Specification and Analysis of
Attribute-based Authorization Policy

William H. Winsborough

Center for Secure Information Systems
George Mason University

Joint work with:

Ninghui Li, Purdue University
John C. Mitchell, Stanford University

Language for

Policy and Credentials
Pubs

o Design of a Role-Based Trust Management Framework.
Ninghui Li, John C. Mitchell, and William H. Winsborough.
Proceedings of the 2002 IEEE Symposium on Security and
Privacy, May 2002

Outline

o Requirements

o Examples

o Syntax

o Semantics

o Language extensions

November 13,2003 © William H. Winsborough 4

Attribute-based Authorization Policy

The Big Goal

o Flexible, scalable authorization for decentralized,
collaborative environments and open systems

The Approach

o Authorization decision is based on attributes of resource
requestor

o Policy language based on logic programming supports
key trust management needs

o Credentials are signed policy statements about attributes
of principals & rules for deriving same

o Provide policy-understanding support

November 13,2003 © William H. Winsborough 2

Policy Language Wish List

Decentralize authority to define attributes

o Utilize policy and credentials from many sources

Delegation of attribute authority

o To specific principals

o To principals with certain attributes

Inference of attributes

o E.g., derive access rights based on roles or other characteristics
Intersection of attributes

Parameterization

Support for thresholds, separation of duty

November 13,2003 © William H. Winsborough

Outline: Problems We Address

Need a language for authorization policy to support
collaboration in open systems

o RT: A Role-based Trust-management* framework

Need techniques for understanding and managing
policy

o Safety and availability analysis in trust management*

* “Trust management” was coined by Blaze, Feigenbaum, and Lacy
to describe a collection of desiderata for decentralized authorization
systems.

November 13, 2003 © William H. Winsborough 3

Role-based Trust Management (RT)

A family of credential / policy languages

o Simplest, RTo, has no parameterization,
thresholds, or separation of duty

RTy example: student discount subscription
o EPub.studentDiscount « StateU.student

o StateU.student «— URegistrar.fulltimeLoad

o StateU.student < URegistrar.parttimeLoad

o URegistrar.parttimeLoad <« Alice

November 13, 2003 © William H. Winsborough 6

Role-based Trust Management (RT)

A family of credential / policy languages

o Simplest, RTo, has no parameterization,
thresholds, or separation of duty

RTo, example: student discount subscription

o EPub.studentDiscount «— StateU.student

o StateU.student «— URegistrar fulltimeLoad

o StateU.student «<— URegistrar.parttimeLoad

o URegistrar.parttimeLoad « Alice

Credential chain proves authorization

November 13, 2003 © William H. Winsborough

RT, Syntax

Basic structure is a role (i.e., an attribute): A.r
o A'is an principal (authority for A.r), ris a role name
Four types of policy statement
o Ar<D
Role A.r contains principal D as a member

o Ar«B.r
A.r contains role B.r; as a subset

a Ar<«Ar.rn,
A.r contains B.r, as a subset, for each B in A.r,

a Ar<AnnAr,
A.r contains the intersection

A credential is a statement signed by A, the credential issuer
and the authority over A.r

The first 3 statement types give a language equivalent to pure
SDSI

November 13,2003 © William H. Winsborough 10

Example: Attribute-based Delegation

Accepting student ID from any university

o EPub.studentDiscount < FAB.accredited.student
o FAB.accredited « StateU

o StateU.student «— URegistrar.fulltimeLoad

o StateU.student «— URegistrar.parttimeLoad

o URegistrar.parttimelLoad « Alice

November 13,2003 © William H. Winsborough

A Brief Intro to Logic Programming

A program P is a set of clauses:
a h(ty) - by(t,), ..., b,(t,) where h and b, are predicates and ¢t are
tuples of logical terms
“:-"is read “if”
a p(c, ?X) - q(b, ?2), r(?Z, ?X).
a q(b, a).
a r(a, d).
A query Q has the form ?- by(t,), ..., b,(t,)
a ?-p(?U, ?V).
An answer is an instance Q' of the query Q that is logically
entailed by the program
(P Q). e.g., ¢ =p(c, d)

November 13,2003 © William H. Winsborough 11

Example: Expressivity in Credentials

Deferring a Guaranteed Student Loan

o BankWon.deferGSL « FAB.accredited.fulltimeStudent
o FAB.accredited « StateU

o StateU.fulltimeStudent < URegistrar.fulltimeLoad

o

StateU.fulltimeStudent < URegistrar.parttimeLoad N
StateU.gradOfficer.phdCandidate

URegistrar.parttimeLoad « Bob

o

o StateU.gradOfficer «— Carol
Carol.phdCandidate < Bob

Q

© William H. Winsborough

Benefits of LP Semantics
Makes complexity results easy

Facilitates extending RT,
o Parameters, thresholds, sep. of duty
o Other semantic foundations do not easily support
important extensions
String rewriting [Clarke et al., JCS 2001]
Sets provide a good intuition
a Arole is the set of principals in the role
0 Parameterization requires generalization

o With LP semantics, extension is easy

13,2003 © William H. Winst

‘ SP(®): A Logic-Programming
Semantics for RT, policy

= Translate each statement of @to a clause:
o Foreach Arr < Din @ add
m(A, r, D).
o Foreach Ar < B.ryin @ add
m(A, r, ?X) :- m(B, ry, ?X).
o Foreach Arr < Ar.ryin @ add
m(A, r, ?X) :- m(A, ry, ?Y), m(?Y, r,, ?X).
o Foreach Ar <« A.ry,nA,r,in @ add
m(A, r, ?X) :- m(A,, ry, 2X), m(A,, 1y, ?X).

November 13, 2003 © William H. Winsborough

‘ Parameterization:

Semantics and Complexity

= LP semantics simply adds several m’s of different arity
o E.g., Ar(hy, ..., h,)) < Bur(s,, ..., s,) translates to
m(A, r, hy, ..., hy, ?2X):-m(B, ry, 84, ..., Sy, 7X)
= Apply known complexity results: The atomic implications of
SP(®) can be computed in O(N'*3)
o vis the max number of variables per statement
o Each role name has a most p arguments
a N =max(N,, pNy)
o Ny is the number of statements in @

November 13,2003 © William H. Winsborough 16

| Globally Unique Role Names

= Application Domain Specification Document (ADSD)

o Declares a collection of related role names
o Unique name space for each ADSD
o Role names declared in different ADSDs are different
o They refer to the URI of the ADSD in which they are
declared
= In RT,, where roles are parameterized, ADSD also
gives type signature

November 13, 2003 © William H. Winsborough

| Further LP Advantage

= Can further extend to efficiently support simple
constraint domains
o Datalog with Constraints: A Foundation for Trust
Management Languages. Ninghui Li and John C. Mitchell.
Fifth International Symp. on Practical Aspects of
Declarative Languages (PADL), Jan 2003

November 13,2003 © William H. Winsborough 17

| RT,: Adding Role Parameters

= Roles have the form A.R = A.r(hy, ..., h,)

= Each h; is a data term whose type is that declared for r's it"
parameter in the ADSD

= Example:
o BigCorp.evaluatorOf(?Y) «— BigCorp.managerOf(?Y)

o BigCorp.raise «
BigCorp.evaluatorOf(this).exceedsExpectations

November 13, 2003 © William H. Winsborough

RTT Supporting Threshold and

Separation-of-Duty

= Threshold: require agreement among k principals drawn from a
given list

= SoD: e.g., purchase requires approval by buyer and manager

o Want to achieve SoD without mutual exclusion, which is
nonmonotonic

= Though related, neither subsumes the other
= RTTintroduces a primitive that supports both: manifold roles

= RTTcan be combined with either RT, or RT,, yielding RT,” and
RT,T, respectively

November 13, 2003 © William H. Winsborough 18

Manifold Roles

While a standard role is a set of principals, a manifold role is a set

of sets of principals

A set of principals that together occupy a manifold role can

collectively exercise privileges of that role

Two operators: O, ®

o AR, ® B.R, contains sets of two distinct principals, one a member

of A.R;, the other of B.R,

o AR, © B.R, does not require them to be distinct

o gradSchool.docCommittee(?s) «
gradSchool.docAdvisor(?s) ®
gradSchool.commMember(?s) ®
gradSchool.commMember(?s) ®
gradSchool.commMember(?s) ®
gradSchool.externCommMember(?s)

November 13, 2003 © William H. Winsborough 19

Distributed Credential Chain
Discovery

Pubs

o Distributed Credential Chain Discovery in Trust
Management. Ninghui Li, William H. Winsborough, and
John C. Mitchell

Journal of Computer Security, 11(1):35-86, February 2003

Outline

o Sound and complete evaluation model for RT,

o Efficient search for proof of authorization

o Support for distributed discovery

November 13,2003 © William H. Winsborough 2

RTT Syntax and Complexity

Manifold roles can be used in basic RT statements
Also add two new types of policy statement
o0 AR AR OAR,G ... 0 AR,

members(A.R) 2 members(A.R; © A,R, 0 ... © AR)) =
{s; V... Uus,|s;=members(A.R) for 1 <i< k}

0 AR AR ®AR,® ... ® AR,
members(A.R) 2 members(A.R;® A,R,® ... ® AR)) =
{s;U...Us, | (s;smembers(A;R) &s;ns;* @) for 1 <i* /< k}
ADSD must declare a size for each manifold role
Given a set @of RT T statements, let t be the maximal size of all
roles in @. The atomic implications of @ can be computed in time O
(MNWZ).

November 13,2003 © William H. Winsborough 20

Algorithmic Contributions

Search algorithms:

o Worst case efficiency as good as any existing algorithm
Forward. O(N3) time, N = number of credentials
Backward. O(N2M) time, M = sum of credential sizes
Both directions. O(N2M) time

o Well suited to the application
Efficient when there are lots of unrelated credentials
Changes to credential pool do not degrade performance

Graph search can drive credential discovery

November 13,2003 © William H. Winsborough 23

Distributed Credential
Chain Discovery

Credential Availability and Light-weight
Evaluation

Prior Work on Evaluation

All present at least one of the following
problems for discovery:
o Some inherently require credential to be
centralized
E.g., SDSI evaluation [Clarke et al. 2001]
o Evaluation doesn’t naturally drive collection
process
E.g., Delegation Logic [Li 2000]
o Evaluation drives chain collection in only one
direction or the other, but not both
E.g., QCM [Gunter & Jim 2000] and SD3 [Jim 2001]

Can’t store some credentials with issuer and some
with subject

November 13, 2003 © William H. Winsborough 24

‘ Example: Student ACM Discount

= EPub.studentACM « EOrg.student n ACM.member

= EOrg.student «— EOrg.university.student

= EOrg.university < FAB.accredited Credential Discovered

in Forward Direction

= FAB.accredited < StateU

StateU.student «— URegistrar.parttimeLoad

URegistrar.parttimeLoad « Alice
Credential Discovered
in Backward Direction

= ACM.member « Alice

November 13, 2003 © William H. Winsborough 25

Security Analysis

Understanding and Managing
Authorization Policy

Credential Graph
Organizes Discovery

T Credential Discovered by
EPub in Forward Direction

EPub.studentacm

T Credential Discovered by EOrg.student » ACM.member

Alice in Backward Direction
EOrg.student

I Summary Edge

Key EOrg university EOrg.university.student

FAB.accredited

StateU StateU.student
URegistrar.parttimeLoad ACM.member
Alice
November 13,2003 © William H. Winsborough 26

Motivation:
A Higher Vantage Point

= Authors of policy statements need assistance in
understanding global impact of delegations,
revocations

= Who could get access to what? (Safety)
o Assessing exposure

= Who could be denied? (Availability)

o Ensuring applications have authorizations needed for
correct operation

November 13,2003 © William H. Winsborough 29

Storage Type System
= Storage type of role name determines where
credential is stored: with issuer or with subject

= Well-typing ensures credentials are stored where
they can be found by tracing the credential graph

Credentials Attribute Name Type Credential Stored by
EPub.studentDiscount
M studentDiscount backward-traccable EPub
StateU student

Z)I student forward-traceable URegistrar
URegistrar.parttimeLoad

3)‘ parttimeLoad forward-traceable Alice

Alice

November 13, 2003 © William H. Winsborough 27

Pubs and Outline

= Pubs
o Beyond Proof-of-compliance: Safety and Availability Analysis in
Trust Management. Ninghui Li, William H. Winsborough, and
John C. Mitchell. Proceedings of the IEEE Symposium on
Security and Privacy, May 2003
= Outline
o Abstract security analysis problem
Instantiating the analysis problem for RT

o

o Usage scenarios

a Solving simple analysis problems

o Complexity of other analysis problems
o Future work

November 13, 2003 © William H. Winsborough 30

Reachable Policy States

An individual or organization normally controls only a portion
of the global policy state

o Other statements may be added or removed

o Analysis factors in those potential future changes
Restriction rule ® defines how state ® may be changed to @’
(=g @)

Existential analysis problem

o Does there exist @’ such that ® =, ®"and @'+ Q?
Universal analysis problem

o For every @’ such that @ —~, @', does ®'+ Q?

November 13, 2003 © William H. Winsborough 31

Policy Language and
Restriction Rule

®is an RT,policy
R, gives two sets of roles, g and §

o Growth restriction: additional statements defining
roles in G cannot be added to state

o Shrink restriction: statements defining roles in §
cannot be removed from state

November 13,2003 © William H. Winsborough

Example Analysis Problem Instances

“Can Alice ever get access to the database?”

o Simple Safety -- Existential

“Will Bob always have access to the database?”

o Simple Availability -- Universal

“Can anyone besides you and me ever get access?”

o Bounded Safety -- Universal

“Will there always be somebody that has access?”

a Liveness -- Existential

“Can anyone ever be both a buyer and an accountant?”
o Mutual Exclusion -- Universal

“Will all managers always have access?”

o Containment: Availability -- Universal

“Can anyone who is not an employee ever get access?”
o Containment: Safety -- Universal

November 13,2003 © William H. Winsborough 32

Three Forms of Query

Membership: Ar2{D,, ...,D,}
Boundedness: {D,, ..., D} 2 Ar

Inclusion: X.u 2 A.r

o Formally, #+ X.u 2 Arif and only if
{Z| SP(®?)Em(X,u,2Z)}=2
{Z| SP(®)=m(A 1, 2)}

November 13,2003 © William H. Winsborough

Instantiating the Analysis

Language used to express @
Form of restriction rule ®
Form of query Q

November 13, 2003 © William H. Winsborough 33

Example P and R

SA.access < HR.manager

SA.access < HR.manager.access n HR.employee
HR.employee « HR.manager

HR.employee < HR.programmer

HR.manager « Alice

HR.programmer « Bob

HR.programmer « Carl

Alice.access < Bob

G ={ SA.access, HR.employee }

§={SA.access, HR.employee, HR.manager }

November 13, 2003 © William H. Winsborough

‘ Example Problem Instance (1 of 4)

= SA.access <« HR.manager

= SA.access <« HR.manager.access n HR.employee
= HR.employee < HR.manager

= HR.employee < HR.programmer

= HR.manager « Alice

= HR.programmer < Bob

= HR.programmer « Carl

= Alice.access < Bob

= G={SA.access, HR.employee }

= §={SA.access, HR.employee, HR.manager }

= Simple safety: Is SA.access 2 { Eve } possible? (Yes)

November 13, 2003 © William H. Winsborough 37

\ Example Problem Instance (4 of 4)

= SA.access < HR.manager

= SA.access < HR.manager.access n HR.employee
= HR.employee < HR.manager

= HR.employee < HR.programmer

= HR.manager « Alice

= HR.programmer < Bob

= HR.programmer « Carl

= Alice.access « Bob

= G ={SA.access, HR.employee }

= §={SA.access, HR.employee, HR.manager }

= Containment: Is HR.employee 2 SA.access necessary? (Yes)

November 13, 2003 © William H. Winsborough a0

‘ Example Problem Instance (2 of 4)

= SA.access < HR.manager

= SA.access <« HR.manager.access n HR.employee
= HR.employee <~ HR.manager

= HR.employee < HR.programmer

= HR.manager « Alice

= HR.programmer < Bob

= HR.programmer « Carl

= Alice.access « Bob

= G={SA.access, HR.employee }

= §={SA.access, HR.employee, HR.manager }

= Simple availability: Is SA.access 2 { Alice } necessary? (Yes)

November 13,2003 © William H. Winsborough 38

‘ Security Analysis: Usage Cases

= Security requirement = analysis problem instance +
acceptable answer

o Organization defines a set of requirements
= Sanity check
a Some principals are trusted
o They analyze proposed policy changes with respect
organization’s requirements before committing
= Insider threat assessment
o Can vary the principals that are trusted by changing the
restriction rule
o In this way, organization can determine how it is exposed
to the principals

November 13,2003 © William H. Winsborough 41

‘ Example Problem Instance (3 of 4)

= SA.access < HR.manager

= SA.access < HR.manager.access n HR.employee
= HR.employee <~ HR.manager

= HR.employee < HR.programmer

= HR.manager « Alice

= HR.programmer < Bob

= HR.programmer « Carl

= Alice.access < Bob

= G ={SA.access, HR.employee }

= §={SA.access, HR.employee, HR.manager }

= Bounded safety: Is { Alice, Bob } 2 SA.access necessary? (No)

November 13, 2003 © William H. Winsborough 3

‘ Membership and
Boundedness Queries

= Efficient algorithms based on two non-standard
LP semantics
o LB(e, R)
a UB(®, R)

= Solves 4 analysis problems: \4 3

Membership| LB uB

Boundedness uB LB

November 13, 2003 © William H. Winsborough a2

‘ LB(®, ®): Lower Bound Program

= Construct ?|4, from @by dropping all statements
defining roles not in §
= Construct LB(®, ®) from @:
o Foreach Ar<«Din fP|(K add Ib(A, r, D).
o Foreach Ar« Bu.ryin @l(&’ add
Ib(A, 1, ?Z) - Ib(B, 1, ?Z).
2 Foreach Ar« Ar,.ryin @|g, add
Ib(A, r, 2Z) - Ib(A, ry, ?Y), Ib(?Y, ,, 22).
o Foreach Ar <« A;rynA,r,in Plg, add
Ib(A, r, ?Z) - Ib(A4, 1y, ?2), Ib(A,, 15, ?Z).

November 13, 2003 © William H. Winsborough

UB(@, ®)

= Upper Bound Program handles:

o Existential membership analysis
Ar3a{D,, ..., D,}is possible iff
= Ar¢g
= UB(®,®)=Uub(A,r, T), or
= UB(®,®)E=ub(A,r, D;)foreachie[1.n]
Cf. HRU model of safety, which is undecidable

o Universal boundedness analysis
{D,, ...,D,} 2 Acris necessary iff
{Dy,....D,}2{Z| UB(®, ®) eub(A,r,2Z)}

November 13, 2003 © William H. Winsborough 46

LB(®, ®)

= Lower Bound Program handles:

o Universal membership analysis
Ar2{D,, ..., D, }is necessary iff
LB(®, ®) = Ib(A, r, D)) for each i € [1..n]

o Existential boundedness analysis
{D,,...,D,}2Aris possible iff
{Dy,....D,}2{Z|LB(® ®)=Ib(A, 1, 2)}

November 13, 2003 © William H. Winsborough

44

Inclusion Complexity Depends on
RT, Sublanguage

= We consider four subsets of RT,

o RT[] has only facts & simple delegation
= Ar<D
= Ar«Bur

o RT[«] = RT[] + linking
= Ar<Arur,

o RT[n] = RT[] + intersection
= Ar—AirnAyr,

3 RT[«, n] = RT,

November 13,2003 © William H. Winsborough 47

‘ UB(®, ®): Upper Bound Program

= Construct UB(®, ®) from @:
o Add ub(T, ?r, ?2).
o For each A.r e Roles(®?) — gadd ub(A, r, ?Z).
o Foreach Arr«< Din @, add ub(A, r, D).
o Foreach Arr < B.ryin @, add
ub(A, r, ?Z) :- up(B, ry, ?2).
For each A.rr <~ Ary.rpin @, add
ub(A, r, ?Z) :- ub(A, ry, ?Y), ub(?Y, r,, ?Z).
Foreach Arr < A;.ryn A,r,in @, add
ub(A, r, ?Z) :- ub(Ay, ry, ?Z), ub(A,, 1, ?Z).

o

o

© William H. Winsbo

Complexity of Inclusion Queries

= Polynomial algorithms for RTT]
= Complexity results

o RT[«]: PSPACE-complete

o RT[n] : coNP-complete

0 RT[«, n] : in coNEXP

November 13, 2003

Possible Future Work:
A Security Policy Management Assistant

Assistant should automatically generate proposals for how to
guarantee security requirements are met
o Needed:
When requirements change
When you change whom you trust
o Assistant should explain why some requirements cannot be met
Assistant should help assess insider threat
o Which semi-trusted parties could really hurt you?
o Assess your exposure to colluding groups of insiders

o Assistant should suggest ways to reduce your exposure, e.g.
through separation of duties

Heuristical analysis for expensive queries

November 13, 2003 © William H. Winsborough 9

Summary: Problems We Have
Addressed
Provided a language for authorization policy to
support collaboration in open systems
o RT: A Role-based Trust-management framework
o Distributed Credential Chain Discovery
Provided techniques for understanding and
managing policy

o Safety and availability analysis in trust management

November 13,2003 © William H. Winsborough 50

