
The ARBAC97 Model for Role-Based
Administration of Roles

RAVI SANDHU, VENKATA BHAMIDIPATI, and QAMAR MUNAWER
George Mason University

In role-based access control (RBAC), permissions are associated with roles and users are made
members of roles, thereby acquiring the roles’ permissions. RBAC’s motivation is to simplify
administration of authorizations. An appealing possibility is to use RBAC itself to manage
RBAC, to further provide administrative convenience and scalability, especially in decentral-
izing administrative authority, responsibility, and chores. This paper describes the motiva-
tion, intuition, and formal definition of a new role-based model for RBAC administration. This
model is called ARBAC97 (administrative RBAC ’97) and has three components: URA97
(user-role assignment ’97), PRA97 (permission-role assignment ’97), and RRA97 (role-role
assignment ’97) dealing with different aspects of RBAC administration. URA97, PRA97, and
an outline of RRA97 were defined in 1997, hence the designation given to the entire model.
RRA97 was completed in 1998. ARBAC97 is described completely in this paper for the first
time. We also discusses possible extensions of ARBAC97.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; D.4.6 [Operating Systems]: Security and Protection—Access controls; D.4.7
[Operating Systems]: Organization and Design—Distributed systems; G.2.2 [Discrete
Mathematics]: Graph Theory—Graph algorithms; H.2.0 [Database Management]: Gener-
al—Security, integrity, and protection; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Algorithms, Management, Security

Additional Key Words and Phrases: Authorization management, role based access control,
security administration

1. INTRODUCTION
Role-based access control (RBAC) has recently received considerable atten-
tion as a promising alternative to traditional discretionary and mandatory
access controls (see the companion papers in this issue: [Nyanchama and
Osborn 1999; Bertino et al. 1999; Ferraiolo et al. 1999]). In RBAC, permis-

This research was supported in part by the National Science Foundation, the National
Institute of Standards and Technology, and the National Security Agency at the Laboratory
for Information Security Technology at George Mason University.
Authors’ address: Information and Software Engineering, George Mason University, Mail Stop
4A4, Fairfax, VA 22030; email: sandhu@gmu.edu; http://www.list.gmu.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 1094-9224/99/0200–0105 $5.00

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999, Pages 105–135.

sions are associated with roles and users are made members of appropriate
roles, thereby acquiring the roles’ permissions. This greatly simplifies
management of permissions. Roles are created for the various job functions
in an organization, and users are assigned roles based on their responsibil-
ities and qualifications. Users can be easily reassigned from one role to
another. Roles can be granted new permissions as new applications and
systems are incorporated, and permissions can be revoked from roles as
needed. Role-role relationships can be established to lay out broad policy
objectives.

RBAC is policy-neutral and flexible. The policy that is enforced is a
consequence of the detailed configuration of various RBAC components.
RBAC’s flexibility allows a wide range of policies to be implemented. As an
illustration of its flexibility, RBAC can be configured to enforce classical
mandatory access controls [Nyanchama and Osborn 1996; Sandhu 1996]
and discretionary access controls [Sandhu and Munawer 1998].

RBAC supports three well-known security principles: least privilege,
separation of duties, and data abstraction. Least privilege is supported
because RBAC can be configured so only those permissions required for
tasks conducted by members of the role are assigned to the role. Separation
of duties is achieved by ensuring that mutually exclusive roles must be
invoked to complete a sensitive task, such as requiring an accounting clerk
and account manager to participate in issuing a check. Data abstraction is
supported by means of abstract permissions such as credit and debit for an
account object, rather than the read, write, execute permissions typically
provided by the operating system. However, these principles must be
embodied in a detailed configuration of RBAC components.

Administration of RBAC is very important, and must be carefully con-
trolled to ensure that policy does not drift away from its original objectives.
In large enterprise-wide systems, the number of roles can be in the
hundreds or thousands, and users in the tens or hundreds of thousands.
Managing these roles and users, and their interrelationships, is a formida-
ble task that cannot realistically be centralized in a small team of security
administrators. Decentralizing the details of RBAC administration without
loosing central control over broad policy is a challenging goal for system
designers and architects. There is tension between the desire for scalability
through decentralization and maintenance of tight control. A complete
solution to this problem requires further research and faces significant
theoretical problems (see, for example, Harrison et al. [1976]; Sandhu
[1992]; and Sandhu and Ganta [1995]). Our work provides a significant and
practical advance towards this goal.

Since the main advantage of RBAC is to facilitate administration, it is
natural to ask how RBAC itself can be used to manage RBAC. We believe
using RBAC for managing RBAC is an important factor in its long-term
success. The central contribution of this paper is a comprehensive model for
role-based administration of RBAC.

There are many components in RBAC, making RBAC administration
multifaceted. In particular, we can separate the issues of assigning users to

106 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

roles, assigning permissions to roles, and assigning roles to roles to define a
role hierarchy. These activities are all required to bring users and permis-
sions together. However, in many cases, they are best done by different
administrators or administrative roles. Assigning permissions to roles is
typically the province of application administrators. A banking application
can be implemented so that credit and debit operations are assigned to a
teller role, whereas approval of a loan is assigned to a managerial role.
Assignment of actual individuals to the teller and managerial roles is a
personnel management function. Assigning roles to roles has aspects of
user-role assignment and role-permission assignment. More generally,
role-role relationships establish broad policy.

Our administrative model is called ARBAC97 (administrative RBAC ’97).
It has three components: URA97 is concerned with user-role assignment;
PRA97 (permission-role assignment ’97) with permission-role assignment,
and is a dual of URA97;1and RRA97 (role-role assignment ’97) deals with
role-role assignment. RRA97 itself has several components determined by
the kind of roles that are involved, as discussed in Section 5.

The rest of the paper is organized as follows. Section 2 reviews the
RBAC96 model, and ARBAC97 is developed in its context. Sections 3, 4,
and 5 describe, respectively, URA97, PRA97, and RRA97. Section 6 dis-
cusses various aspects of ARBAC97, including implementations and exten-
sions. Section 7 concludes the paper.

2. THE RBAC96 MODEL

A general family of RBAC models called RBAC962 was defined by Sandhu
et al. [1996]. Figure 1 illustrates the most general model in this family. For
simplicity, we use the term RBAC96 to refer to the family of models as well
as to its most general member.

The top half of Figure 1 shows (regular) roles and permissions that
regulate access to data and resources; the bottom half shows administra-
tive roles and permissions. Intuitively, a user is a human being or an
autonomous agent, a role is a job function or job title within the organiza-
tion with some associated semantics regarding the authority and responsi-
bility conferred on a member of the role, and a permission is an approval of
a particular mode of access to one or more objects in the system or some
privilege to carry out specified actions. Roles are organized in a partial
order $, so that if x $ y then role x inherits the permissions of role y.
Members of x are also implicitly members of y. In such cases, we say x is
senior to y. Each session relates one user to possibly many roles. The idea
is that a user establishes a session and activates some subset of roles that
he or she is a member of (directly or indirectly by means of role hierarchy).

1We have often observed a duality between user-role and permission-role relationships. For
example, every constraint on user-role relationships has a dual counterpart with respect to
permission-role relationships, and vice versa [Sandhu et al. 1996]. Thus it is natural that
URA97 and PRA97 are duals.
2The name RBAC96 was first used in Sandhu [1997a].

The ARBAC97 Model for Role-Based Administration of Roles • 107

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Constraints that can be imposed on the other components of RBAC are
an important aspect of RBAC96. It is sometimes argued that constraints
are the principal motivation for RBAC. Mutually disjoint roles, such as
purchasing manager and accounts payable manager, is a common example.
In most organizations (except the very smallest), the same individual will
not be permitted to be a member of both roles because this creates a
possibility for committing fraud. This is the well-known and time-honored
principle of separation of duties. Constraints are a powerful mechanism for
laying out higher-level organizational policy. Once certain roles are de-
clared to be mutually exclusive, there does not need to be so much concern

Fig. 1. Summary of the RBAC96 model.

108 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

about the assignment of individual users to roles. The latter activity can
then be delegated and decentralized without fear of compromising overall
policy objectives. So long as the management of RBAC is entirely central-
ized in a single security officer, constraints are a useful convenience; but
the same effect can largely be achieved by judicious care on the part of the
security officer. However, if management of RBAC is decentralized (as
discussed later), constraints become a mechanism by which senior security
officers can restrict the ability of users who exercise administrative privi-
leges. This enables the chief security officer to lay out the broad scope of
what is acceptable and impose it as a compulsory requirement on other
security officers and users.

In ARBAC97 it is assumed that constraints will be enforced while
carrying out administrative chores. Constraints specifically built into AR-
BAC97 are in addition to other constraints that may be specified.

It is worth emphasizing that RBAC96 distinguishes roles and permis-
sions from administrative roles and permissions, respectively, where the
latter are used to manage the former. How are administrative permissions
and roles managed in turn? One could consider a second level of adminis-
trative roles and permissions to manage the first level ones, and so on. We
feel such a progression of administration is unnecessary. Administration of
administrative roles and permissions is under control of the chief security
officer, or delegated in part to administrative roles. In this paper we take
the former approach.

RBAC96 has many components. Administration of RBAC involves control
over each of these components, including creation and deletion of roles,
creation and deletion of permissions, assignment of permissions to roles
and their removal, creation and deletion of users, assignment of users to
roles and their removal, definition and maintainence of the role hierarchy,
definition and maintainence of constraints, and all of these in turn for
administrative roles and permissions. A comprehensive administrative
model is quite complex and difficult to develop in a single step. ARBAC97
takes a piecemeal approach by developing different models for user-role
assignment, permission-role assignment, and role-role assignment.

3. THE URA97 MODEL FOR USER-ROLE ASSIGNMENT

In this section we develop the URA97 model for managing user-role
assignment. We define URA97 in two steps: granting a user membership in
a role and revoking a user’s membership. In spite of its simplicity, URA97
is quite powerful and goes much beyond existing administrative models for
user-role assignment. It is also applicable beyond RBAC to user-group
assignment.3

In the simplest case, user-role assignment can be completely centralized
in a single chief security officer role. This is readily implemented in

3The difference between roles and groups has been hotly debated [Sandhu 1997b]. For our
purpose, a group is a collection of users; whereas a role is a collection of users and
permissions.

The ARBAC97 Model for Role-Based Administration of Roles • 109

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

existing systems. However, this simple approach does not scale to large
systems. Clearly, it is desirable to decentralize user-role assignment to
some degree.

In several systems it is possible to designate a role, say junior security
officer (JSO), whose members have administrative control over one or more
regular roles, say A, B, and C. Thus, limited administrative authority is
delegated to the JSO role. Unfortunately these systems typically allow the
JSO role to have complete control over roles A, B, and C. A member of JSO
can not only add users to A, B. and C, but also delete users from these roles
and add and delete permissions. Moreover, there is no control on which
users can be added to the A, B, and C roles by JSO members. Finally, JSO
members are allowed to assign A, B, and C as junior to any role in the
existing hierarchy (as long as no cycle is introduced). All this is consistent
with classical discretionary thinking, whereby members of JSO are effec-
tively designated as “owners” of the A, B, and C roles, and therefore are
free to do whatever they want to these roles.

In URA97, our goal is to impose restrictions on which users can be added
to a role by whom, as well as to clearly separate the ability to add and
remove users from other operations on the role. The notion of a prerequisite
condition is a key part of URA97.

Definition 1. A prerequisite condition is a boolean expression using the
usual ∧ and ∨ operators on terms of the form x and x where x is a
regular role (i.e., x [R). A prerequisite condition is evaluated for a user u
by interpreting x to be true if ~?x9 $ x!~u, x9! [UA and x to be true if
~@x9 $ x!~u, x9! [/ ua. For a given set of roles R, we let CR denotes all
possible prerequisite conditions that can be formed using the roles in R.

In the trivial case, a prerequisite condition can be a tautology. The
simplest nontrivial case of a prerequisite condition is a test for membership
in a single role, where the single role is called a prerequisite role.

3.1 The URA97 Grant Model

User-role assignment is authorized in URA97 by the following relation.

Definition 2. The URA97 model controls user-role assignment by means
of the relation

can_assign # AR 3 CR 3 2R.

The meaning of can_assign~x, y, $a, b, c%! is that a member of the
administrative role x (or a member of an administrative role that is senior
to x) can assign a user whose current membership, or nonmembership, in

110 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

regular roles satisfies the prerequisite condition y to be a member of
regular roles a, b, or c.4

To appreciate the motivation behind the can_assign relation, consider
the role hierarchy in Figure 2(a) and the administrative role hierarchy in
Figure 2(b). Figure 2(a) shows the regular roles that exist in a engineering
department. There is a junior-most role E to which all employees in the
organization belong. Within the engineering department there is a junior-

4As mentioned earlier, user-role assignment is subject to constraints, such as mutually
exclusive roles or maximum membership, that may be imposed. The assignment will succeed if
and only if it is authorized by can_assign and satisfies all relevant constraints.

Fig. 2. Example role and administrative role hierarchies.

The ARBAC97 Model for Role-Based Administration of Roles • 111

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

most role ED and senior-most role DIR. In between there are roles for two
projects within the department, project 1 on the left and project 2 on the
right. Each project has a senior-most project lead role (PL1 and PL2) and a
junior-most engineer role (E1 and E2). In between, each project has two
incomparable roles, production engineer (PE1 and PE2) and quality engi-
neer (QE1 and QE2).

Figure 2(a) suffices for our purpose, but this structure can, of course, be
extended to dozens and even hundreds of projects within the engineering
department. Moreover, each project could have a different structure for its
roles. The example can also be extended to multiple departments with
different structure and policies applied to each department. Moreover,
there is no requirement that there be a senior-most role such as DIR in this
example. Similarly, there is no requirement that there be a junior-most
role.

Figure 2(b) shows the administrative role hierarchy that co-exists with
Figure 2(a). The senior-most role is the senior security officer (SSO). Our
main interest is in the administrative roles junior to SSO. These consist of
two project security officer roles (PSO1 and PSO2) and a department
security officer (DSO) role with the relationships illustrated in the figure.

For the sake of illustration, we define the can_assign relation shown in
Table I in the role set column. Each tuple in this example has the simplest
prerequisite condition for testing membership in a single role, known as the
prerequisite role.

The PSO1 role has partial responsibility over project 1 roles. Let Alice be
a member of the PSO1 role and Bob a member of the ED role. Alice can
assign Bob to any of the E1, PE1, and QE1 roles, but not to the PL1 role.
Also, if Charlie is not a member of the ED role, then Alice cannot assign
him to any project 1 role. Hence, Alice has authority to enroll users in the
E1, PE1, and QE1 roles, provided these users are already members of ED.
Note that if Alice assigns Bob to PE1, he does not need to be explicitly
assigned to E1, since E1 permissions are inherited via the role hierarchy.
The PSO2 role is similar to PSO1, but with respect to project 2. The DSO
role inherits the authority of PSO1 and PSO2 roles, but can further add
users who are members of ED to the PL1 and PL2 roles. The SSO role can
add users who are in the E role to the ED role, as well as add users who are
in the ED role to the DIR role. This ensures that even the SSO must first
enroll a user in the ED role before that user is enrolled in a role senior to
ED. This is a reasonable specification for can_assign. There are, of course,
lots of other equally reasonable specifications in this context. This is a
matter for policy decision; our model provides the necessary flexibility.

In general, we expect that the role being assigned is senior to the role
previously required of the user. That is, if we have can_assign~a, b, C!
where b is a prerequisite role, then b is junior to all roles c [C. We
believe this is usually the case, but we do not require it in the model. This
allows URA97 to be applicable to situations where there is no role hierar-
chy, or where such a constraint may not be appropriate.

112 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

The notation in Table I has benefited from the administrative role
hierarchy. Thus, for the DSO, we specified the role set as {PL1, PL2} and
the other values are inherited from PSO1 and PSO2. Similarly for the SSO.
Nevertheless, explicit enumeration of the role set is unwieldy, particularly
if we scale-up to dozens or hundreds of projects in the department.
Moreover, explicit enumeration is not resilient with respect to changes in
the role hierarchy. Suppose a third project is introduced in the department,
with roles E3, PE3, QE3, PL3, and PSO3 analogous to corresponding roles
for projects 1 and 2. We can add the following row to Table I.

This is a reasonable change when the new project and its roles are
introduced into the regular and administrative role hierarchies. However,
we also need to modify the row for DSO in Table I to include PL3.

Consider instead the range notation illustrated in Table I in the role
range column. The role set and role range columns in Table I show the
same role sets. A role range defines this set by identifying a range within
the role hierarchy of Figure 1(a) by means of the familiar closed and open
interval notation.

Definition 3. Role sets are specified in the URA97 model by the range
notation given below

@x, y# 5 $r [R ? x $ r ∧ r $ y% @x, y! 5 $r [R ? x $ r ∧ r . y%

~x, y# 5 $r [R ? x . r ∧ r $ y% ~x, y! 5 $r [R ? x . r ∧ r . y%

This notation is resilient to modifications, such as addition of a third
project, in the role hierarchy, which requires addition of the following row
to Table I.

Table I. can_assign with Prerequisite Roles

Admin. Role Prereq. Role Role Set Role Range

PSO1 ED {E1, PE1, QE1} [E1, PL1)
PSO2 ED {E2, PE2, QE2} [E2, PL2)
DSO ED {PL1, PL2} (ED, DIR)
SSO E {ED} [ED, ED]
SSO ED {DIR} (ED, DIR]

Admin. Role Prereq. Role Role Set

PSO3 ED {E3, PE3, QE3}

Admin. Role Prereq. Role Role Range

PSO3 ED [E3, PL3)

The ARBAC97 Model for Role-Based Administration of Roles • 113

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

No other change is required, since the (ED, DIR) range specified for the
DSO automatically picks up PL3.

Range notation is not resilient to all changes in the role hierarchy.
Deletion of one of the end points of a range can leave a dangling reference
and an invalid range. As we will see, RRA97 does not permit this to
happen, thereby maintaining referential integrity of the range. Changes to
role-role relationships could also cause a range to be drastically different
from its original meaning. Nevertheless, the range notation is much more
convenient than explicit enumeration. There is also no loss of generality in
adopting the range notation, since every set of roles can be expressed as a
union of disjoint ranges.

Strictly speaking, the role set and role range specifications of Table I are
not identical. With role sets, the DSO role is explicitly authorized to enroll
users in PL1 and PL2, and inherits the ability to enroll users in other
project 1 and 2 roles from PSO1 and PSO2. On the other hand, with role
range, the DSO role is explicitly authorized to enroll users in all project 1
and 2 roles. As it stands, the net effect is the same. However, if modifica-
tions are made to the role hierarchy or to the PSO1 or PSO2 authorizations,
the effect can be different. The DSO role set authorization in Table I can be
replaced by the following row, to make it more nearly identical to the
specified role range.

Now, even if the PSO1 and PSO2 roles in Table I are modified to the role
sets {E1} and {E2}, respectively, the DSO role will still retain administra-
tive authority over all project 1 and project 2 roles. Of course, explicit and
implicit specifications will never behave exactly identically under all cir-
cumstances. For instance, introduction of a new project 3 will exhibit
differences discussed above. Conversely, the DSO role range authorization
in Table I can be replaced by the following rows to make it more nearly
identical to the specified role set.

There is an analogous situation to the SSO role in Table I. Clearly, we
must anticipate the impact of future changes when we specify the
can_assign relation.

An example of can_assign, which uses prerequisite conditions rather
than prerequisite roles, is shown in Table II. The authorizations for PSO1
and PSO2 were changed relative to Table I. Consider the PSO1 tuples

Admin. Role Prereq. Role Role Set

DSO ED {E1, PE1, QE1, PL1, E2, PE2, QE2, PL2}

Admin. Role Prereq. Role Role Range

DSO ED [PL1, PL1]
DSO ED [PL2, PL2]

114 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

(analysis for PSO2 is exactly similar). The first tuple authorizes PSO1 to
assign users with prerequisite role ED into E1. The second one authorizes
PSO1 to assign users with prerequisite condition ED ∧ QE1 to PE1.
Similarly, the third tuple authorizes PSO1 to assign users with prerequi-
site condition ED ∧ PE1 to QE1. Taken together, the second and third
tuples authorize PSO1 to put a user who is a member of ED into one but
not both of PE1 and QE1. This illustrates how mutually exclusive roles can
be enforced by URA97. PE1 and QE1 are mutually exclusive with respect to
the power of PSO1. However, for the DSO and SSO, these are not mutually
exclusive. Hence, the notion of mutual exclusion is relative in URA97. The
fourth tuple authorizes PSO1 to put a user who is a member of both PE1
and QE1 into PL1. Of course, a user could have become a member of both
PE1 and QE1 only by actions of a more powerful administrator than PSO1.

3.2 The URA97 Revoke Model

We now turn to consideration of the URA97 revoke model. The objective is
to define a revoke model that is consistent with the philosophy of RBAC.
This causes us to depart from classical discretionary approaches to revoca-
tion.

In the typical discretionary approach to revocation, there are at least two
issues that introduce complexity and subtlety. Suppose Alice grants Bob
some permission P. This is done at Alice’s discretion because Alice is either
the owner of the object to which P pertains or has been granted adminis-
trative authority over P by the actual owner. Alice can later revoke P from
Bob. Now suppose Bob has received permission P from Alice and from
Charlie. If Alice revokes her grant of P to Bob, he should still continue to
retain P because of Charlie’s grant. Cascading revokes is a related issue.
Suppose Charlie’s grant was in turn obtained from Alice, perhaps Bob’s
permission should end up being revoked by Alice’s action. Or perhaps it
should not, since Alice only revoked her direct grant to Bob but not the
indirect one via Charlie, which really occurred at Charlie’s discretion. A
considerable literature has developed examining the subtleties that arise,

Table II. can_assign with Prerequisite Conditions

Admin. Role Prereq. Condition Role Range

PSO1 ED [E1, E1]
PSO1 ED ∧ QE1 [PE1, PE1]
PSO1 ED ∧ PE1 [QE1, QE1]
PSO1 PE1 ∧ QE1 [PL1, PL1]
PSO2 ED [E2, E2]
PSO2 ED ∧ QE2 [PE2, PE2]
PSO2 ED ∧ PE2 [QE2, QE2]
PSO2 PE2 ∧ QE2 [PL2, PL2]
DSO ED (ED, DIR)
SSO E [ED, ED]
SSO ED (ED, DIR]

The ARBAC97 Model for Role-Based Administration of Roles • 115

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

especially when hierarchical groups and negative permissions or denials
are brought into play (see, for example, Bertino et al. [1997]).

The RBAC approach to authorization is quite different from the tradi-
tional discretionary one. In RBAC, users are made members of roles
because of their job function or task assignment in the interests of the
organization. Granting membership in a role is specifically not done at the
grantor’s whim. Suppose Alice makes Bob a member of a role X. In URA97,
this happens because Alice is assigned suitable administrative authority
over X via some administrative role Y, and Bob is eligible for membership
in X due to Bob’s existing role memberships (and nonmemberships), satis-
fying the prerequisite condition. Moreover, there are some organizational
circumstances that cause Alice to grant Bob this membership. It is not
merely being done at Alice’s personal fancy. Now, if at some later time Alice
is removed from the administrative role Y, there is clearly no reason to also
remove Bob from X. A change in Alice’s job function should not necessarily
undo her previous grants. Presumably some other administrator, say
Dorothy, will take over Alice’s responsibility. Similarly, suppose Alice and
Charlie both grant membership to Bob in X. At some later time, Bob is
reassigned to some other project and no longer needs to be a member of role
X. It is not material whether Alice, or Charlie, or both, or Dorothy revokes
Bob’s membership. Bob’s membership in X is revoked due to a change in
organizational circumstances.

We now introduce our notation for authorizing revocation.

Definition 4. The URA97 model controls user-role revocation by means
of the relation

can_revoke # AR 3 2R.

The meaning of can_revoke~x, Y! is that a member of the administrative
role x (or a member of an administrative role that is senior to x) can revoke
membership of a user from any regular role y [Y. Y is specified using the
range notation of Definition 3. We say Y defines the range of revocation.

The revocation operation in URA97 is said to be weak because it applies
only to the role that is directly revoked. Suppose Bob is a member of PE1
and E1. If Alice revokes Bob’s membership from E1, he continues to be a
member of the senior role PE1, and therefore can use the permissions of
E1. To make the notion of weak revocation precise, we introduce the
following terminology. Recall that UA is the user assignment relation.

Definition 5. Let us say a user U is an explicit member of role x if ~U,
x! [UA, and that U is an implicit member of role x if for some x9 . x,
~U, x9! [UA.

RBAC96 allows a user to be an explicit and implicit member of the same
role.

Weak revocation has an impact on explicit membership only. It has the
straightforward meaning stated below.

116 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Weak revocation. Let Alice have a session with administrative roles A
5 $a1, a2, . . . , ak% and let Alice try to weakly revoke Bob from role x. If
Bob is not an explicit member of x, this operation has no effect; otherwise
if there exists a can_revoke tuple ~b, Y! such that there exists ai [A,
ai $ b and x [Y revoke Bob’s explicit membership in x.

Strong revocation of U’s membership in x requires that U be removed not
only from explicit membership in x, but also from explicit (or implicit)
membership in all roles senior to x. However, strong revocation in URA97
takes effect only if all implied revocations upward in the role hierarchy are
within the revocation range of the administrative roles active in that
session. Strong revocation is theoretically equivalent to a series of weak
revocations, but it is a useful and convenient operation for administrators.

We have used this principle of defining stronger operations in terms of
weaker ones in ARBAC97 at several places. The general approach is to
define simple and essential operations and give them a formal meaning.
More complex operations are then defined in terms of the simple ones. In
an implementation, however, the more complex operations can be directly
implemented for performance reasons, rather than being implemented as
sequences of the weaker operation. This allows us to keep a simple
underlying semantics for the model, while allowing for the crafting of
convenient bells and whistles.

Consider the example of can_revoke, shown in Table III, and interpret it
in context of the hierarchies in Figures 2(a) and 2(b). Let Alice be a member
of PSO1, and let this be the only administrative role she has. Alice is
authorized to strongly revoke memberships of users from roles E1, PE1,
and QE1. Table IV illustrates the effect of Alice’s strong revocation of a
user from role E1. Alice is not allowed to strongly revoke Dave and Eve
from E1 because they are members of senior roles outside the scope of
Alice’s revoking authority. If Alice was assigned to the DSO role, she could
strongly revoke Dave from E1, but would still not be able to strongly revoke

Table III. Example of can_revoke

Admin. Role Role Range

PSO1 [E1, PL1)
PSO2 [E2, PL2)
DSO (ED, DIR)
SSO [ED, DIR]

Table IV. Example of Strong Revocation

User E1 PE1 QE1 PL1 DIR Alice revokes user from E1

Bob Yes Yes No No No removed from E1, PE1
Cathy Yes Yes Yes No No removed from E1, PE1, QE1
Dave Yes Yes Yes Yes No no effect
Eve Yes Yes Yes Yes Yes no effect

The ARBAC97 Model for Role-Based Administration of Roles • 117

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Eve’s membership in E1. In order to strongly revoke Eve from E1, Alice
needs to be in the SSO role.

The algorithm for strong revocation is stated in terms of weak revocation,
as follows.

Strong revocation. Let Alice have a session with administrative roles A
5 $a1, a2, . . . , ak%, and let Alice try to strongly revoke Bob from role x.
Find all roles y $ x such that Bob is an explicit member of y. Weakly
revoke Bob from all such y as if Alice did this weak revoke in this session.
If any of the weak revokes fail, then Alice’s strong revoke has no effect,
otherwise all weak revokes succeed.

An alternate approach is to do only those weak revokes that succeed and
ignore the rest. URA97 allows this as an option to the behavior identified
above. In general, we can give flexible meaning to strong revocation as long
as the meaning can be expressed in terms of weak revocation.

So far we have looked at the cascading of revocation upward in the role
hierarchy. There is also a downward cascading effect. Consider Bob in our
example who is a member of E1 and PE1. Suppose further that Bob is an
explicit member of PE1, and thereby an implicit member of E1. What
happens if Alice revokes Bob from PE1? If we remove (Bob, PE1) from the
UA relation, Bob’s implicit membership in E1 will also be removed. On the
other hand, if Bob is an explicit member of PE1 and also an explicit
member of E1, then Alice’s revocation of Bob from PE1 does not remove him
from E1. The revoke operations we have defined in URA97 have the
following effect.

Property 1. Implicit membership in a role a is dependent on explicit
membership in some senior role b . a. Therefore, when explicit member-
ship of a user is revoked from b, implicit membership is also automati-
cally revoked on junior role a, unless there is some other senior role c
. a in which the user continues to be an explicit member.

Note that our examples can_assign in Table I and can_revoke in Table
III are complementary, in that each administrative role has the same range
for adding users and removing users from roles. Although this would be a
common case, we do not impose it as a requirement on our model.

3.3 Discussion

To summarize, URA97 controls user-role assignment by means of the
relation can_assign # AR 3 CR 3 2R. Role sets are specified using the
range notation of Definition 3. Assignment has a simple behavior whereby
can_assign~a, b, C! authorizes a session with an administrative role a9
$ a to enroll any user who satisfies the prerequisite condition b into any
role c [C. The prerequisite condition is a boolean expression using the
usual ∧ and ∨ operators on terms of the form x and x, respectively,
denoting membership and nonmembership in regular role x. Revocation is

118 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

controlled in URA97 by the relation can_revoke # AR 3 2R. Weak revoca-
tion applies only to explicit membership in a single role. Strong revocation
cascades upwards in the role hierarchy. In both cases, revocation cascades
downwards as noted in Property 1.

URA97 does not deal with creation and deletion of users. URA97 treats
this as a centralized task in an enterprise. Everything else thereafter can
be based on role-based prerequisite conditions.

As we discussed earlier, when a user’s administrative roles are revoked
that user’s assignments and revocations remain in effect because they were
done for organizational reasons and not at the user’s whim. A related issue
is what happens when the prerequisite condition that authorized Alice to
assign Bob to a role gets changed. Say that Alice as PSO1 assigns Bob to
PE1, as per the second PSO1 tuple of Table II. Later, Bob is somehow made
a member of QE1, perhaps by a user in DSO or SSO role. This assignment
negates the prerequisite condition that enabled Alice to do her assignment.
Bob’s membership in PE1 will nevertheless continue. We feel this is the
appropriate action. The prerequisite conditions of URA97 (and at other
places in ARBAC97) are not invariants that hold for all time. They are
simply enabling conditions at the moment that assignment is made.

As another example of the enabling, but not invariant, nature of prereq-
uisite conditions consider the following in context of the can_assign rela-
tion of Table I. Suppose Alice as PSO1 enrolls Bob into PE1 due to his
prerequisite membership in ED. Later, Charles as SSO revokes Bob from
ED. Should Alice’s assignment of Bob to PE1 be negated, since the
prerequisite condition has been negated? It depends on Charles’ intention,
which in turn depends on the organizational reason for this revocation. If
Charles really needs to clear Bob out from the engineering department, the
correct course of action is a strong revocation of Bob from ED. If Charles
does a weak revoke of Bob’s explicit membership in ED, he leaves open the
option that Bob will continue to participate in engineering department
roles until such time Bob is revoked from all of them (say by project
security officers). This latter option can be useful in allowing Bob to
gracefully leave the engineering department without an abrupt termina-
tion. In such cases it might be useful for Charles to be able to freeze Bob’s
membership in engineering department roles so that Bob cannot be as-
signed to new roles. This can be done using prerequisite conditions. A role
called EF (for engineering frozen) can be defined and nonmembership in EF
required in the prerequisite condition of all can_assign tuples that autho-
rize users to be assigned to engineering department roles.

There is a lack of symmetry between can_assign and can_revoke, in that
can_assign involves prerequisite conditions but can_revoke does not. There
are situations where prerequisite conditions could be useful in can_revoke.
For instance, suppose there is another department called sales, similar to
an engineering department with SD as its junior-most role and SDIR as
senior-most. Consider the can_revoke tuple with prerequisite condition
given below.

The ARBAC97 Model for Role-Based Administration of Roles • 119

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

This tuple says that if Bob is a member of ED, then DSO (of engineering
department) can strongly revoke Bob from SD. This can be useful if Bob is
in transition from the sales department to the engineering department. Bob
can retain membership in sales department roles for some time, but this
membership can be revoked by administrators of the engineering depart-
ment (in case Bob spends too much time in sales department activity). A
reciprocal rule for SDSO (department security officer of sales department)
to revoke Bob from engineering department roles could result in interesting
race conditions. Thus, the prerequisite condition could be further qualified
to ED ∧ EF where EF is the frozen engineering role discussed above. The
utility of prerequisite conditions in can_revoke tuples is not clear without
further theoretical analysis or empirical evidence, so we decided to omit
this feature from ARBAC97.

Our final observation concerns range notation. In our example hierarchy,
we have senior-most and junior-most roles, which means we can identify
ranges conveniently. Suppose that in Figure 1 there is no DIR role, but that
we would like to give DSO the authority specified in Table I. Since DIR
does not exist, we can invent a symbol top, so we can say (ED,top) rather
than (ED, DIR). A similar bottom symbol would also be useful if there were
no junior-most role. Other enhancements to range notation can also be
imagined, such as allowing the complement of a range to be specified. For
simplicity, we omit these enhancements.

4. THE PRA97 MODEL FOR PERMISSION-ROLE ASSIGNMENT

PRA97 is concerned with role-permission assignment and revocation. From
the perspective of a role, users and permissions have a similar character.
They are essentially entities that are brought together by a role. Hence, we
propose PRA97 to be a dual of URA97. The notion of a prerequisite
condition is identical to that in URA97, except the boolean expression is
now evaluated for membership and nonmembership of a permission in
specified roles.

Definition 6. Permission-role assignment and revocation, respectively,
are authorized in PRA97 by the following relations:

can_assignp # AR 3 CR 3 2R

can_revokep # AR 3 2R.

The meaning of can_assignp~x, y, Z! is that a member of the adminis-
trative role x (or a member of an administrative role that is senior to x) can
assign a permission whose current membership, or nonmembership, in
regular roles satisfies the prerequisite condition y to regular roles in range

Admin. Role Prereq. Condition Role Range

DSO ED [SD, DIR]

120 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Z.5 The meaning of can_revokep~x, Y! is that a member of the administra-
tive role x (or a member of an administrative role that is senior to x) can
revoke membership of a permission from any regular role y [Y.

Table V shows examples of these relations. The DSO is authorized to
take any permission assigned to the DIR role and make it available to PL1
or PL2. Thus a permission can be delegated downward in the hierarchy.
PSO1 can assign permissions from PL1, either PE1 or QE1, but not to both.
The remaining rows in Table V(a) are similarly interpreted. Table V(b)
authorizes DSO to revoke permissions from any role between ED and DIR.
PSO1 can revoke permissions from PE1 and QE2, and similarly for PSO2.

Revocation in PRA97 is weak, so permissions may still be inherited after
revocation. Strong revocation can be defined in terms of weak revocation as
in URA97. Strong revocation of a permissions cascades down the role
hierarchy, in contrast to cascading up for revocation of user membership.
For completeness, the formal definitions are given below.

Definition 7. Let us say a permission P is explicitly assigned to role x if
~P, x! [PA, and that P is implicitly assigned to role x if for some x9 , x,
~P, x9! [PA.

Weak revocation. Let Alice have a session with administrative role A 5
$a1, a2, . . . , ak%, and let Alice try to weakly revoke permission P from
role x. If P is not explicitly assigned to x, this operation has no effect;
otherwise if there exists a can_revokep tuple ~b, Y! such that there
exists ai [A, ai $ b and x [Y, revoke P’s explicit assignment to x.

5Permission-role assignment may be subject to additional constraints, just as user-role
assignment is.

Table V. Example of can_assignp and can_revokep

Administrative Role Prerequisite Condition Role Range

DSO DIR [PL1, PL1]
DSO DIR [PL2, PL2]
PSO1 PL1 ∧ QE1 [PE1, PE1]
PSO1 PL1 ∧ PE1 [QE1, QE1]
PSO2 PL2 ∧ QE2 [PE2, PE2]
PSO2 PL2 ∧ PE2 [QE2, QE2]

(a) can_assignp

Administrative Role Role Range

DSO (ED, DIR)
PSO1 [QE1, QE1]
PSO1 [PE1, PE1]
PSO2 [QE2, QE2]
PSO2 [PE2, PE2]

(b) can_revokep

The ARBAC97 Model for Role-Based Administration of Roles • 121

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Strong revocation. Let Alice have a session with administrative roles A
5 $a1, a2, . . . , ak% and let Alice try to strongly revoke permission P
from role x. Find all roles y # x such that P is explicitly assigned to y.
Weakly revoke P from all such y as if Alice did this weak revoke in this
session. If any of the weak revokes fail, then Alice’s strong revoke has no
effect; otherwise all weak revokes succeed.

5. THE RRA97 MODEL FOR ROLE-ROLE ASSIGNMENT

In this setion we develop the RRA97 model for role-role assignment.

5.1 Abilities, Groups, and UP-Roles

For role-role assignment, we distinguish three kinds of roles, as follows:

—Abilities are roles that can only have permissions and other abilities as
members.

—Groups are roles that can only have users and other groups as members.

—UP-Roles are roles that have no restriction on membership, i.e., their
membership can include users, permissions, groups, abilities, and other
UP-roles.

The term UP-roles signifies user and permission roles. We use the term
role to mean all three kinds of roles or to mean UP-roles only, as deter-
mined by context. The three kinds of roles are mutually disjoint and are
identified, respectively, as A, G, and UPR.

The main reason for distinguishing among the three kinds of roles is that
different administrative models apply to establish relationships among
them. The distinction was motivated in the first place by abilities. An
ability is a collection of permissions that should be assigned as a single unit
to a role. For example, the ability to open an account in a banking
application will encompass many different individual permissions. It does
not make sense to assign only some of these permissions to a role, since the
entire set is needed to do the task properly. The idea is that application
developers package permissions into collections, called abilities, which
must be assigned together as a unit to a role.

The function of an ability is to collect permissions together so that
administrators can treat them as a single unit. Assigning abilities to roles
is therefore very much like assigning permissions to roles. For convenience,
it is useful to organize abilities into a hierarchy (i.e., partial order). Hence
the PRA97 model can be adapted to produce the very similar ARA97 model
for ability-role assignment.

Once the notion of abilities is introduced, by analogy there should be a
similar concept on the user side. A group is a collection of users who are
assigned as a single unit to a role. Such a group can be viewed as a team,
which is a unit even though its membership may change over time. Groups
can also be organized in a hierarchy. For group-role assignment, we adapt
the URA97 model to produce the GRA97 model for group-role assignment.

122 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

This leads to the following models.

Definition 8. Ability-role assignment and revocation are, respectively,
authorized in ARA97 by

can_assigna # AR 3 CR 3 2A

can_revokea # AR 3 2A.

Definition 9. Group-role assignment and revocation are, respectively,
authorized in GRA97 by

can_assigng # AR 3 CR 3 2G

can_revokeg # AR 3 2G.

For these models, CR is interpreted as the collection of prerequisite
conditions formed using roles in UPR, and the prerequisite conditions are
interpreted with respect to abilities and groups, respectively. Membership
of an ability in a UP-role is true if the UP-role dominates the ability, and
false otherwise. Conversely, membership of a group in a UP-role is true if
the UP-role is dominated by the group, and false otherwise.

Assigning an ability to an UP-role is mathematically equivalent to
making the UP-role an immediate senior of the ability in the role-role
hierarchy. Abilities can only have UP-roles or abilities as immediate
seniors and can only have abilities as immediate juniors. In a dual manner,
assigning a group to an UP-role is mathematically equivalent to making
the UP-role an immediate junior of the group in the role-role hierarchy.
Groups can only have UP-roles or groups as immediate juniors and can only
have groups as immediate seniors. With these constraints, the ARA97 and
GRA97 models are essentially identical to the PRA97 and URA97 models,
respectively. This leaves us with the problem of managing relationships
between UP-roles and other UP-roles, between abilities and other abilities,
and between groups and other groups. We use the same model for all three
cases. In the rest of the paper we understand the term role to mean one of
UP-role, ability, or group, and we use the symbol R to mean the set of
UP-roles, abilities, or groups as appropriate. Our examples are cast in
terms of UP-roles.

5.2 The Can_Modify Relation

Decentralization of administrative authority requires that members of
different administrative roles have authority over different parts of the
hierarchy. Authority over a part of the role hierarchy implies autonomy in
modifying the internal role structure of that part. That includes the
creation and deletion of roles, as well as alternation of role-role relation-
ships by adding or deleting the edges. For example, in Figure 2 we would
like the DSO to configure changes in the role hierarchy between DIR and
ED. The PSO1 would manage the hierarchy between PL1 and E1, whereas

The ARBAC97 Model for Role-Based Administration of Roles • 123

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

PSO2 would manage the part between PL2 and E2. This leads to the
following notion of a can_modify relation.

Definition 10. In RRA97 role creation, role deletion, edge insertion, and
edge deletion are all authorized by the the following relation

can_modify # AR 3 2R.

In this context, subsets of R are identified by the range notation, but
limited to open ranges that do not include the endpoints.

Table VI illustrates an example of can_modify, relative to the hierarchies
of Figure 2. The meaning of can_modify~x, Y! is that a member of the
administrative role x (or a member of an administrative role that is senior
to x) can create and delete roles in the range Y and can modify relation-
ships between roles in Y. The examples in the rest of the paper are all in
context of Figure 2 and Table VI. For purposes of our example, we ignored
PSO2 in this table and instead authorized PSO1 to manage the roles of
both projects. This illustrates how a single administrative role can be
authorized to control multiple pieces of the role hierarchy.

The semantics of the four operations—create role, delete role, insert
edge, and delete edge—are described in subsequent subsections. Some of
the important intuitive ideas are mentioned here in anticipation. In partic-
ular, none of these operations is allowed to introduce a cycle in the
hierarchy.

Creation of a new role requires the specification of its immediate parent
and child in the existing hierarchy. Thus PSO1 can create a new role with
immediate parent PL1 and immediate child E1, or a new role with
immediate parent PL1 and immediate child PE1, and so on. Generally, the
immediate parent and immediate child must fall within the range or be one
of the endpoints as specified in can_modify. Since creation of a role also
introduces two edges in the hierarchy, it is not possible to use any two roles
as the immediate parent and immediate child. Clearly we do not want this
operation to introduce a cycle in this manner. As we will see, we also
impose additional restrictions to prevent undesirable side effects of role
creation.

Deletion of a role leaves relationships between the parents and children
of the deleted role unchanged. So if DSO deletes E1, PE1 and QE1 continue
to be senior to ED after deletion of E1, as such deletion does not pose a
problem. However, deletion of E1 leaves dangling references in Table VI,
since the range (E1, PL1) no longer exists. In general, some roles are

Table VI. Example of can_modify

Admin. Role UP-Role Range

DSO (ED, DIR)
PSO1 (E1, PL1)
PSO1 (E2, PL2)

124 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

referenced in various relations in URA97, PRA97, and RRA97. If these
roles are actually deleted, we will have dangling references. Our approach
is to prohibit deletion that would cause a dangling reference. Roles that
cannot be deleted due to this reason can be deactivated, so that they can be
phased out later by adjusting the references that prevent deletion. Further-
more, when a role is deleted, we need to do something about the users and
permissions that are directly assigned to this role.

Insertion of an edge is meaningful only between incomparable nodes.
Thus insertion of an edge from PL1 to E1 has no meaning, whereas
insertion of an edge from PE1 to QE1 does. As we will see there are edges
that should not be inserted because they can lead to anomalous side effects
later.

Likewise, deletion of an edge is meaningful only if that edge is not
transitively implied by other edges. For example, deletion of the edge PL1
to E1 is meaningless and has no impact on the hierarchy. Deletion of the
edge QE1 to E1 does change the hierarchy. Edge deletion only applies to a
single edge and does not carry over to implied transitive edges. For
example, deletion of the edge QE1 to E1 makes QE1 and E1 incomparable,
but QE1 continues to be senior to ED.

More sophisticated forms of these operations can be constructed out of
the basic ones defined here. In these basic operations, roles and edges are
created and destroyed one at a time. This approach is analogous to the
definition of weak revocation in URA97 and PRA97, from which various
forms of strong revocation can be constructed. Similarly, in RRA97, more
complex operations can be constructed in terms of these basic ones. Our
discussion here is limited to the basic operations.

5.3 Restrictions on Can_Modify

The relation can_modify confers authority to administrative roles to change
the role hierarchy. We would like to restrict this authority to maintain
global consistency of authorization. The issue of dangling references has
already been raised, and RRA97 will not allow dangling references to occur.
But this is not enough.

Consider the example of Figure 3, which is identical to Figure 2(a),
except for additional edges shown in dashed lines that also bring in
additional roles. Now if PSO1, who has authority over the range (E1, PL1)
makes PE1 junior to QE1 by introducing an edge, the effect is to indirectly
introduce a relationship between X and Y roles. The role PSO1 does not
have the authority to create this relationship, so this is an anomalous side
effect. We should either restrict the authority of the administrative role (in
our example DSO) that introduced X and Y roles in the first place, or PSO1
should be prevented from introducing relationships that make PE1 junior
to QE1 (and indirectly Y junior to X). In general, administrative roles are
given autonomy within a range, but only so far as the global side effects are
acceptable.

The ARBAC97 Model for Role-Based Administration of Roles • 125

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

To formally state these restrictions on the authority of the administrative
roles, we introduce the concepts of authority range, encapsulated authority
range, and create range.

5.4 Concept of Range

The concept of range is very important in RRA97. It is formally defined as
follows.

Definition 11. A range of roles is defined by giving lower bound x and
upper bound y, where y . x. Formally, ~x, y! 5 $ z : R?x , z , y%?. We
say x and y are the end points of the range.

This is similar to the notion of a range we used in URA97 and PRA97,
except that in RRA97 a range does not include the end points. In URA97
and PRA97, a range may optionally exclude or include the lower or upper
bound or both.

In Figure 2, (E1, PL1), (E2, PL2), and (ED, DIR) are different ranges. The
range (ED, DIR) contains the roles that constitute ranges (E1, PL1) and
(E2, PL2). We say ranges (E1, PL1) and (E2, PL2) are junior to range (ED,
DIR).

Definition 12. For two ranges Y and Y9 if Y , Y9, then Y is a junior
range to Y9, and Y9 is a senior range to Y.

Fig. 3. Out of range impact.

126 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Here Y is a proper subset of Y ’. This eliminates the possibility of a
range being junior or senior to itself. This makes later definitions more
convenient.

If two ranges Y and Y ’ in the role hierarchy are such that one is not
junior to the other, then they are either incomparable or partially overlap-
ping. Formal definitions of partially overlapping and incomparable ranges
follow.

Definition 13. Ranges Y and Y9 partially overlap if Y ù Y’ Þ f and Y
,/ Y9 and Y9 ,/ Y. Ranges Y1 and Y2 are said to be incomparable if Y1 ù

Y2 5 f.

Note that incomparable ranges may have one common end point.

5.5 Authority Range and Encapsulated Authority Range

The members of administrative roles are authorized to modify a certain
range of roles in role hierarchy. These ranges are called authority ranges.

Definition 14. Any range referenced in the can_modify relation is called
an authority range.

To ensure that administrative authority over authority ranges does not
overlap, we introduce the following restriction.

Definition 15. In RRA9, authority ranges do not partially overlap.

Note that an administrative role may have more than one authority
range. Table VI shows that DSO has authority over the range (ED, DIR). In
Figure 2, the authority range (ED, DIR) has two junior authority ranges,
(E1, PL1) and (E2, PL2). Since these junior authority ranges are completely
contained within the authority range for DSO, DSO has authority over
these junior authority ranges as well. In other words, DSO has inherited
the authority over the ranges (E1, PL1) and (E2, PL2).

Our model allows an administrative role to have authority over more
than one incomparable authority range. Table VI shows that PSO1 has
authority over two incomparable authority ranges, namely (E1, PL1) and
(E2, PL2).

Consider Figure 3 again. To maintain consistency, we observed that
either DSO should not be allowed to create roles X or Y in the role
hierarchy, or PSO1 should not be allowed to make PE1 junior to QE1. In
the latter case, the autonomy of PSO1 to manage its authority range is
interfered with by DSO’s actions. While this is a possibility, we pursue the
former case here. Decentralization of authority and autonomy requires that
all inward and outgoing edges from an authority range should only be
directed to and from the end points of the authority range. The concept of
encapsulation of authority range serves this purpose.

Definition 16. A range (x, y) is said to be encapsulated if @r1 [~x, y!
∧ @r2 [/ ~x, y!; we have r2 . r1 N r2 . y and r2 , r1 N r2 , x.

The ARBAC97 Model for Role-Based Administration of Roles • 127

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Intuitively, an encapsulated range is one in which all roles have identical
relations to roles outside of the range. The intuition in RRA97 is that an
encapsulated range is the correct unit for autonomous management of
role-role relationships within the range. All authority ranges in RRA97 are
required to be encapsulated.

Definition 17. In RRA97, authority ranges must be encapsulated.

Figures 4 and 5, respectively, show examples of an encapsulated and
nonencapsulated range (x, y). The range (x, y) in Figure 4 consists of the
roles {r1, r2}. All roles not in this range (such as A or B) that are senior to
r1 or r2 are also senior to y. Similarly, all roles outside the range and junior
to r1 or r2 are junior to x. This satisfies the above definition, so range (x, y)
is encapsulated. In case of Figure 5, the range (x, y) consists of roles {r1, r2,
r3}. The role y’ that is senior to r3 is not senior to y. Hence (x, y) is not
encapsulated.

5.6 Role Creation

As discussed earlier, creation of a role requires specification of the new
role’s immediate parent and child. If the immediate parent and child are
the end points of an authority range, there is no difficulty. More generally,
we wish to allow creation of a new role such that its immediate parent and
child are within the authority range, rather than being at the end points.

Fig. 4. Encapsulated range (x, y).

128 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Thus PSO1 can create a new role with parent PL1 and child PE1. However,
if DSO exercises this power, we can end up with the undesirable situation
illustrated in Figure 3. To prevent this, we introduce the following notions.

Definition 18. The immediate authority range of role r written
ARimmediate~r! is the authority range (x, y) such that r [~x, y!, and for all
authority ranges (x’, y’) junior to (x, y), we have r [/ ~x9, y9!.

Definition 19. The range (x, y) is a create range if ARimmediate~x! 5

ARimmediate~y!, or x is an end point of ARimmediate~y!, or y is an end point of
ARimmediate~x!.

Note that only comparable roles constitute a create-range.
Consider Figure 6. Let (B, A) and (x, y) be authority ranges, whereas (x’,

y’) is not an authority range. The ranges marked by the dotted lines, i.e.,
(r3, A), (x, A), and (B, y) are create ranges. However, (r1, A) or (r2, A) do not
satisfy the conditions, and thereby are not create ranges.

In RRA97, we require that the immediate parent and child of a new role
must be a create range in the hierarchy prior to creation of the new role.

Definition 20. In RRA97, the immediate parent and immediate child of
a new role must constitute a create range prior to creation of the new role.

Fig. 5. Nonencapsulated range (x, y).

The ARBAC97 Model for Role-Based Administration of Roles • 129

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

Roles can be created outside the authority ranges or without a parent or
child only by the chief security officer. In general, the chief security officer
can do arbitrary modifications.

5.7 Role Deletion

Deletion of roles in a hierarchy is a complicated process. Our assumption is
that a role in an authority range can be deleted by the administrator of
that range. It does not matter how this role got there.

ARBAC97 defines some authorization relations such as can_assign, can-
_revoke, and can_modify. If the roles specified as end points of the role
ranges of these relationships are deleted, we will leave dangling references
to nonexisting roles. The ranges with these deleted end points become
meaningless. To avoid this problem, RRA97 provides two alternatives.

(1) Roles referred in can_assign, can_revoke, and can_modify relationships
cannot be deleted.

(2) Roles referred in 1 above can be made inactive (explained in the next
paragraph) whenever deleting them is needed. The advantage of deac-
tivating roles is that reference to nonexisting roles is avoided, and at
the same time the purpose of deletion is achieved.

A role is said to be inactive if a user associated to it cannot activate it in
a session. The edges to and from the inactive role, its associated permis-

Fig. 6. Create range.

130 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

sions and assigned users remain unchanged. While a user assigned to an
inactive role cannot activate it, the permissions associated with that role
are still inherited by senior roles. In this way the hierarchy is not changed,
but at the same time a partial effect of deletion is achieved.

RRA97 allows both of the above alternatives. Regular users cannot
invoke inactive roles, but administrators can revoke users and permissions
from these roles. These roles can be made empty, but cannot be deleted
from the hierarchy until the references preventing deletion are suitably
adjusted. Other roles in the role hierarchy can be deleted.

In case of deletion of a role, we need to preserve the permissions and
users assigned to the role. RRA97 provides two alternatives to deletion of
roles.

(1) Roles can be deleted only if they are empty.

(2) Delete a nonempty role, but at the same time take care of the assigned
permissions and associated users, as follows: assign permissions to the
immediate senior roles and assign users to immediate junior roles.

5.8 Edge Insertion

Now let us explain how the model deals with the insertion of edges in the
role-to-role relationships. Insertion of transitive edges has no effect, so we
only consider edges inserted between incomparable roles. When an edge is
inserted, we must ensure that encapsulation of authority range is not
violated. We have the following rules.

—The roles, between which the edge is inserted, must have same immedi-
ate authority range; or

—if the new edge connects a role in one authority range to a role outside
the range, encapsulation of the authority range must not be violated.

For example, in Figure 5 assume edges (y, r3) and (r3, x) are initially not
present and that (x, y) and (B, A) are authority ranges. Insertion of the
edge (y, r3) does not pose any problem. However, in presence of this edge,
insertion of edge (r3, x) violates encapsulation of authority range (x, y),
hence it must not be allowed. Similarly, in the presence of (r3, x), the edge
(y, r3) is not allowed. This leads to the following formal definition for
insertion of an edge.

Definition 21. A new edge AB can be inserted between incomparable
roles A and B

—if ARimmediate~A! 5 ARimmediate~B!, or

—if (x, y) is an authority range such that ~A 5 y ∧ B . x! ∨ ~B 5 x ∧ A
, y!, then insertion of AB must preserve encapsulation of (x, y).

The ARBAC97 Model for Role-Based Administration of Roles • 131

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

5.9 Edge Deletion

Deletion of transitive edges does not change the hierarchy, so their deletion
is meaningless. In RRA97, we consider only those edges for deletion that
are in transitive reduction of the hierarchy. If edge AB is not in transitive
reduction, then it is not a candidate for deletion.6 For example, in Figure 7,
deletion of the edge SQE1 to JQE1 will change the hierarchy. Edge deletion

6Other models and applications do not have this restriction. For example, Oracle allows
insertion and deletion of transitive edges [Ramaswamy and Sandhu 1998].

Fig. 7. Before deletion of edge from SQE1 to JQE1.

Fig. 8. After edge deletion.

132 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

applies to a single edge only and does not carry over to implied transitive
edges. As discussed in the general rules for edge deletion, RRA97 keeps
transitive edges after deletion intact. For example, deletion of the edge
SQE1 to JQE1 makes SQE1 and JQE1 incomparable, but SQE1 continues
to be senior to E1 and JQE1 junior to PL1 (shown in Figure 8).

There is one special case that needs to be considered. If the edge being
deleted is between the end points of an authority range, deletion of the edge
will disrupt the authority range and cause inconsistency in the model.
Hence this operation is disallowed.

6. DISCUSSION

The ARBAC97 model was developed in a piecemeal manner. A major goal of
this research is to make the model implementable using existing commer-
cial and public-domain platforms. URA97 is described in Sandhu and
Bhamidipati [1997] and implemented on several platforms. The first imple-
mentation was on Oracle [Sandhu and Bhamidipati 1999]. Similar imple-
mentations could be developed for other database management systems
[Ramaswamy and Sandhu 1998]. Implementations of URA97 were also
demonstrated on Unix [Sandhu and Ahn 1998a] and on Windows NT
[Sandhu and Ahn 1998b]. The NIST implementation of RBAC on the Web
[Ferraiolo et al. 1999] has been extended to accommodate URA97 [Sandhu
and Park 1998]. PRA97 was implemented on Oracle [Sandhu and Bhamidi-
pati 1998], and should be amenable to implementations on other database
management platforms. Implementing PRA97 on Unix or Windows NT is
not so straightforward, because these operating systems use access control
lists to represent permissions. We need better support from the underlying
operating system to effectively enforce PRA97. Similarly, we need better
infrastructure on the Web to implement PRA97. RRA97 has not been
implemented so far. Based on our experience with URA97, we feel that
RRA97 can be implemented on the platforms that URA97 was implemented
on, without any major roadblock. All this indicates that ARBAC97 is a very
practical model.

Several extensions can be imagined for ARBAC97. Some are discussed in
the context of URA97 at the end of Section 3. An obvious one is the
incorporation of prerequisite conditions in can_revoke relations. In PRA97,
it may be useful to distinguish permissions that can be delegated from
those that cannot. For example, PL1 may have sensitive permissions that
cannot be delegated by PSO1 to PE1, but others can be. This distinction can
be represented by prerequisite conditions, by having a role containing the
sensitive permissions and testing for nonmembership in this role in every
prerequisite condition. On the other hand, a more direct solution to this
requirement could be useful. Similar considerations apply on the user side
to URA97. For RRA97, we could investigate more powerful operations that
can be built out of the basic ones defined in this paper.

The details of how ARBAC97 would be configured are not discussed in
this paper. Techniques for designing roles, administrative roles, prerequi-

The ARBAC97 Model for Role-Based Administration of Roles • 133

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

site conditions, and so on, require further research. ARBAC97 has demon-
strated that sophisticated administrative models can be supported by
commercially available technology. However, techniques to profitably use
such a model remain to be developed. We expect to invest future efforts in
this direction.

7. CONCLUSION

This paper has described the motivation, intuition, and formal definition of
a new role-based model, called ARBAC97, for RBAC administration. AR-
BAC97 has three components: URA97 for user-role assignment, PRA97 for
permission-role assignment, and RRA97 for role-role assignment.

URA97 and PRA97 are exact duals of each other, and are based on the
notions of prerequisite conditions and role ranges. Both models incorporate
a notion of revocation that does not seek to undo actions taken by a user
when that user’s administrative roles are later revoked. Also, revocation is
independent of who assigned the user or permission to the role. This
reflects a role-oriented style, in contrast to a discretionary style.

RRA97 recognizes three kinds of roles, called abilities (roles that are
assigned permissions only), groups (roles that are assigned users only), and
UP-roles (roles that are assigned permissions and users). ARA97 and
GRA97 deal with ability to UP-role assignment and group to UP-role
assignment, respectively, and are very similar to PRA97 and URA97,
respectively. The component dealing with role-role assignment proper is
also (at the risk of some confusion) called RRA97. It deals with modifica-
tions of relationships between the same kinds of roles: UP-roles to UP-
roles, groups to groups, and UP-roles to UP-roles. The same model applies
in all three cases.

URA97 has been implemented on several platforms (Oracle, Unix, Win-
dows NT, and the Web), while PRA97 has been implemented on Oracle.
Implementation of RRA97 is quite feasible on the same platforms. Thus
ARBAC97 is a practically feasible model that uses commercially available
products.

We indicated by example how ARBAC97 can be used to enforce fairly
sophisticated administrative policies. Nevertheless, configuring the details
of ARBAC97 is a challenging task. So is analysing the consequences of a
given configuration. Further research in these areas is needed to enable
easy use of such administrative models.

REFERENCES

BERTINO, E., FERRARI, E., AND ATLURI, V. 1999. The specification and enforcement of
authorization constraints in workflow management systems. ACM Trans. Inf. Syst. Secur.
2, 1 (Feb.).

BERTINO, E., SAMARATI, P., AND JAJODIA, S. 1997. An extended authorization model for
relational databases. IEEE Trans. Knowl. Data Eng. 9, 1 (Jan./Feb.), 85–101.

FERRAIOLO, D., BARKLEY, J., AND KUHN, R. 1999. A role based access control model and
reference implementation within a corporate intranet. ACM Trans. Inf. Syst. Secur. 2, 1
(Feb.).

134 • R. Sandhu et al.

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

HARRISON, M., RUZZO, W., AND ULLMAN, J. 1976. Protection in operating systems. Commun.
ACM 19, 8.

NYANCHAMA, M. AND OSBORN, S. 1996. Modeling mandatory access control in role-based
security systems. In Database Security IX: Status and Prospects. Elsevier North-Holland,
Inc., New York, NY, 129–144.

NYANCHAMA, M. AND OSBORN, S. 1999. The role graph model and conflict of interest. ACM
Trans. Inf. Syst. Secur. 2, 1 (Feb.).

RAMASWAMY, C. AND SANDHU, R. 1998. Role-based access control features in commercial
database management systems. In Proceedings of the 21st NIST-NCSC National Conference
on Information Systems Security (Arlington, VA, Oct. 5-8). 503–511.

SANDHU, R. 1997. Rationale for the RBAC96 family of access control models. In Proceedings
of the 2nd ACM Workshop on Role-Based Access Control (Fairfax, VA, Nov. 6-7). ACM Press,
New York, NY.

SANDHU, R. 1997. Roles versus groups. In Proceedings of the 2nd ACM Workshop on
Role-Based Access Control (Fairfax, VA, Nov. 6-7). ACM Press, New York, NY.

SANDHU, R. AND AHN, G.-J. 1998. Decentralized group hieraches in unix: An experiment and
lessons learned. In Proceedings of the 21st NIST-NCSC National Conference on Information
Systems Security (Arlington, VA, Oct. 5-8).

SANDHU, R. AND AHN, G.-J. 1998. Group hierarchies with decentralized user assignment in
Windows NT. In Proceedings of the International Association of Science and Technology
Development Conference on Software Engineering (IASTED, Las Vegas, NV, Oct.).

SANDHU, R. AND BHAMIDIPATI, V. 1997. The URA97 model for role-based administration of
user-role assignment. In Database Security XI: Status and Prospect, T. Y. Lin and X. Qian,
Eds. Elsevier North-Holland, Inc., Amsterdam, The Netherlands.

SANDHU, R. AND BHAMIDIPATI, V. 1998. An oracle implementation of the pra97 model for
permission-role assignment. In Proceedings of the 3rd ACM Workshop on Role-Based Access
Control (RBAC, Fairfax, VA, Oct. 22-23). ACM Press, New York, NY, 13–21.

SANDHU, R. AND MUNAWER, Q. 1998. How to do discretionary access control using rules. In
Proceedings of the 3rd ACM Workshop on Role-Based Access Control (RBAC, Fairfax, VA,
Oct. 22-23). ACM Press, New York, NY, 47–54.

SANDHU, R. AND PARK, J. 1998. Decentralized user-role assignment for web-based
intranets. In Proceedings of the 3rd ACM Workshop on Role-Based Access Control (RBAC,
Fairfax, VA, Oct. 22-23). ACM Press, New York, NY, 1–12.

SANDHU, R. S. 1992. The typed access matrix model. In Proceedings of the ACM Symposium
on Research in Security and Privacy (Oakland, CA, May). 122–136.

SANDHU, R. S. 1996. Role hierarchies and constraints for lattice-based access controls. In
Proceedings of the Fourth European Symposium on Research in Computer Security (ESO-
RICS96), E. Bertino, Ed. Springer-Verlag, New York, NY.

SANDHU, R. S. AND BHAMIDIPATI, V. 1999. Role-based administration of user-role assignment:
The URA97 model and its Oracle implementation. J. Comput. Secur. 1 (To appear).

SANDHU, R., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access control
models. IEEE Comput. 29, 2 (Feb.), 38–47.

SANDHU, R. S. AND GANTA, S. 1995. On the minimality of testing for rights in transformation
models. In Proceedings of the IEEE Symposium on Research in Security and Privacy
(Oakland, CA, May). IEEE Computer Society Press, Los Alamitos, CA, 230–241.

Received: June 1998; revised: October 1998; accepted: December 1998

The ARBAC97 Model for Role-Based Administration of Roles • 135

ACM Transactions on Information and System Security, Vol. 2, No. 1, February 1999.

