
1

Specification and Analysis of
Attribute-based Authorization Policy

William H. Winsborough
Center for Secure Information Systems
George Mason University

Joint work with:

Ninghui Li, Purdue University
John C. Mitchell, Stanford University

November 13, 2003 © William H. Winsborough 2

Attribute-based Authorization Policy

The Big Goal
Flexible, scalable authorization for decentralized,
collaborative environments and open systems

The Approach
Authorization decision is based on attributes of resource
requestor
Policy language based on logic programming supports
key trust management needs
Credentials are signed policy statements about attributes
of principals & rules for deriving same
Provide policy-understanding support

November 13, 2003 © William H. Winsborough 3

Outline: Problems We Address

Need a language for authorization policy to support
collaboration in open systems

RT : A Role-based Trust-management* framework

Need techniques for understanding and managing
policy

Safety and availability analysis in trust management*

* “Trust management” was coined by Blaze, Feigenbaum, and Lacy
to describe a collection of desiderata for decentralized authorization
systems.

November 13, 2003 © William H. Winsborough 4

Language for
Policy and Credentials

Pubs
Design of a Role-Based Trust Management Framework.
Ninghui Li, John C. Mitchell, and William H. Winsborough.
Proceedings of the 2002 IEEE Symposium on Security and
Privacy, May 2002

Outline
Requirements
Examples
Syntax
Semantics
Language extensions

November 13, 2003 © William H. Winsborough 5

Policy Language Wish List
Decentralize authority to define attributes

Utilize policy and credentials from many sources

Delegation of attribute authority
To specific principals

To principals with certain attributes

Inference of attributes
E.g., derive access rights based on roles or other characteristics

Intersection of attributes

Parameterization

Support for thresholds, separation of duty

November 13, 2003 © William H. Winsborough 6

Role-based Trust Management (RT)

A family of credential / policy languages
Simplest, RT0, has no parameterization,
thresholds, or separation of duty

RT0 example: student discount subscription
EPub.studentDiscount ← StateU.student
StateU.student ← URegistrar.fulltimeLoad
StateU.student ← URegistrar.parttimeLoad
URegistrar.parttimeLoad ← Alice

2

November 13, 2003 © William H. Winsborough 7

Role-based Trust Management (RT)

A family of credential / policy languages
Simplest, RT0, has no parameterization,
thresholds, or separation of duty

RT0 example: student discount subscription
EPub.studentDiscount ← StateU.student
StateU.student ← URegistrar.fulltimeLoad
StateU.student ← URegistrar.parttimeLoad
URegistrar.parttimeLoad ← Alice

Credential chain proves authorization

November 13, 2003 © William H. Winsborough 8

Example: Attribute-based Delegation

Accepting student ID from any university
EPub.studentDiscount ← FAB.accredited.student

FAB.accredited ← StateU

StateU.student ← URegistrar.fulltimeLoad

StateU.student ← URegistrar.parttimeLoad

URegistrar.parttimeLoad ← Alice

November 13, 2003 © William H. Winsborough 9

Example: Expressivity in Credentials

Deferring a Guaranteed Student Loan
BankWon.deferGSL ← FAB.accredited.fulltimeStudent

FAB.accredited ← StateU

StateU.fulltimeStudent ← URegistrar.fulltimeLoad

StateU.fulltimeStudent ← URegistrar.parttimeLoad ∩
StateU.gradOfficer.phdCandidate

URegistrar.parttimeLoad ← Bob

StateU.gradOfficer ← Carol

Carol.phdCandidate ← Bob

November 13, 2003 © William H. Winsborough 10

RT0 Syntax
Basic structure is a role (i.e., an attribute): A.r

A is an principal (authority for A.r), r is a role name
Four types of policy statement

A.r ← D
Role A.r contains principal D as a member
A.r ← B.r1
A.r contains role B.r1 as a subset
A.r ← A.r1.r2
A.r contains B.r2 as a subset, for each B in A.r1
A.r ← A1.r1 ∩ A2.r2
A.r contains the intersection

A credential is a statement signed by A, the credential issuer
and the authority over A.r
The first 3 statement types give a language equivalent to pure
SDSI

November 13, 2003 © William H. Winsborough 11

A Brief Intro to Logic Programming
A program P is a set of clauses:

h(t0) :- b1(t1), …, bn(tn) where h and bi are predicates and ti are
tuples of logical terms

“:-” is read “if”

p(c, ?X) :- q(b, ?Z), r(?Z, ?X).
q(b, a).
r(a, d).

A query Q has the form ?- b1(t1), …, bn(tn)
?- p(?U, ?V).

An answer is an instance Q’ of the query Q that is logically
entailed by the program
(P ⊧ Q’) , e.g., Q’ = p(c, d).

November 13, 2003 © William H. Winsborough 12

Benefits of LP Semantics
Makes complexity results easy
Facilitates extending RTo

Parameters, thresholds, sep. of duty
Other semantic foundations do not easily support
important extensions

String rewriting [Clarke et al., JCS 2001]
Sets provide a good intuition

A role is the set of principals in the role
Parameterization requires generalization

With LP semantics, extension is easy

3

November 13, 2003 © William H. Winsborough 13

SP(P): A Logic-Programming
Semantics for RT0 policy P

Translate each statement of P to a clause:
For each A.r ← D in P, add
m(A, r, D).
For each A.r ← B.r1 in P, add
m(A, r, ?X) :- m(B, r1, ?X).
For each A.r ← A.r1.r2 in P, add
m(A, r, ?X) :- m(A, r1, ?Y), m(?Y, r2, ?X).
For each A.r ← A1.r1 ∩ A2.r2 in P, add
m(A, r, ?X) :- m(A1, r1, ?X), m(A2, r2, ?X).

November 13, 2003 © William H. Winsborough 14

Globally Unique Role Names

Application Domain Specification Document (ADSD)
Declares a collection of related role names
Unique name space for each ADSD
Role names declared in different ADSDs are different
They refer to the URI of the ADSD in which they are
declared

In RT1, where roles are parameterized, ADSD also
gives type signature

November 13, 2003 © William H. Winsborough 15

RT1: Adding Role Parameters

Roles have the form A.R = A.r(h1, …, hn)

Each hi is a data term whose type is that declared for r’s ith

parameter in the ADSD

Example:

BigCorp.evaluatorOf(?Y) ← BigCorp.managerOf(?Y)

BigCorp.raise ←

BigCorp.evaluatorOf(this).exceedsExpectations

November 13, 2003 © William H. Winsborough 16

Parameterization:
Semantics and Complexity

LP semantics simply adds several m’s of different arity

E.g., A.r(h1, …, hn) ← B.r1(s1, …, sm) translates to
m(A, r, h1, …, hn, ?X) :- m(B, r1, s1, …, sm, ?X)

Apply known complexity results: The atomic implications of
SP(P) can be computed in O(Nv+3)

v is the max number of variables per statement

Each role name has a most p arguments

N = max(N0, pN0)

N0 is the number of statements in P

November 13, 2003 © William H. Winsborough 17

Further LP Advantage

Can further extend to efficiently support simple
constraint domains

Datalog with Constraints: A Foundation for Trust
Management Languages. Ninghui Li and John C. Mitchell.
Fifth International Symp. on Practical Aspects of
Declarative Languages (PADL), Jan 2003

November 13, 2003 © William H. Winsborough 18

RT T: Supporting Threshold and
Separation-of-Duty

Threshold: require agreement among k principals drawn from a
given list

SoD: e.g., purchase requires approval by buyer and manager
Want to achieve SoD without mutual exclusion, which is
nonmonotonic

Though related, neither subsumes the other

RT T introduces a primitive that supports both: manifold roles

RT T can be combined with either RT0 or RT1, yielding RT0
T and

RT1
T, respectively

4

November 13, 2003 © William H. Winsborough 19

Manifold Roles
While a standard role is a set of principals, a manifold role is a set
of sets of principals
A set of principals that together occupy a manifold role can
collectively exercise privileges of that role
Two operators: ⊙, ⊗

A.R1 ⊗ B.R2 contains sets of two distinct principals, one a member
of A.R1, the other of B.R2

A.R1 ⊙ B.R2 does not require them to be distinct
gradSchool.docCommittee(?s) ←

gradSchool.docAdvisor(?s) ⊗
gradSchool.commMember(?s) ⊗
gradSchool.commMember(?s) ⊗
gradSchool.commMember(?s) ⊗
gradSchool.externCommMember(?s)

November 13, 2003 © William H. Winsborough 20

RTT Syntax and Complexity
Manifold roles can be used in basic RT statements

Also add two new types of policy statement
A.R ← A1.R1 ⊙ A2.R2 ⊙ … ⊙ Ak.Rk

members(A.R) ⊇ members(A1.R1 ⊙ A2.R2 ⊙ … ⊙ Ak.Rk) =
{s1 ∪ … ∪ sk | si ∊members(Ai.Ri) for 1 ≤ i ≤ k }

A.R ← A1.R1 ⊗ A2.R2 ⊗ … ⊗ Ak.Rk

members(A.R) ⊇ members(A1.R1 ⊗ A2.R2 ⊗ … ⊗ Ak.Rk) =
{s1 ∪ … ∪ sk | (si ∊members(Ai.Ri) & si ∩ si ≠ ∅) for 1 ≤ i ≠ j ≤ k }

ADSD must declare a size for each manifold role

Given a set P of RT T statements, let t be the maximal size of all
roles in P. The atomic implications of P can be computed in time O
(MN v+2t).

Distributed Credential
Chain Discovery

Credential Availability and Light-weight
Evaluation

November 13, 2003 © William H. Winsborough 22

Distributed Credential Chain
Discovery

Pubs
Distributed Credential Chain Discovery in Trust
Management. Ninghui Li, William H. Winsborough, and
John C. Mitchell

Journal of Computer Security, 11(1):35-86, February 2003

Outline
Sound and complete evaluation model for RT0

Efficient search for proof of authorization
Support for distributed discovery

November 13, 2003 © William H. Winsborough 23

Algorithmic Contributions
Search algorithms:

Worst case efficiency as good as any existing algorithm

Forward. O(N3) time, N = number of credentials

Backward. O(N2M) time, M = sum of credential sizes

Both directions. O(N2M) time

Well suited to the application

Efficient when there are lots of unrelated credentials

Changes to credential pool do not degrade performance

Graph search can drive credential discovery

November 13, 2003 © William H. Winsborough 24

Prior Work on Evaluation
All present at least one of the following
problems for discovery:

Some inherently require credential to be
centralized

E.g., SDSI evaluation [Clarke et al. 2001]
Evaluation doesn’t naturally drive collection
process

E.g., Delegation Logic [Li 2000]
Evaluation drives chain collection in only one
direction or the other, but not both

E.g., QCM [Gunter & Jim 2000] and SD3 [Jim 2001]
Can’t store some credentials with issuer and some
with subject

5

November 13, 2003 © William H. Winsborough 25

Example: Student ACM Discount
EPub.studentACM ← EOrg.student ∩ ACM.member

EOrg.student ← EOrg.university.student

EOrg.university ← FAB.accredited

FAB.accredited ← StateU

StateU.student ← URegistrar.parttimeLoad

URegistrar.parttimeLoad ← Alice

ACM.member ← Alice
Credential Discovered
in Backward Direction

Credential Discovered
in Forward Direction

November 13, 2003 © William H. Winsborough 26

Credential Graph
Organizes Discovery

EPub gives a double
subscription discount

StateU.student

Alice

ACM.member

EOrg.university.student

EOrg.student

EPub.studentacm

EOrg.university

FAB.accredited

StateU

EOrg.student ∩ ACM.member

Key

Summary Edge

Credential Discovered by
Alice in Backward Direction

Credential Discovered by
EPub in Forward Direction

URegistrar.parttimeLoad

November 13, 2003 © William H. Winsborough 27

Storage Type System
Storage type of role name determines where
credential is stored: with issuer or with subject
Well-typing ensures credentials are stored where
they can be found by tracing the credential graph

Alice

URegistrar.parttimeLoad

EPub.studentDiscount

StateU.student

Alice

EPub

URegistrar

parttimeLoad

studentDiscount

student

Credentials Attribute Name Type Credential Stored by

forward-traceable

backward-traceable

forward-traceable

1)

2)

3)

Security Analysis

Understanding and Managing
Authorization Policy

November 13, 2003 © William H. Winsborough 29

Motivation:
A Higher Vantage Point

Authors of policy statements need assistance in
understanding global impact of delegations,
revocations
Who could get access to what? (Safety)

Assessing exposure

Who could be denied? (Availability)
Ensuring applications have authorizations needed for
correct operation

November 13, 2003 © William H. Winsborough 30

Pubs and Outline

Pubs
Beyond Proof-of-compliance: Safety and Availability Analysis in
Trust Management. Ninghui Li, William H. Winsborough, and
John C. Mitchell. Proceedings of the IEEE Symposium on
Security and Privacy, May 2003

Outline
Abstract security analysis problem
Instantiating the analysis problem for RT
Usage scenarios
Solving simple analysis problems
Complexity of other analysis problems
Future work

6

November 13, 2003 © William H. Winsborough 31

Reachable Policy States
An individual or organization normally controls only a portion
of the global policy state

Other statements may be added or removed
Analysis factors in those potential future changes

Restriction rule R defines how state P may be changed to P ’

(P ↦R P ’)
Existential analysis problem

Does there exist P ’ such that P ↦R P ’ and P ’ ⊢ Q ?
Universal analysis problem

For every P ’ such that P ↦R P ’, does P ’ ⊢ Q ?

November 13, 2003 © William H. Winsborough 32

Example Analysis Problem Instances
“Can Alice ever get access to the database?”

Simple Safety -- Existential

“Will Bob always have access to the database?”
Simple Availability -- Universal

“Can anyone besides you and me ever get access?”
Bounded Safety -- Universal

“Will there always be somebody that has access?”
Liveness -- Existential

“Can anyone ever be both a buyer and an accountant?”
Mutual Exclusion -- Universal

“Will all managers always have access?”
Containment: Availability -- Universal

“Can anyone who is not an employee ever get access?”
Containment: Safety -- Universal

November 13, 2003 © William H. Winsborough 33

Instantiating the Analysis

Language used to express P

Form of restriction rule R

Form of query Q

November 13, 2003 © William H. Winsborough 34

Policy Language and
Restriction Rule

P is an RT0 policy

R gives two sets of roles, G and S
Growth restriction: additional statements defining
roles in G cannot be added to state

Shrink restriction: statements defining roles in S
cannot be removed from state

November 13, 2003 © William H. Winsborough 35

Three Forms of Query

Membership: A.r ⊒ { D1, …, Dn }

Boundedness: { D1, …, Dn } ⊒ A.r

Inclusion: X.u ⊒ A.r
Formally, P ⊢ X.u ⊒ A.r if and only if
{ Z | SP (P) ⊨ m(X, u, Z) } ⊇
{ Z | SP (P) ⊨ m(A, r, Z) }

November 13, 2003 © William H. Winsborough 36

Example P and R
SA.access ← HR.manager
SA.access ← HR.manager.access ∩ HR.employee
HR.employee ← HR.manager
HR.employee ← HR.programmer
HR.manager ← Alice
HR.programmer ← Bob
HR.programmer ← Carl
Alice.access ← Bob
G = { SA.access, HR.employee }
S = { SA.access, HR.employee, HR.manager }

7

November 13, 2003 © William H. Winsborough 37

Example Problem Instance (1 of 4)
SA.access ← HR.manager
SA.access ← HR.manager.access ∩ HR.employee
HR.employee ← HR.manager
HR.employee ← HR.programmer
HR.manager ← Alice
HR.programmer ← Bob
HR.programmer ← Carl
Alice.access ← Bob
G = { SA.access, HR.employee }
S = { SA.access, HR.employee, HR.manager }
Simple safety: Is SA.access ⊒ { Eve } possible? (Yes)

November 13, 2003 © William H. Winsborough 38

SA.access ← HR.manager
SA.access ← HR.manager.access ∩ HR.employee
HR.employee ← HR.manager
HR.employee ← HR.programmer
HR.manager ← Alice
HR.programmer ← Bob
HR.programmer ← Carl
Alice.access ← Bob
G = { SA.access, HR.employee }
S = { SA.access, HR.employee, HR.manager }
Simple availability: Is SA.access ⊒ { Alice } necessary? (Yes)

Example Problem Instance (2 of 4)

November 13, 2003 © William H. Winsborough 39

Example Problem Instance (3 of 4)
SA.access ← HR.manager
SA.access ← HR.manager.access ∩ HR.employee
HR.employee ← HR.manager
HR.employee ← HR.programmer
HR.manager ← Alice
HR.programmer ← Bob
HR.programmer ← Carl
Alice.access ← Bob
G = { SA.access, HR.employee }
S = { SA.access, HR.employee, HR.manager }
Bounded safety: Is { Alice, Bob } ⊒ SA.access necessary? (No)

November 13, 2003 © William H. Winsborough 40

Example Problem Instance (4 of 4)
SA.access ← HR.manager
SA.access ← HR.manager.access ∩ HR.employee
HR.employee ← HR.manager
HR.employee ← HR.programmer
HR.manager ← Alice
HR.programmer ← Bob
HR.programmer ← Carl
Alice.access ← Bob
G = { SA.access, HR.employee }
S = { SA.access, HR.employee, HR.manager }
Containment: Is HR.employee ⊒ SA.access necessary? (Yes)

November 13, 2003 © William H. Winsborough 41

Security Analysis: Usage Cases

Security requirement = analysis problem instance +
acceptable answer

Organization defines a set of requirements
Sanity check

Some principals are trusted
They analyze proposed policy changes with respect
organization’s requirements before committing

Insider threat assessment
Can vary the principals that are trusted by changing the
restriction rule
In this way, organization can determine how it is exposed
to the principals

November 13, 2003 © William H. Winsborough 42

Membership and
Boundedness Queries

Efficient algorithms based on two non-standard
LP semantics

LB(P , R)
UB(P , R)

Solves 4 analysis problems:

Membership

Boundedness UB

∀ ∃

LB

LB

UB

8

November 13, 2003 © William H. Winsborough 43

LB(P , R): Lower Bound Program
Construct P|R from P by dropping all statements
defining roles not in S

Construct LB(P , R) from P :
For each A.r ← D in P|R add lb(A, r, D).

For each A.r ← B.r1 in P|R , add
lb(A, r, ?Z) :- lb(B, r1, ?Z).

For each A.r ← A.r1.r2 in P|R , add
lb(A, r, ?Z) :- lb(A, r1, ?Y), lb(?Y, r2, ?Z).

For each A.r ← A1.r1 ∩ A2.r2 in P|R , add
lb(A, r, ?Z) :- lb(A1, r1, ?Z), lb(A2, r2, ?Z).

November 13, 2003 © William H. Winsborough 44

LB(P , R)

Lower Bound Program handles:
Universal membership analysis
A.r ⊒ { D1, …, Dn } is necessary iff
LB(P , R) ⊨ lb(A, r, Di) for each i ∈ [1..n]
Existential boundedness analysis
{ D1, …, Dn } ⊒ A.r is possible iff
{ D1, …, Dn } ⊇ { Z | LB(P, R) ⊨ lb(A, r, Z) }

November 13, 2003 © William H. Winsborough 45

UB(P , R): Upper Bound Program
Construct UB(P , R) from P :

Add ub(⊤, ?r, ?Z).

For each A.r ∈ Roles(P) – G add ub(A, r, ?Z).
For each A.r ← D in P , add ub(A, r, D).

For each A.r ← B.r1 in P , add
ub(A, r, ?Z) :- up(B, r1, ?Z).
For each A.r ← A.r1.r2 in P , add
ub(A, r, ?Z) :- ub(A, r1, ?Y), ub(?Y, r2, ?Z).
For each A.r ← A1.r1 ∩ A2.r2 in P , add
ub(A, r, ?Z) :- ub(A1, r1, ?Z), ub(A2, r2, ?Z).

November 13, 2003 © William H. Winsborough 46

UB(P , R)

Upper Bound Program handles:
Existential membership analysis
A.r ⊒ { D1, …, Dn } is possible iff

A.r ∉ G
UB(P , R) ⊨ ub(A, r, ⊤), or
UB(P , R) ⊨ ub(A, r, Di) for each i ∈ [1..n]

Cf. HRU model of safety, which is undecidable
Universal boundedness analysis
{ D1, …, Dn } ⊒ A.r is necessary iff
{ D1, …, Dn } ⊇ { Z | UB(P, R) ⊨ ub(A, r, Z) }

November 13, 2003 © William H. Winsborough 47

Inclusion Complexity Depends on
RT0 Sublanguage

We consider four subsets of RT0
RT [] has only facts & simple delegation

A.r ← D
A.r ← B.r1

RT [↞] = RT [] + linking
A.r ← A.r1.r2

RT [∩] = RT [] + intersection
A.r ← A1.r1 ∩ A2.r2

RT [↞, ∩] = RT0

November 13, 2003 © William H. Winsborough 48

Complexity of Inclusion Queries

Polynomial algorithms for RT []
Complexity results

RT [↞] : PSPACE-complete
RT [∩] : coNP-complete
RT [↞, ∩] : in coNEXP

9

November 13, 2003 © William H. Winsborough 49

Possible Future Work:
A Security Policy Management Assistant

Assistant should automatically generate proposals for how to
guarantee security requirements are met

Needed:
When requirements change
When you change whom you trust

Assistant should explain why some requirements cannot be met
Assistant should help assess insider threat

Which semi-trusted parties could really hurt you?
Assess your exposure to colluding groups of insiders
Assistant should suggest ways to reduce your exposure, e.g.
through separation of duties

Heuristical analysis for expensive queries

November 13, 2003 © William H. Winsborough 50

Summary: Problems We Have
Addressed

Provided a language for authorization policy to
support collaboration in open systems

RT : A Role-based Trust-management framework

Distributed Credential Chain Discovery

Provided techniques for understanding and
managing policy

Safety and availability analysis in trust management

