison et al. 1976].

To avoid a trivial “unsafe” answer becauses himself can confer generic rightr,
we should in most circumstances deletes itself from the matrix. It might also
make sense to delete from the matrix any other “reliable” subjects who could
grantr, but whoms “trusts” will not do so. It is only by using the hypothetical
safety test in this manner, with “reliable” subjects deleted, that the ability to
test whether a right can be leaked has a useful meaning in terms of whether it
is safe to grant a right to a subject.

Note that deleting a “reliable” subject from the matrix is stronger than stopping it from
granting a right. Deleting a subject from the matrix will prevent the analysis from suc-
cessfully simulating the execution of commands that check rights in the row or column
corresponding the subject. However, it is inappropriate toignore such commands: they
may add undesirable rights and they may be initiated by “unreliable” subjects. In such
cases, a system that is safe after the “reliable” subjects are removed is not safe in the actual
system, even if “reliable” subjects do not initiate any command.

In our TM model, the restriction ruleR represents the intuitive notion that certain princi-
pals are trusted. In practice, principals are controlled byusers. When principals represent
resources, the controller is the subject who controls access to the resource. When principals
represent public keys, the controller is the user who knows the private key.

5.2 Related Work in Trust Management

To our knowledge, no prior work investigates security analysis for trust management sys-
tems in the sense of verifying security properties that consider state changes in which
(parametric) restrictions are placed on allowed changes. In [Chander et al. 2001], a state
transition model is used for comparing the expressive powerof different access control
mechanisms such as access control lists and trust management. There, security analysis is
not the purpose. The languageRT[�,∩] is closely related to SDSI, whose semantics and
evaluation has been the subject of many previous works [Abadi 1998; Clarke et al. 2001;
Halpern and van der Meyden 2001; Jha and Reps 2002; Li 2000; Liet al. 2003]. One main
difference our work has is that we consider restricted statechanges. We now list some
similarities. The semantic approach we use is very similar to the semantics in [Halpern
and van der Meyden 2001]. Both [Abadi 1998] and [Halpern and van der Meyden 2001]
consider inclusion queries in additional to membership queries. In some sense, they try to
answer queries that hold when arbitrary new statements could be added, i.e., every role is
g-unrestricted and s-restricted; the case that some roles are g-restricted is not considered.
In [Jha and Reps 2002], evaluating queries given a set of SDSIstatements is reduced to
model checking pushdown systems; there, only a fixed set of SDSI statements is consid-
ered, which are encoded as transition rules in the automata.Other works [Clarke et al.
2001; Li 2000; Li et al. 2003] do not handle inclusion queriesor consider restricted state
changes.
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6. CONCLUSION

Trust management systems such asRT allow independent principals to delegate partial
authority over resources. While this is useful in many situations, delegation also raises
the possibility of unanticipated and undesirable access. If Alice delegates access to her
friend Bob, how can she be sure that Bob does not give permissions to her enemy Carol?
We address this question by studying several forms of safetyand availability properties,
including general containment analysis that capture both safety and availability.

Although the trust management primitives we consider are more expressive than some
aspects of the HRU model [Harrison et al. 1976], our main results show that persistence
of nontrivial safety and availability properties may be algorithmically tractable. Specifi-
cally, membership queries and boundedness queries, both involving containment between
a role and a fixed set of principals, can be answered using datalog programs that run in
polynomial time. For general inclusion queries, we look at several cases involving differ-
ent policy sub-languages. ForRT[ ], which only allows membership and delegation policy
statements, containment for all reachable states is computable by a stratified datalog pro-
gram with negation in polynomial time. ForRT[∩], which isRT[ ] plus intersection, the
problem becomescoNP-complete. Intuitively, the reason is that multiple statements about
a role represent disjunction, while intersection of roles provides a corresponding form of
conjunction. ForRT[�], which isRT[ ] plus role linking, role containment for all reach-
able policy states isPSPACE-complete. ForRT[�,∩], which includes role linking, the
problem remains decidable; our current upper bound iscoNEXP (or double-exponential
time) and lower bound isPSPACE-hard.

We believe that security analysis is a critical problem for trust management. While com-
bining policy statements from independent principals has practical appeal, the flexibility of
distributed policy comes at a price. An individual or organization that owns a resource no
longer has a direct way to determine who may be able to access the resource in the future.
The key to providing assurance to trust management users is to develop security analysis
methods. The present paper identifies and solves certain security analysis problems, but
additional work remains. Exact complexity bound for containment analysis inRT[�,∩]
is still open. Although containment analysis has no efficient algorithm in the worst case,
there may be tractable subcases or useful heuristics. We also leave open for future work the
consequences of more intricate restriction on policy changes. For example, it may be use-
ful to impose restrictions that depend on the current policy, possibly formulated as policy
invariants in some specification language.
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A. PROOFS

A.1 Proofs of Fact 3.5 and Proposition 3.6

Fact 3.5: GivenP, R, a roleA.r, and a principalE that does not occur inP, A.r is g-
unbounded if and only if there exists a reachable stateP ′ such thatSP(P ′) |= m(A, r,E).

PROOF. The “only if” part follows from the definition of g-unbounded roles.
In the “if” part, becauseRT[�,∩] is monotonic, we can assume without loss of gen-

erality thatP ′ is derived fromP by adding some statements; letP ′ = P ∪ P1. Given
any principalZ, one can replace withZ all occurrence ofE in the bodies of statements in
P1, obtaining a new set of statements,P2. Let P ′′ = P ′ ∪ P2. P ′′ is reachable fromP
because it modifies the definitions of the same roles as doesP ′. We show thatSP(P ′′) |=
m(A, r, Z) by using induction oni to show that for allA.r, if m(A, r,E) ∈ TSP(P′)↑

i,
thenSP(P ′′) |= m(A, r, Z). The basis is trivially satisfied becauseTSP(P′)↑

0= ∅. In the
step,m(A, r,E) ∈ TSP(P′)↑

i+1. This must be due to one of the four rules inSP(P ′),
(m1), (m2), (m3), or (m4), which gives us the four following cases:

Case(m1): A.r←− E ∈ P ′. By construction ofP ′′, A.r←− Z ∈ P ′′. SP(P ′′) |=
m(A, r, Z) follows from (m1).

Case(m2): A.r←−B.r1 ∈ P ′ andm(B, r1, E) ∈ TSP(P′)↑
i. The induction hypothe-

sis now gives usSP(P ′′) |= m(B, r1, Z), from whichSP(P ′′) |= m(A, r, Z) follows by
(m2).

Case(m3): A.r←−A.r1.r2 ∈ P ′ andm(A, r1, B),m(B, r2, E) ∈ TSP(P′)↑
i for some

B. The induction hypothesis now gives usSP(P ′′) |= m(B, r2, Z). Fromm(A, r1, B) ∈
TSP(P′)↑

i, we haveSP(P ′) |= m(A, r1, B), which gives usSP(P ′′) |= m(A, r1, B) by
monotonicity ofRT[�,∩]. We now haveSP(P ′′) |= m(A, r, Z) by (m3).

Case(m4): A.r←−B1.r1 ∩B2.r2 ∈ P
′ andm(B1, r1, E),m(B2, r2, E) ∈ TSP(P′)↑

i.
This case proceeds similarly to case(m2) above.

Proposition 3.6: Given anyP, R = (G,S), A.r ∈ Roles(P), andZ ∈ Principals(P) ∪

{>}, UB(P,R) |= ub(A, r, Z) if and only if there existsP ′ such thatP
∗
7→R P

′ and
SP(P ′) |= m(A, r, Z).

PROOF. The “only if” part (Soundness): IfUB(P,R) |= ub(A, r, Z), considerP ′ =
P ∪ {X.u←−Z |X.u ∈ Roles(P)−G}. We show by induction oni that if ub(A, r, Z) ∈
TUB(P,R)↑

i, thenSP(P ′) |= m(A, r, Z). The basis is trivial. In the step,ub(A, r, Z) ∈
TUB(P,R)↑

i+1, one of the rules inUB(P,R) is used to derive this. Case(u) is impossible,
asA 6= >. Case(u0): A.r ∈ Roles(P) − G, by construction ofP ′, A.r←−Z ∈ P ′. So
SP(P ′) |= m(A, r, Z) follows immediately by(m1). Case(u1): A.r←−Z ∈ P ⊆ P ′.
In this case,SP(P ′) |= m(A, r, Z) also follows immediately by(m1).

Case(u2): A.r←−B.r1 ∈ P ⊆ P ′ andub(B, r1, Z) ∈ TUB(P,R)↑
i. The induction

assumption now gives usSP(P ′) |= m(B, r1, Z), from which SP(P ′) |= m(A, r, Z)
follows by (m2).

Case(u3): A.r←−A.r1.r2 ∈ P ⊆ P ′ andub(A, r1, B), ub(B, r2, Z) ∈ TUB(P,R)↑
i

for someB. The induction assumption now gives usSP(P ′) |= m(A, r1, B),m(B, r2, Z),
from whichSP(P ′) |= m(A, r, Z) follows by (m3).

Case(u4): A.r ←− B1.r1 ∩ B2.r2 ∈ P ⊆ P
′ andub(B1, r1, Z), ub(B2, r2, Z) ∈

TUB(P,R)↑
i. The induction assumption now gives usSP(P ′) |= m(B1, r1, Z),m(B2, r2, Z),

from whichSP(P ′) |= m(A, r, Z) follows by (m4).
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The “if” part (Completeness): Suppose that there exists a reachable stateP ′ such that
SP(P ′) |= m(A, r, Z). If A.r 6∈ G, thenUB(P,R) |= ub(A, r, Z) from (u0). For the
case in whichA.r ∈ G, we use induction oni to show that ifm(A, r, Z) ∈ TSP(P′)↑

i, then
UB(P,R) |= ub(A, r, Z). The basis is trivial. In the step, there are four cases. Case(m1):
A.r←−Z ∈ P ′. FromA.r ∈ G, we haveA.r←−Z ∈ P. SoUB(P,R) |= ub(A, r, Z)
follows by using(u1).

Case(m2): A.r←−B.r1 ∈ P ′ andm(B, r1, Z) ∈ TSP(P′)↑
i. The induction hypoth-

esis gives usUB(P,R) |= ub(B, r1, Z), from which we obtain the desiredUB(P,R) |=
ub(A, r, Z) by (u2).

Case(m3): A.r←−A.r1.r2 ∈ P ′ andm(A, r1, B),m(B, r2, Z) ∈ TSP(P′)↑
i for some

B. The induction hypothesis gives usUB(P,R) |= ub(A, r1, B), ub(B, r2, Z), from
which we obtain the desiredUB(P,R) |= ub(A, r, Z) by (u3).

Case(m4): A.r←−B1.r1 ∩B2.r2 ∈ P
′ andm(B1, r1, Z),m(B2, r2, Z) ∈ TSP(P′)↑

i.
This case is similar to the ones above.

A.2 Proof of Lemma 4.1 and Proposition 4.2

We introduce the following terminology for the proof. The programBCP(P,R) has a
stratification of two strata. DefineBCP1 to be the ground instantiation of clauses defining
lb and fc in BCP(P,R), andBCP2 to the ground instantiation of clauses definingnc.
(We useBCP instead ofBCP(P,R) for succinctness.) We writeBCP |= a if a ∈ Γ2

BCP
.

Whena is a ground instance offc or lb, we writeBCP |=i a if a ∈ ΦBCP1,∅↑
i. Whena

is a ground instance ofnc, we writeBCP |=i a is a ∈ ΦBCP1∪BCP2,Γ1
BCP

↑i.

Lemma 4.1: Given aRT[ ] stateP,R, two rolesX.u andA.r, if BCP(P,R) |= fc(X,u,A, r),
thenX.u containsA.r. IfX.u containsA.r andA.r is g-unrestricted, thenBCP(P,R) |=
fc(X,u,A, r).

PROOF. Soundness: IfBCP |= fc(X,u,A, r), then there exists an integeri such that
BCP |=i fc(X,u,A, r). Induction oni. The basis is trivial, asΦBCP1,∅↑

0= ∅. Consider
the step; eitherc or (c1) is used to deduce thatBCP |=i+1 fc(X,u,A, r). Case(c): it must
be thatX.u = A.r, so it is trivial thatX.u containsA.r. Case(c1): X.u←−B.r1 ∈ P|R
andBCP |=i fc(B, r1, A, r). By induction hypothesis,B.r1 containsA.r. Furthermore,
X.u←−B.r1 exists in every reachable state; therefore,X.u containsA.r.

Completeness: SupposeX.u containsA.r andA.r is g-unrestricted. ConsiderP ′ =
P|R ∪ (A.r ←− E), in whichE does not occur inP. Observe thatX.u includesA.r is
true, sinceP ′ is reachable. SinceSP(P ′) |= m(A, r,E), it must be thatm(X,u,E) ∈
TSP(P′)↑

i for somei. To complete the proof, we use induction oni to show that for each
Y.u, if m(Y, u,E) ∈ TSP(P)↑

i, thenBCP |= fc(Y, u,A, r). Basis is trivial. In the step,
one of (m1) and (m2) is used to deduce thatm(Y, u,E) ∈ TSP(P′) ↑

i+1. Case(m1):
Y.u←− E ∈ P ′, it must be thatY.u = A.r, sinceE does not occur inP. From (c),
BCP |= fc(Y, u,A, r). Case(m2): Y.u←−Y1.u1 ∈ P

′, andm(Y1, u1, E) ∈ TSP(P′)↑
i.

By definition ofP ′, Y.u←−Y1.u1 ∈ P|R. From(c1), fc(Y, u, ?Z, ?w) :− fc(Y1, u1, ?Z, ?w) ∈
BCP . By induction hypothesis,BCP |= fc(Y1, u1, A, r), clearlyBCP |= fc(Y, u,A, r).

Before proving Proposition 4.2, we first prove two auxiliarylemmas. Readers may wish
to read the main proof first and refer to the two lemmas when they needed. The following
lemma is used to prove the soundness of(n1).
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LEMMA A.1. Assume we are givenP in RT[ ], R, two rolesX.u and A.r, and a
principal D such thatSP(P|R) 6|= m(X,u,D). Let P ′ = P|R ∪ {A.r ←− D}. If
SP(P ′) |= m(X,u,D), thenBCP |= fc(X,u,A, r).

PROOF. We use induction oni to prove that for anyZ.w such thatSP(P|R) 6|= m(Z,w,D),
if m(Z,w,D) ∈ TSP(P′)↑

i, thenBCP |= fc(Z,w,A, r).
The basis is trivial. In the step, one of(m1) and(m2) is used to derivem(Z,w,D) ∈

TSP(P′)↑
i+1. Case(m1): Z.w←−D ∈ P ′. It must be thatZ.w = A.r, since it cannot be

thatZ.w←−D ∈ P|R. By (c), BCP |= fc(Z,w,A, r). Case(m2): Z.w←−Z1.w1 ∈ P
′

andm(Z1, w1,D) ∈ TSP(P′)↑
i. It follows thatZ.w←−Z1.w1 ∈ P|R, by definition ofP ′.

And it follows thatSP(P|R) 6|= m(Z1, w1,D), since otherwiseSP(P|R) |= m(Z,w,D),
which is contradictory. Now, by induction hypothesis,BCP |= fc(Z1, w1, A, r), so the
desired result holds by(c1).

The following lemma says that(n2) is sound.

LEMMA A.2. Assume we are given aRT[ ] stateP,R, and three rolesX.u,A.r,B.r1,
such thatA.r←− B.r1 ∈ P, BCP(P,R) 6|= fc(X,u,A, r), andX.u does not contain
B.r1. ThenX.u does not containA.r.

PROOF. SinceX.u does not containB.r1, there exists a reachable stateP ′ and a prin-
cipalE such thatSP(P ′) |= m(B, r1, E) andSP(P ′) 6|= m(X,u,E). We now construct
aP ′′ such thatSP(P ′′) |= m(A, r,E) andSP(P ′′) 6|= m(X,u,E). P ′′ is obtained from
P ′ by first removing anyZ.w←−Z1.w1 ∈ P

′ −P|R such thatSP(P ′) 6|= m(Z1, w1, E),
and then addingA.r←−B.r1. Clearly,P ′′ is reachable. By induction on howm(A, r,E)
is proven inSP(P ′), it is easy to show thatSP(P ′′) |= m(A, r,E).

To prove thatSP(P ′′) 6|= m(X,u,E), we use induction oni to prove that for any
Z.w such thatSP(P ′) 6|= m(Z,w,E), if m(Z,w,E) ∈ TSP(P′′) ↑

i, then BCP |=
fc(Z,w,A, r). The basis is trivial. In the step, one of(m1) and(m2) is used to derive
m(Z,w,E) ∈ TSP(P′′)↑

i+1. Case(m1): Z.w←−E ∈ P ′′. This is impossible, as this
means thatZ.w←−E ∈ P ′, which is contradictory withSP(P ′) 6|= m(Z,w,E). Case
(m2): Z.w←−Z1.w1 ∈ P

′′ andm(Z1, w1, E) ∈ TSP(P′′)↑
i. By definition ofP ′′, either

Z.w = A.r andZ1.w1 = B.r1, orZ.w←−Z1.w1 ∈ P
′. In the former case,fc(Z,w,A, r)

follows from (c). In the latter case, it follows thatSP(P ′) 6|= m(Z1, w1, E), from
SP(P ′) 6|= m(Z,w,E), and, by induction hypothesis, thatBCP |= fc(Z1, w1, A, r). Now
the desired result holds by(c1), provided we haveZ.w←−Z1.w1 ∈ P|R. This follows
from the construction ofP ′′ and the case assumption thatm(Z1, w1, E) ∈ TSP(P′′)↑

i.

Proposition 4.2: Given aRT[ ] stateP, R, and two rolesX.u andA.r in Roles(P),
BCP(P,R) |= nc(X,u,A, r) if and only ifX.u does not containA.r.

PROOF. The “only if” part (Soundness): We use induction oni to show that ifBCP |=i

nc(X,u,A, r), thenX.u does not containA.r. Basis is trivial. In the step, one of
(n0), (n1), and(n2) is used to derive thatBCP |=i+1 nc(X,u,A, r). Case(n0): A.r
must be g-unrestricted, andBCP |= ∼ fc(X,u,A, r); therefore,BCP 6|= fc(X,u,A, r).
From Lemma 4.1,X.u does not containA.r. Case(n1): A.r ←− D ∈ P, BCP |=
∼ lb(X,u,D), andBCP |= ∼ fc(X,u,A, r). ThenSP(P|R) 6|= m(X,u,D) by Fact 3.1.
Let P ′ = P|R ∪ {A.r←−D}. From Lemma A.1 it follows thatSP(P ′) 6|= m(X,u,D);
thereforeX.u does not containA.r. Case(n2): A.r←−B.r1 ∈ P, BCP |=n nc(X,u,B, r1),



· 27

andBCP |= ∼ fc(X,u,A, r). By induction hypothesis,X.u does not containB.r1; from
Lemma A.2,X.u does not containA.r.

The “if” part (Completeness): IfX.u does not containA.r, then we show thatBCP |=
nc(X,u,A, r). WhenA.r is g-unrestricted. From Lemma 4.1,BCP 6|= fc(X,u,A, r),
and soBCP |= ∼ fc(X,u,A, r). From (n0), BCP |= nc(X,u,A, r). In the rest of
the proof, we only need to consider the case thatA.r is g-restricted. IfX.u does not
containA.r, then there exists a reachable stateP ′ and a principalE such thatSP(P ′) |=
m(A, r,E) andSP(P ′) 6|= m(X,u,E). We use induction oni to show that ifm(A, r,E) ∈
TSP(P′)↑

i, thenBCP |= nc(X,u,A, r). First observe that, from Lemma 4.1, it follows
thatBCP 6|= fc(X,u,A, r), and soBCP |= ∼ fc(X,u,A, r). The basis is trivial. In the
step, one of(m1) and(m2) is used to deduce thatm(A, r,E) ∈ TSP(P′)↑

i+1. Case(m1):
A.r←−E ∈ P ′, A.r←−E must be inP sinceA.r is g-restricted. From Proposition 3.2
andSP(P ′) 6|= m(X,u,E), BCP 6|= lb(X,u,E), and soBCP |= ∼ lb(X,u,E). From
(n1), BCP(P,R) |= nc(X,u,A, r). Case(m2): A.r←−B.r1 ∈ P ′ andm(B, r1, E) ∈
TSP(P′) ↑

i. SinceA.r is g-restricted,A.r ←− B.r1 ∈ P. By induction hypothesis,
BCP(P,R) |= nc(X,u,B, r1). Therefore,BCP(P,R) |= nc(X,u, Z,w) by an in-
stance of(n2).

A.3 Proofs of Theorems 4.3 and 4.4

We first prove a lemma that will be used in establishing lower bounds on the complexity
of containment analysis. The lemma says that if a containment does not hold, then there
exists a counter-example state that only adds simple memberstatements toP and only uses
role names inP.

LEMMA A.3. GivenP andR, two rolesX.u andA.r in Roles(P), ifX.u does not con-
tainA.r, then there exists aP ′ such thatSP(P ′) |= m(A, r,E), SP(P ′) 6|= m(X,u,E),
P ′ − P only has simple member statements, andP ′ only uses role names inP.

PROOF. If X.u does not containA.r, then there exists aP ′ thatSP(P ′) |= m(A, r,E)
and SP(P ′) 6|= m(X,u,E). Given such aP ′, we first deriveP ′′ by replacing every
statementA.r←−e ∈ P ′−P, wheree is a role, a linked role, or an intersection, with a set
of statements{A.r←−Y | SP(P ′) |= m(A, r, Y )}. Using induction, it is straightforward
to show that the resulting state computes the exact same rolememberships.

Now P ′′ − P consists of only simple member statements. FromP ′′, we deriveP ′′′

by removing all simple member statements that uses role names (not roles) not appearing
in P. For example, a statementA.v ←− D in P ′′, wherev does not appear inP, will
not be inP ′′′. Using induction, it is straightforward to show that, for roles inRoles(P),
P ′′′ computes exactly the same memberships asP ′′. Intuitively, A.v ←− D can affect
members of roles inRoles(P) unless the body of some statement refers to the role namev,
which is impossible, since every statement inP ′ that could have role names in its body is
also inP, and so do not usev.

Theorem 4.3: Containment analysis inRT[∩] is coNP-complete.

PROOF. To showcoNP-hardness, we reduce the monotone 3SAT problem to the com-
plement of the universal containment problem inRT[∩]. Monotone 3SAT is 3SAT with
each clause containing either only positive literals or only negative literals; it is known to
beNP-complete [Garey and Johnson 1979].
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Given an instance of monotone 3SAT:φ = c1 ∧ · · · ∧ c` ∧ c`+1 ∧ · · · ∧ cn, in which
c1, . . . , c` are positive clauses andc`+1, . . . , cn are negative clauses. Letp1, . . . , ps be
all the propositional variables inφ. For each negative clauseck = (¬pk1

∨ ¬pk2
∨ ¬pk3

),
definedk = (pk1

∧pk2
∧pk3

), thenck ⇔ ¬dk. Thenφ⇔ c1∧· · ·∧cm∧¬(d`+1∨· · ·∨dn).
The formulaφ is satisfiable if and only ifψ = (c1 ∧ · · · ∧ c`)→ (d`+1 ∨ · · · ∨ dn) is not
valid. We now constructP,R, with the goal thatA.d w A.c is necessary if and only ifψ is
valid. In the construction, we use the roleA.pi to denote the propositional variablepi,A.cj
to denote the clausecj , andA.dk to denote the clausedk. DefineP = P1 ∪P2 ∪P3 ∪P4,
in which

P1 = {A.c←−A.c1 ∩ A.c
′
1, A.c

′
1←−A.c2 ∩ A.c

′
2, · · · , A.c

′
`−1←−A.c`−1 ∩

A.c`}.
P2 = {A.cj ←− A.pj1 , A.cj ←− A.pj2 , A.cj ←− A.pj3 | 1 ≤ j ≤ `, cj =

pj1 ∨ pj2 ∨ pj3}
P3 = {A.d←−A.dk | `+ 1 ≤ k ≤ n}
P4 = {A.dk←−A.pk1

∩ A.d′k, A.d
′
k←−A.pk2

∩ A.pk3
| ` + 1 ≤ k ≤ n, dk =

pk1
∧ pk2

∧ pk3
}

DefineR to be the restriction rule such that all theA.pi’s are g-unrestricted and s-
restricted, and all other roles are g/s-restricted.

We now show thatA.d w A.c is not necessary if and only ifψ is not valid. First, the
“only if” part: If A.d w A.c is not necessary, then there exists a reachable stateP ′ and
a principalE such thatSP(P ′) |= m(A, c,E) andSP(P ′) 6|= m(A, d,E). Consider the
truth assignmentI defined as follows, for everyi such that1 ≤ i ≤ s, I(pi) = true if
SP(P ′) |= m(A, pi, E), andI(pi) = false otherwise. Then underI, (c1 ∧ · · · ∧ c`) is true
andd`+1 ∨ · · · ∨ dn is false; thereforeψ is not valid. The “if” part: Ifψ is not valid, then
there exists a truth assignmentI such that(c1 ∧ · · · ∧ c`) is true and(d`+1 ∨ · · · ∨ dn) is
false. ConsiderP ′ = P ∪ {A.pi ←− Z | 1 ≤ i ≤ s ∧ I(pi) = true}. P ′ is reachable, and
SP(P ′) |= m(A, c, Z) andSP(P ′) 6|= m(A, d, Z).

We now show that containment analysis inRT[∩] is in coNP. GivenP andR, if X.u
does not containA.r, then there exists a reachable stateP ′ and a principalE such that,
SP(P ′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). From Lemma A.3, we can assume,
without loss of generality, thatP ′ − P consists of only simple member statements and
P ′ uses the same role names. FromP ′, we constructP ′′ as follows, letP ′′ = P ′ ∩
(P ∪ {Z.w←− E ∈ P ′ | Z.w ∈ Roles(P)}). Clearly,P ′′ ⊆ P ′ andP ′′ is reachable.
By induction on howm(A, r,E) is proven inSP(P ′), it is easy to see thatSP(P ′′) |=
m(A, r,E). The size ofP ′′ is polynomial inP. This means that if a containment does not
hold, then there exists a short (polynomial in the size of theinput programP) counterproof
such that one can check in polynomial time. This shows that the problem is incoNP. The
method we use to construct the counter exampleP ′′ also yields an exponential algorithm
for determining containment.

Theorem 4.4:Containment analysis inRT[�] where all roles inRoles(P) are g-restricted
is coNP-complete.

PROOF. Since one can nondeterministically guess a subsetP ′ of P and verify that the
containment does not hold, the problem is clearly incoNP. To provecoNP-hardness,
we reduce the monotone 3SAT problem to the complement of universal role containment
in RT[�], similar to that in the proof of Theorem 4.3. Given an instance φ of monotone
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3SAT, we constructψ = (c1 ∧ · · · ∧ c`) → (d`+1 ∨ · · · ∨ dn) such thatφ is satisfiable if
and only ifψ is not valid.

We now constructP, R, such thatA.d w A.c is necessary if and only ifψ is valid.
DefineP to beP1 ∪ P2 ∪ P3 ∪ P4 ∪ P5, in which

P1 = {A.c←−A.c′1.c1, A.c
′
1←−A.c

′
2.c2, · · · , A.c

′
`−2←−A.c

′
`−1.c`−1, A.c

′
`−1←−

A.c`}
P2 = {A.cj ←− A.pj1 , A.cj ←− A.pj2 , A.cj ←− A.pj3 | 1 ≤ j ≤ `, cj =

pj1 ∨ pj2 ∨ pj3}
P3 = {A.d←−A.dk | `+ 1 ≤ k ≤ n}
P4 = {A.dk ←− A.d′k.pk1

, A.d′k ←− A.pk2
.pk3

| ` + 1 ≤ k ≤ n, dk =
pk1
∧ pk2

∧ pk3
}

P5 = {A.pi ←− A | 1 ≤ i ≤ s}
Let R be the restriction rule such that all theA.pi’s are g-restricted and s-unrestricted,

and all other roles mentioned inP are g/s-restricted.
In every reachable state, the definitions of someA.pi’s are removed, which correspond

to assigning false to some of thepi’s. In every reachable state,A.c andA.d either includes
onlyA or is empty.A.c includesA if and only if the corresponding truth assignment makes
c1∧· · ·∧cm true, andA.d includesA if and only the corresponding truth assignment makes
(dm+1 ∨ · · · ∨ dn) true. Therefore,A.c containsA.d if and only ifψ is valid.

A.4 Proof of Proposition 4.7

Proposition 4.7: Given a setP of RT[�] statements,SP(P) |= m(A, r,D) if and only if

RS[P] |= A r
∗

� D.

PROOF. We prove the only if part by using induction oni to show that ifm(A, r,D) ∈

TSP(P)↑
i, thenRS(P) �A r

∗
� D. The basis is trivially satisfied becauseTSP(P)↑

0= ∅.
In the step,m(A, r,D) ∈ TSP(P)↑

i+1, one of(m1), (m2), (m3) is used to derive this.
Case(m1): A.r←−D ∈ SP(P), this means thatA r 7→ D ∈ P. Clearly,RS[P] �

A r
∗

� D.
Case(m2): A.r ←− B.r1 ∈ SP(P), andm(B, r1,D) ∈ TSP(P) ↑

i. In this case,

Ar 7→ B r1 ∈ P, and by induction hypothesis,RS[P]�B r1
∗

� D. Using rewriting rules

in RS[P], one can rewriteA r first toB r1, and then toD; soRS[P] �A r
∗

� D.
Case(m3): A.r←−A.r1.r2 ∈ SP(P) andm(A, r1, E), m(E, r2,D) ∈ TSP(P)↑

i. By

induction hypothesis,RS[P] � B r1
∗

� E, E r2
∗

� D. Using rewriting rules inRS[P],
one can rewriteA r first toA r1 r2, then intoE r2, and finally intoD.

We prove the if part by using induction oni to show that if usingRS[P] one can rewrite
A r intoD in i steps, thenSP(P) |= m(A, r,D). Base case,i = 1 andA.r←−D ∈ P,
clearlySP(P) |= m(A, r,D). Consider the step, consider the first rewriting step. One of
the following two cases apply.

Case one:credA.rB.r1 ∈ P is used in the first step. By induction hypothesis,SP(P) |=
m(B, r1,D). Furthermore,m(A, r, ?X) :− m(B, r1, ?X) ∈ SP(P); thus SP(P) |=
m(A, r,D).

Case two:credA.rA.r1.r2 ∈ P is used in the first step. There must exist a princi-

pal E such thatRS[P] � A r1 r2
∗

� E.r2
∗

� D. By induction hypothesis,SPP |=
m(A, r1, E),m(E, r2,D). Furthermore,m(A, r, ?X) :− m(A, r1, ?Y ),m(?Y, r2, ?X) ∈
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SP(P); thusSP(P) |= m(A, r,D).

A.5 Proof of Theorem 4.11

Theorem 4.11: Containment analysis inRT[�,∩] is in coNEXP.

PROOF. GivenP andR, if a queryX.u w A.r is not necessary, i.e.,X.u does not
containA.r, then there exists a reachable stateP ′ and a principalE such thatSP(P ′) |=
m(A, r,E) andSP(P ′) 6|= m(X,u,E). From Lemma A.3, we can assume, without lose
of generality, thatP ′−P consists of only simple member statements andP ′ uses the same
role names asP.

Given such aP ′ andE, we show that one can construct another stateP ′′ that has size
exponential inP andSP(P ′′) |= m(A, r,E) andSP(P ′) 6|= m(X,u,E). The way we
constructP ′′ is through collapsing equivalent principals inP ′ into one, to be made precise
as follows. LetSigRoles(P,P ′,Q) be{X.u} ∪ {A.r1 | A.r←−A.r1.r2 ∈ P ∩ P ′} ∪
{B1.r1, B2.r2 | A.r←−B1.r1 ∩ B2.r2 ∈ P ∩ P

′}. Define a binary relation≡ over the
principals inP ′ as follows:Y1 ≡ Y2 if one of the following two conditions are satisfied:
(1) Y1 = Y2; (2) Y1, Y2 6∈ Principals(P) and for every roleZ.w ∈ SigRoles(P,P ′,Q),
SP(P ′) |= m(Z,w, Y1) if and only if SP(P ′) |= m(Z,w, Y2). The relation≡ is easily
seen to be an equivalence relation. For each equivalence class, we pick one principal in it as
a unique representative; for a given principalY , we use[Y ] to denote the representative the
equivalence class ofY . We assume that[E] = E. P ′′ is constructed fromP ′ as follows: for
each statement, replace all the principals with their representatives, then remove duplicate
statements.

GivenP that has sizeN , clearlySigRoles(P,P ′,Q) hasO(N) roles. Therefore, there
are in totalM = O(2O(N)) principals inP ′, these principals will result inO(M2N)
new simple member statements. Therefore, if a containment does not hold, there exists a
counter-example state that has size exponential inP. Once the state is guessed correctly,
it can be verified in time polynomial in the size of the state. This shows that the problem
is in coNEXP. An obvious algorithm that has double exponential time complexity is
as follows: first collectSigRoles(P,P,Q) fromX.u and all simple inclusion and linking
inclusion statements fromP, and add one principal for each subset ofSigRoles(P,P,Q),
then enumerate all reachable sub-states to see whether a containment holds.

It remains to prove that our construction ofP ′′ works, i.e., thatSP(P ′′) |= m(A, r,E)
andSP(P ′′) 6|= m(X,u,E).

To proveSP(P ′′) |= m(A, r,E), we use induction to prove the following claim: For
any roleZ.w in Roles(P ′) andY in P ′, if m(Z,w, Y ) ∈ TSP(P′) ↑

i, thenSP(P ′′) |=
m([Z], w, [Y ]). The basis is trivial, sinceTSP(P′) ↑

0= ∅. Now consider the step. One
of (m1), (m2), (m3), and (m4) is used to derivem(Z,w, Y ) ∈ TSP(P′) ↑

i+1. Case
(m1): Z.w ←− Y ∈ P ′. By construction ofP ′′, [Z].w ←− [Y ] ∈ P ′′; therefore,
SP(P ′′) |= m([Z], w, [Y ]). In the next three cases, a statementA.r ←− e that is not
a simple member statement exists inP ′. It must also exist inP, sinceP ′ − P only
has simple member statements; therefore, principals inA.r ←− e are each in their own
equivalence class. The statement must also exist inP ′′, since the equivalence substi-
tution for A.r ←− e will not change the statement. Case(m2): Z.w ←− Z1.w1 ∈
P ′,P,P ′′ andm(Z1, w1, Y ) ∈ TSP(P′) ↑

i. From induction hypothesis,SP(P ′′) |=
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m([Z1], w1, [Y ]). It must be that[Z1] = Z1. The claim then follows from(m2). Case
(m3): Z.w ←− Z.w1.w2 ∈ P

′,P,P ′′ andm(Z,w1, F ),m(F,w2, Y ) ∈ TSP(P′) ↑
i.

It must be that[Z] = Z. By induction hypothesis,SP(P ′′) |= m([Z], w1, [F ]), and
SP(P ′′) |= m([F ], w2, [Y ]). The claim follows from(m3). Case(m4): Z.w ←−
Z1.w1 ∩ Z2.w2 ∈ P

′,P,P ′′ andm(Z1, w1, Y ),m(Z2, w2, Y ) ∈ TSP(P′)↑
i. This case

is similar to(m2).
We now prove thatSP(P ′′) 6|= m(X,u,E), by proving the following claim: for any role

Z.w ∈ Roles(P ′′) and any principalY in Principals(P ′′), if m(Z,w, Y ) ∈ TSP(P′′)↑
i,

then there existsZ ′, Y ′ such that[Z ′] = Z and[Y ′] = Y andSP(P ′) |= m(Z ′, w, Y ′).
Given this claim, ifSP(P ′′) |= m(X,u,E), then there existsX ′ andE′ in Principals(P ′)
such that[X ′] = X, [E′] = E, andSP(P ′) |= m(X ′, u, E′). SinceX ∈ Principals(P),
it must be thatX ′ = X. And by definition of≡, [E′] = E means thatE is also a member
of X.u, giving us a contradiction with our assumption onP ′.

We now use induction to prove the claim. The basis is trivial,sinceTSP(P′′)↑
0= ∅. Now

consider the step. One of(m1), (m2), (m3), and(m4) is used to derivem(Z,w, Y ) ∈
TSP(P′′)↑

i+1. Case(m1): Z.w←−Y ∈ P ′′. By definition ofP ′′, there existsZ ′.w←−
Y ′ ∈ P ′ such that[Z ′] = Z and[Y ′] = [Y ]. From this we haveSP(P ′) |= m(Z ′, w, Y ′)
by (m1). In the following three cases, a non-simple-member statement A.r←− e of P ′′

is used; such a statement must be mapped from a non-simple-member statement inP ′.
Since all such statements inP ′ are also inP and do not change in the mapping,A.r←−
e ∈ P ∩ P ′. Case(m2): Z.w←−Z1.w1 ∈ P

′′,P,P ′ andm(Z1, w1, Y ) ∈ TSP(P′′)↑
i.

From induction hypothesis,SP(P ′) |= m(Z ′
1, w1, Y

′) and[Z ′
1] = Z1 and[Y ′] = Y . Be-

causeZ1 ∈ Principals(P), it must be thatZ ′
1 = Z1. The conclusion follows from(m2).

Case(m3): Z.w←−Z.w1.w2 ∈ P
′′,P,P ′ andm(Z,w1, F ),m(F,w2, Y ) ∈ TSP(P′′)↑

i

for some principalF . By induction hypothesis,SP(P ′) |= m(Z,w1, F
′),m(F ′′, w2, Y

′)
and[F ′] = [F ′′] = F . SinceZ.w1 ∈ SigRoles(P,P ′,Q), by definition of≡ applied to
F ′ ≡ F ′′, SP(P ′) |= m(Z,w1, F

′′). The claim follows from(m3). Case(m4): Z.w←−
Z1.w1∩Z2.w2 ∈ P

′′,P,P ′ andm(Z1, w1, Y ),m(Z2, w2, Y ) ∈ TSP(P′′)↑
i. By induction

hypothesis and the factZ1, Z2 ∈ Principals(P), SP(P ′) |= m(Z1, w1, Y
′),m(Z2, w2, Y

′′)
and [Y ′] = [Y ′′] = Y . By definition of≡, SP(P ′) |= m(Z2, w2, Y

′). Therefore,
SP(P ′) |= m(Z,w, Y ′).

Observe that in the proof, only roles in the body of linking inclusion and intersection
inclusion statements need to be collected. This may be used to explain why containment
in RT[ ] is efficiently decidable.
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