20:07 FAX 703 993 1638

Computers & Security, 10 {1991) 413-427

GEORGE MASON UNIVERSITY

Integrity Principles
and Mechanisms in

Database

Management

Systems

Ravi Sandhu and Sushil Jajodia

Center for Secure Information Sysieriss and Department of Information and Softuware Systems
Engincering, George Mason University, Fairfax, VA 22030, U.S.A.

Our obiective in this paper is to answer the fallewing quesdon:
what mechanisos are required in a general-purpose multiuser
database management system {DBMS) to faalicate the intcgricy
objectives of information systems? In a nurshell our conclusion
is that realistic mechanisms do cdst. Altheugh existing
commercial products fall far shorr of providing the requisire
mochanisms, they can be easily extended to incorporate these

mechanisms. Our principal contribution is to identify these

mechanisms and to point out where gaps still remain. We bave
also bridged the terminology and concepts of database and
security specialists in a coberent manner. In the more detailed
considerations the focus of this paper js on relational DBMSs.

Keywords: Integrity, Principles, Mechanisms, Database manage-
ment systems, Security

1. Introduction

Information integrity means different things to
different people, and will probably continue to
do so for some time. In spite of considerable effort
recent arempts to establish a consensus definidon
have been nnsuccessful [19]. So the first order of
business is to define integrity. Our approach to this
question is pragmatic and utilitarian. The objective
is to settle on a definition within which we can

achieve practically useful results, racher than to
search for some absolute and philosophically air-
tight formulation.

1.1 A Definition of Integrity

We define integtity as being concerned with the
improper modification of information (much as con-
fidentiality is concerned with improper disclosure),
We understand modification to include insertion
of new information, deletion of existing informa-
tion as well as changes to existing informarion. This
definition of integrity is considerably broader than
the traditional use of this term in the database
literature. For instance Date [3] says: “Security
refers to the provection of data against unauthor-
ized disclosure, alteration, or destruetion; ntegrity
refers to the accuracy or validity of data.” The con-
sensus view among security researchers is that
integrity is one component of secutity and accu-
racy/validity is one component of integrity (eq.
refs, & and 19),

The reader has probably seen similar definitions
using “vnauthorized” instead of “improper.” Our

D167-4048/91/$3.50 © 1991, Elsevier Science Publishers Ltd. 413

oo2

02/07/06

20:07 FAX 703 993 1638

GEORGE MASON UNIVERSITY

R. Sandhu and S. Jajodialintegrity in Database Management System

use of the latter term is significant and should not
be dismissed lighdy. We particulatly wish to
emphasize two poings. Firstly, integriry breaches
can and do occur without anthotization violations,
In other words authorization is only one piece of
the solution and we must also deal wich the mali-
cious user who exercises his anthotization improp-

etly. Secondly, cur definidon raiscs the key.

question: what do'we mean by improper? Ir is
obvious that this question intrinsically cannot have
a umiversal answer, so it is futle to try to answer it
outside of a given context. We are specifically
interesced in information systems used to control
and account for an organization’s assets and
resources. In such systems the primary securiry goal
1s prevention of fraud and errors.

1.2 The Insider Threat

It is imporrant to understand that the threat posed
by a corrupt authorized user is quite different in
the context of integrity from that in the conrext of
secrccy’.

A corrupt user can leak sccrets by (i) using the
computer to access confidental information legiti-
mately, and then (ii) passing on this information to
an improper destination’ by some non-computer
means of commuanication (eg, 2 telephone call). It is
simply impossible for the computer to know
whether or not step (i} was followed by step (ii). We
therefore have no choice but to @ust our insiders to
be honest and alert, The military and government
sectors have established elaborate procedures for
this purpose, while the commercial sector is much
more informal in this respect. Security rescarch
which focuses on secrecy therefore considers the
principal thteat to be Trojan Horses embedded in
programs, ie corrupt programs, tather than
COImPt ‘L:LSE]:S (SCC I'EE 9 fUr Cxanlplc)‘

Analogously, a cotrupt user can compromise
integrity by (i) manipulating stored data or (ii) falsi-

ing source o outplit documments. A computer
system can do litele by itself o solve the problem of
false source or output documents, for which we

414

must rely on the maditonal techniques of paper-
based manual systems, However, the manipulation
of stored dara simply cannot be done without the
usc of a compurer. Tﬁerefore, in principle, the com-
puter system is in a position to detect or prevent
such manipulation. Integrity researchers must
therefore focus on the corrupe uset as the principal
problem. In fact the Trojan Horse problem can
iiself ke viewed as a problem of corrupt system or
application programmers who improperly modify
the software under their control. Also note that the
problem of the corrupt user remains even if we are
willing to trust all our software to be free of Trojan
Horses.

1.3 Integrity Principles and Mechanisms

Our objective in this paper is to answer the follow-
ing question: what mechanisms are requircd ina
general-purpose multiuser DBMS to help achieve
the integrity objectives of informaton systems?
There are many compelling reasons o focus on
DBMSs for this purpose. This is particularly wve
when we focus on tnechanisms. DBMSs provide
significant data semantics beyend the usual
Operating System (O8) notion of a file being an
interpreted sequence of bytes. DBMSs also have the
wonderful ability to express and manipulate com-
plex relationships. This comes in very handy when
dealing with sophisticared integrity policies.

The (S must cleatly provide some core integrity
and security mechanisms. At the very least one
needs a mechanism to enforce cncapsulation of 2
database, f.e, to ensure that all wanipuladon of che

_databasc can only be through the DBMS. The

question of wha¢ minimal features are required in
the OS is an important and non-trivial one, but is
outside the scope of the present paper. For how let
us assume that OSs with the requisite fearures are
a.vailable Bl]d ask ourselvcs What fCElT.'urCS can ‘the
DBMS givc us?

The bulk of integrity tmechanisms properly belong
in the DBMS. Iutegrity policies are inarinsically
application specific and the OS simply cannot pro-

003

02/07/06

20:08 FAX 703 993 1638

GEORGE MASON UNIVERSITY

Computers and Security, Vol. 10, No. 5

vide the means to state application-specific con-
cerns. One might then argue: why not put all the
mechanism in the applicarion code? There arc
several persuasive redsons not to do this. Firstly, any
assurance that mechanisms interspersed within
applicatien code will be correct or even com-
prehensible is rather dubious. Secondly, the whele
point of a database is to support nwldple applica-
tions. A particular application may well be in a
position to handle all its integrity requirements.
Yet it is only the DBMS which can prevent other
applications from corrupting the database. Thirdly,
putting mechanisms in application code is not con-
ducive to reuse of common mechanism among dif-
ferent applications.

The rest of the paper is organized as follows. In
Section 2 we discuss principles for achieving
integrity in information systems. In Section 3 we
describe the mechanisms required in 2 DBMS w
support these high level principles. In some of the
more detailed consideration we will limit ourselves
speafically relational DBMSs. As we will sec
traditional DBMS mechanisms = provide the
foundations for this purposc, but by themselves do
not go fat enongh. Section 4 concludes the paper.

2, Integrity Principles

We begin by describing basie principles for achiev-
ing information integrity. These principles can be
viewed as high level objectives which are made
mere concrete when specific mechanisms arc pro-
Posed ta sapport themn, In other words these prin-
ciples lay down broad goals wichout specifying
how to achieve them. We will subscquently map
these principles to DBMS mechanisms. Principles
lay out whai needs to be done while mechanisms

“establish how these principles ate to be achieved.

We emphasize that the ntegrity principles them-
selves are independent of the DBMS context. They
apply equally well to any information system be it
a manual paper-hased system, a centralized batch
system, an interactive and highly distributed

system, etc. Our objective in this paper is to inhter-
pret these Principles in the DBMS context and
identify DBMS mechanisms to support them. We
also point out that many, if not all, of these princi-
ples are equally applicable w0 secrecy as well as
integrity. Qur focus in this paper is on integrity.
Analysis of the relevance and significance of these
principles to sccrecy objectves is outside the scope
of this paper.

The nine integrity principles enwmerated below are
abstracted from a varety of sources. The more
recent literature includes the Clark and Wilson
papers [1-3] and the NIST workshops. [18, 19]. The
“older” literature is too nutnerous to cite indi-
vidually. For those unfamiliar with chis literature
some useful starring points are refs. 6, 8, 10, 13 and
20, The reader has probably seen simnilar lists in the
past. We believe the time is right for a revised
formulation of major principles, particulatly in
view of the recent resurgence of interest in integ-
rity. We emphasize that these principles express
what needs to be done rather than how it is going
to be aCCOmPhShed- ﬂlﬁ lattﬁl' unS[iOll is
addressed in the next secton.

(1) Well-formed Transactions, Clark and Wilson [1]
have defined this principle as follows: “The concept
of the well-formed transaction is that a user should
not manipulate data arbitrarily, but only in con-
strained ways that prescrve or ensure the integrity
of the data.” This principle has also been called con-
strained change [3], i.e. data can only be modified by
well-formed transactions rather thau'by arbitrary
procedures. Moreover the well-formed transacdons
ate known (“cerdfied”) 1o be individually correct
with some {mostly qualitative) degree of assurance.

(2) Authenticated Users. This principle sdpulates
that modifications should only be carried our by
users whose identity has been authenticated to be
approptiate for the task

(3) Least Privilege. The notion of least privilege was
one of the earliest principles to emerge in security

416

1004

02/07/06

20:09 FAX 703 993 1638

GEORGE MASON UNIVERSITY

R. Sandhu and S. Jajodiallntegrity in Database Management System

tesearch. It has classically been stated in terms of
processes (executing programs} [20], i a process
should have exactly those privileges needed to
accomplish its assigned task, and none exwra. The
principle applics equally well to users, except that it
is more ditficult to delimit preciscly the scope of a
user’s “task”. A process is typleally created to
aecomplish some very specific task and terminates
ot completion. A user on the other hand is a rela-
tively long-lived enticy and will be involved in
varied activities during his lifespan. His authorized
privileges will | therefore exceed those strictly
tequired at any given instant. In the realm of con-
fidentiality least privilege is often called need-to-
know. In the integrity contexe it is appropriately
called need—to-do. Another appropriate term for this
principle is least temptation, ie. do not tempt people
to commit fraud by giving them greatet power
tban they need.

{4) Separation of Duties. Separation of dudes Is a
tirme honored principle for prevention of fraud and
errors, poing back to the very beginning of
commerce,

Simply stated, no single individual should be in a
position to misappropriate assets on his own.
Opetationally this means that a chain of evenrs
which affects the balance of assets must rf:quirc dif-
ferent individuals to be involved at key points, so
that wicthour their collusion the overall chain can-
not take effect.

(5) Reconsiruction of Events. This principle seeks to

“deter improper behavior by threatening its dis-

covery. The ability to reconstruct what happened
in a system stems from the notion of accountabil-
ity. Users are accountable for their actions to the
extent that it is possible to determine what they
did. Reconstruction of events is also a necessary
adjunct to least privilege for two reasons. Firstly
least privilege, even taken to its theoretical limit,
will leave some scope for frand. Secondly a zealous
application of least privilege is not a terribly effi-
clent way to run an organization. It conveys the

416

image of an cnterptise enmeshed in red tape®. So
practically users must be granted more rivileges
that are strictly required. We therefore should be
able to reconstruct accurately essential elements of
a systen’s history, in order to detect misuse of
privileges.

(8) Delegation of Authority. This principle £ills in a
piece missing from the Clark and Wilson papers
and much 0% the discussion they have generated‘l“
It concarns the critical question of how privileges
are acquired and distributed in an organization?
Clearly the procedures to do so must reflect the
structure of the organization and allow for effective
devolution of authority. Individual managers
shouid have maximum flexibility regarding infor-
mation resources within their domain, temnpeted
by cotstraints imposed by dheit su]ieriars. Without
this flexibility at the end-user level, the authoriza-
tion will most likely be inappropriate to the actual
needs. This can only result in security being per-
ceived as a drag on productivity and something to
be bypassed whenever possible.

{7) Reality Checks. This principle has been well
motivated by Clark and Wilson [3] as follows: “A
cross-check with the external reality is a central
patt of integrity control,..integrity is meaningful
otly in terms of the relation of the data te the
external world.” Or in morc concrete tetms: “If an
internal inventory record does nat correctly reflact
the number of itcms in stock, it makes lirtle differ—
ence if the value of the recorded inventory has

*This comment is made in the context of users tather than
processes (transactions). Lease privilege with respect to pro-
cesses is more of an internal issoe within the computer system,
and its zzalous application s most desirable (modulo the per-
formance and cost penalties it iniposes).

1The clesest concepe that Clark and Wilson have to this prin-
ciple is their Rule E+ which they summarize as follows [1, Fig,
1]: "Authorization lists changed only by the secudey officer.”
This notion of a central security officer as an auchorizarion czar
is inappropriate and unworkable. Rational security policies can
be put in place only if appropriate authority is vested in end-
USCrE.

1005

02/07/06

20:09 FAX 703 993 1638

GEORGE MASON UNIVERSITY

Computers and Security, Vol, 10, No. 5

been reflected correctly in the company balance
sheet” By definition reality checks entail activiey
external to the computer systein.

(8) Continuity of Operation. This principle states
that system operations should be maintained to
some appropriate degree in the face of potentally
devastating events which are beyond the organiza-
tion’s control. This catch-all description is intended
to include natural disasters, power outages, disk
crashes and the like. With this principle we are
cleatly stepping into the scope of availabiliry. We
have mentioned it here for the sake of complete-
ness. One would be hard pressed to claim that a
system which does not address this requirement
can at the same time have a bigh measure of
inregrity.

(9) Hase of Safe Use* In a nuashell this principle
requires that the “casy” ways to opetate a system
should also be the safest ones. It is important to
acknowledge this principle because of the ample
evidence that security measures are all too often
incorrectly applied or simply bypassed by system
managers. This happens because of a combination
of (i} poorly designed defaules (such as indefinite
retention of vendor-supplied passwords for privi-
leged accounts), (i) awkward and cumbersome
interfaces (such as requiring many keystrokes to
effect simple changes in authorizadon), (idi) lack of
tools for anthorization review, or {iv) mismatched
policy and mechanism (... the extent that the user’s
mental image of his protection goals matches the
mcchanism he must use, mistakes will be miini=
mized.” [20]).

It is inevitable that these principles are fuzzy,
abstract and high level. In developing an organiza-
tion’s security policy onc would elaborate on each
of these principles and make precisc the meaning
of terms such as “ap ropriate” and “proper.” How
to do so systematically is perhaps the most impor-
tant question in successtul application of these

“Thanks to Statley Kurzban znd William Murray for coiting
this particular term.

principles. In other words how does one articulate a
comprehensive policy based on these high level
objectives? This question is beyond the scape of
this paper. Our present focus is on the more tech-
nical quesdon; how do these principles anslace
inta concrete mechanisms in a DBMS?

The goals encompassed by these principles may
appeat overwhelming, After all in the extreme
these principles amount to solving the rotal system
cotrectness problem, which we know is well
beyond the state of the art. Fortunately, in our con-
text, the degree to which one would seek to enforce
these objectives and the assurance of this enforce-
ment are matters of risk management and cost-
benefit analysis. Laying out these principles
explicitly does give us the following major bencfits.

The overall problem is partitioned into smaller
components for which solutions can be developed
independently of each otler {ie. divide and
conqtict),

® The principles suggest common mechanisms
which belong in the DBMS and can be reused
across maltiple applications.

¢ The principles provide a sct against which the
mechanisms of specific DBMSs can be evaluated
(in an informal sense).

¢ The principles similarly provide a set on the basis
of which the requircments of specific information
systems can be ardculated.

® Last, but not the least, the principles invite criti-
csm from the security community particularly
regarding what may bave been left out.

3. Integrity Mechanisms

In this section we consider DBMS mechanisms to
facilitace application of the principles defined in
the previous section. The principles have been
applied in practise {eg. Tefs. 16 and 26) bur with
most of the mechanism built into application code.

417

1006

02/07/06

20:10 FAX 703 993 1638

GEORGE MASON UNIVERSITY

R. Sandhu and S. Jajodialintegrity in Database Management System

TABLE 1 Iutegrity principles and mechanisms

Integrity prindiple

DBMS wiechanisms

Well-formed eransactions

Authenticarcd users
Least pl‘ivi[(:gm

Separation of dudes

“Reconstruction of events

Delegation of authority

Encapsu]atcd updates
Atoinic transactions
Consistency constraints

Authentication
Fine grain aceess control

Transaction conrrols
Layered updates

Aundit trail

Dynamic autherization

Propagation canstraines

Reality checks

Consistent snapshots

Continuity of opetation Redundancy

Recovery

Fail-safe defaults
Human factors

Ease of safe use

Providing these mechanisms in the DBMS is an
essental prerequisite for their widespread use.

Our mapping of principles to mechanisms is sum-
matized in Table 1. Some of these mechanisms are
available in commercial products. Others are well
established in the database literature. Thete are also
50me newer meC[’}ar.l.iSl)lS Which havc bcen PIO-
posed more recently, eg. transaction controls for
separation of duties {22], the temporal model for
aundit data [12] and propagation coastrainrs for
dynamic authorization {21, 23]. Finally there are
places where existing mechanisms and proposals
need to be extended in novcl ways. Overall the
required mechanisms are quite practical and well
within the reach. of today’s technology.

3.1 Well-formed Transactions

The concept of a well-formed transaction cor-
responds very well to the standard DBMS coricept
of a transaction [10, 11]. A transaction is defined as
a sequence of primitive actions which satisfies the
following propertics.

418

(1) Faslure atomicity: either all or none of the
updates of a transaction take effecc (We under-
stand update to mean modification, ie. it includes
insertion of ncw data, deletion of existing data and
changes to cxisting data.)

(22 Serializability: the net effect of exceuting a set
of transactions is equivalent to executing them in
some sequential order, even though. they may actu-
ally be executed concurrently (i.. their actions are
interlezved or simultancous).

(3) Progress: every wansaction will eventually com-
plete, ie there 15 no indefinite blocking due o
deadlock and no indefinite restarts dua to livelocks.

(4) Correct state transform: each transaction if run by
iself in isolation and given a consistent state to
begin with will leave the database in a consistent
state.

We will elaborate on these properties in a moment.

First Jet us note the basic requirement that the
DBMS must ensure that updates are restricted to
transactions. Clearly, if users are allowed w bypass
transactions and directly manipulate relations in a
database, we have no foundation to build upon. In
other words updates should be encapsulated within
transactions,” This restriction may seem too strong
beCauSC therc Wi].]. a]ways bﬁ a nced to PCrEOrm ad
hor updates. However, ad hoc updates can them-
selves be carried out by means of special trans-
actions! Of course the authotizaton for these
special ad foc transactions should be carefully con-
wolled and their usage properly audited.

Secondly, it is clear that the set of databasc trans-
actions 1s isself going to change during the system
life cycle. Now the same nine principles of the pre-
vious section apply with respect to maineining the
integrity of the transactions. In pardeular, trans-

* At this point it 1z worth recalling that the database itself must
be encapsulated within the DBMS by the OS.

o007

02/07/06

20:11 FAX 703 993 1638

GEORGE MASON UNIVERSITY

Computers and Security, Vol 10, No. 5

actions should be insalled, modified and sup-
planted only by the use of woll-formed
“transaction-maintenance transactions”. One can
apply this argument once again to say that the
tl‘ansa.ction—maintenance transactions tl]CIl]SElVCS
need ro be maintained by another set of wans-
actions, and so on indefinitely. We believe there is
lirele to be gained by having more than two steps in
this potentizlly unbounded sequence of trans-
actdon-maintenance transactions. The rate of
change in the transaction sct will be significantly
slower than the rate of change in the database
proper. Going one step further, the rate of change
in the transacdon—mainrenance rransactions will be
yet slower to the point where, for all pracdcal pur-
poses, these can be viewed as staric over the lifespan
of typical systems. With this perspective the data-
base administrator is responsible for installing and
mainfaining transacion-maintenance transactions,
which in turn control the maintenance of actual
database transactions.

We now return to considering the four propertics

of DBMS transactions enwmerated eatlier. The frsc
threc properties—failure atomicity, setializability
and progress—can be achieved in a purely “syn-
tactic” manmnet, ie completely independent of the
application. These three requirements for a trans-
action are recognized in the darabase litetatute as
appropriate for the DBMS to implement. Mechan-
isms © achicve these objectives have been exten-
sively researched in the lasc 15 years or so, and our
understanding of chis area can cerrainly be
described as marure, The basic mechanism—two-
phase locking, mestamps, multi-version databases,
two-phase commit, undo-redo logs, shadow pages,
deadlock detection and prevention—have been
identified and should soon make their way into
commercial products. In developing integrity
guidelines and/or evaluation criteria one might
consider sonie pregressive measure of the extent ro
which a particular DBMS meets these ob_jecrives.
For instance, with failure aromicity, is there a
guarantee that we will know which of the two pos-
sibiliies occurred? Similarly, with scrializabiliry,
does the DBMS enforce the concurrency contral

protocol or does it rely on transactions to execute
explicit commands for this purpose? And, with the
issues of progress, do we have a probabilistc or
absolute guarantee? Such questions must be sys-
tematically addressed. -

The fourth property of correct stats transforms is
the ultmate botteneck in realizing well-formed
ttansactions, It is also an objective which cannot be
achieved without considering the semantics of the
application. The cotrectness issue is of course
undecidable in general. In practice we can only
assure correctness to some limited degree of con-
fidence by a mix of software engineering tech-
niques such as formal vetification, testing, qualiry
assurance etc. Responsibility for implementing
transactions as correct state transforms has tradi-
tionally been assigned to che application program-
mer, Bven in theory DBMS mechanisms can never
fully take over this responsibility.

DBMS mechanisms can help in assuring the cor-
rectness of a state by enforcing consistency constraints
on the datﬂ,. COnSiStenCy COnStraintS are also then
called integrity constraints or integrity rules in the
database literature. Since we are using integrity in a
wider sense we prefer the former term.

The relational data model in particular imposes
two consistency constraints [4, 5].

® Entity Inregri? stipulates that attribatcs in the
pritnary key of a base relation cannot have null
values, This amounts to requiring that cach entiry

tepresented in the database must be uniquely
identifiable.

® Refercntial integrity is concerned with references
from one entity to another. A foreign key i5 a set of
attributes in one relaton whose values arc required
to macch those of the primary key of some specific
relation. Referential integrity requires that a
foreign key either be all null or 2 matching wple
exist in the latter relation. This amounts to ruling
out dangling references to non-existent entities.

419

1008

02/07/06

20:11 FAX 703 993 1638

GEORGE MASON UNIVERSITY

R. Sandhu and S. Jajodialintegrity in Database Management System

Entity integrity is casily enforced. Referential
integrity on the other band requires more effort
and has seen limited support in commercial
products. The precise manner in which to achieve
it is also very dependent on the semantics of the
application. This is particulatly so when the refer-
enced tuple is deleted. There are severzl cheices as
follows: (i) prohibit this delete opetation, (if} delete
the referencing tuple (with a possibility of further
cascading deletes), or (iii) set the foreign key attrib-
utes in the refercncing tuple to null. There are
proposals for exrending SQL so thar these choices
can be specified for caci foreign key.

The relational model in addidon cncourages the
use of domasn constraints whereby the values in a
particular attribute (colummn) are constrained to
come from some given set. These constraints are
Particulaﬂy easy to statc ﬂnd CrlfOrCﬂ, ac lﬂﬂSt 80
long as the domains are defined in terms of primi-
tive types such as integers, decimal numbers and
character strings. A vatiety of dependency constraints

which constrain the tuples in a given relation have .

been extensively studied in the database literature.

In the limit a consistency constraint can be viewed
as an arbitrary predicate which all correct states of
the database must sadsfy. The predicate may

invelve any number of relations. Although this

concept is theorerically appealing and flexible in ics
expressive power, in practice the overhead in
checking the predicates for every fransaction has
been prohibitive, As a result relational DBMSs
typically confine theit enforcement of consistency
constraints to domain constraints and cntity
inteprity.

3.2 Continuity of Operation

The problem of maintaining condnuity of opera-
tion in the face of natural disasters, hardware
failures and other disraptive events has received
considerable attention in both theory and practice
{10]. The basic technique to deal with such situa-
tions is redundancy in varicus forms. Recovery
mechanisms in DBMSs must also ensure that we
atrive at a consistent state. In many respects these

420

mechanisms are “syntactic” in the sense of being
aj Plication indcpendcnt, much as mechanisms for
the firse three properties of Section 3.1 were.

3.3 Authenticated Users

Authentication is primarily the responsibility of the -

OS. If the OS is lacking in its authentication
mechanism it would be very difficult to ensure the
integrity of the DBMS iclf. The integrity of the
database would thereby be that munch more
suspect. It therefore makes sense to not duplicate
authentication mechanisms in the DBMS.

Authentication underlies some of the other prin-
ciples, particulatly least privilege, separation of
dutes, reconstructon of cvents and delegation of
authority. In all of these the end objcctive cah be
achieved to the fullest extent on]y if anthendcation
is possible at the level of individual users.

3.4 Least Privilege

The principle of least privilepe translates into a
requir'cm.ent-for ﬁnc—graincd access control. We
have earlier noted that least privilege must be tem-
peted with praceicality in avoiding exeessive red
tape. Nevertheless a l]_igh-cncl DBMS should pro-
Vide EO].' ACCESS contl:ol at Vcry ﬁne granula.ril.'y,
leaving it to the dambase designers to apply these
controls as they see fit.

It is clear from the Clark-Wilson papers, if not

evident from earlier work, that modificadion of -

data must be controlled in terms of transactions
rather than blanket permission to write, We have
already put forth the concept of encapsulated
updates for this purpose. In terms of the relational
model it is not immediately obvious at what

granularity of da;a this should be enforced.

For the purpose of controlling read access, DBMSs
have employed mechapisms based on views (as in
Systemn R} or query modification {as in INGRES).
These mechanisms are extremely flexible and can
be as fine grained as desired. However, neither of
these mechanisms provides the same flexibility for
Control Of uPdateS. Thc f'.lndanlclltal rcasaon f()r th_is

1009

02/07/06

20:12 FAX 703 993 1638

GEORGE MASON UNIVERSITY

Computefs and Security, Vol, 10, No. 5

is our theoretical inability to translate updates on
views unambiguously int updates of base rela-
tions, As a result authorizaton to contrel npdates is
often less sophistcated than authorization for read
ACCEss.

In relational systems it is natural for obvious
teasons to represent the access matrix by one or
more relations [25]. At a coarse level we might
control access by tuples of the form

user, transaction, relation

meaning that the specificd user can execute the
specified transaction on the specified relation.
Tuples of the form shown below would give
greater sclecdvity:

user, transaction, relation, atcribute

This would allow us t¢ control the execution of
transactions, such as “give everyene a 5% raise”,

. without giving the same transaction permission to

change employee addresses. The following authori-
zation tuple accomplishes this:

Joe, Give-5%-raise, Employees, Salary

A transaction which gives a raise © 2 specific
employee needs a further dimension of authoriza-
tion to specify which employee it pertains to. Thus,
if Joe is authorized to give a 5% raise to John the
authorization tuple would look as follows:

Joe, Give-5%-raise, John, Employees, Salary
We are assuming here that John uniquely identifics

the employee receiving the raise. The update 1s
restricred to the Salary attribute of a specific tuple

with key equal to “John” in the Employces relation.”
“Sc it takes a key, relation and atmibute to specify

the actual patameter of such a transaction.

Now consider a transaction which moves moncy
from account A to account B, ie. there are two
actual parameters of the eransactior. In terms of

least privilege wc neced the ability to bind this
transacton to updating the two specific accounts A
and B. More generally we will have transactions
with N parametcrs identified i an actual param-
eter list. So we need authorizadon tuples of the
form

user, transaction, actual parameter list

where each parameter in the actual parameter list
specifies the item authorized for update by specify-
ing one of the following identifiers

® reladon,
® reladion, attribute,
® key, relation, attribute.

These three cascs respectively give us relation level,
“column” level and clement level granularity of
update control,

It is also important w rcalize that element level
update authorizations should properly be treated as
consumable items. For example, once money has
been moved from account A to account B the user
should not be able te move it again, without fresh
authorization. to do so.

3.6 Separation of Duties

Separation of duties finds little support in existing
products. Although it is possible to use existing
mechanisms for this purpose, these mechanisms
have not been designed with this end in mind. As a
result their use is awkward at best. This fact was

noted by the DBMS group at the 1989 NIST

integrity warkshop whe concluded their report
with the following recommendation [19, Section
43].

“While the group was able to use existing DEMS
Jeatures to implement separation of roles controls, we
were, however, unabie to use exisiing features in a
way that would support easy maintenance and certi-
fication. We recommend that data definition and/or

421

1010

02/07/0

:13 FAX 703 993 1638

GEORGE MASON UNIVERSITY

R. Sandhu and S. Jajodia/lntegrity in Database Management System

consistency check features be enbanced to pmuide
operaiors that lend themselves to the expression of -
integrity controls and to allow separation of integrity
controls and traditioral data.”

Scparation of duties is inherently concerned with
sequences of transacrions, rather than individual
transactions in isolation. For example cansider a
situation in which payment in the form of a check
is prepated and issued by the following sequence of
€VCILs,

(1) A clerk prepares a voucher and assighs an
account.

(2) The voucher and account arc approved by a
SUpervisor.

(3) The checlk is issued by a clerk whe must be dif-
ferent from the cletk in step 1. Issuing the check
also debits the assigned account. (Strictly speaking
we should debit one account and credit another in
equal amounts. The important point for our pur-
pose is that issuing a check modifies account

balances.)

Tlys sequence embodies separaton of dutics since
the three steps must be executed by different
people. The policy- moreover has a dynamic favor
in that a particular cletk can prepare vouchers as
well as, on different occasions, issuc checks, How-
CVCr,]lﬁ‘. cannot issue a Cl'l(':ck EOI a VOl'lC].'.I.Er Pl'e—

pared by himself.

Iinplementation of this policy in a paper-based
system follows quite directly from its statement.

IO The voucher is realized as a form with blank

entties for the amount and account, as well as for
sighatures of the people involved. As the above
sequence gets executed these blanks are filled in.
On its completion copies of the voucher are filed
in various archives for audit purposes.

® The account is represented by say a ledger card,
where debir and credit entries are posted along

422

with references to the forms which authorized
these entries.

By their very nature paper-based controls rely on
employee vigilance and internal/external audits for
their effectiveness. Computcrization brings with it
the scope for enforcing the required contrels by
means of an infallible, ever vigilant and cmniscient
automaton, namely the compurer itsclf.

The crucial question is how do we specify and

_implement similar controls for separation of duties

in a computerized environment? A mechanism for
this purposc is described in ref. 22. This mechanism
of tramsaction—consrol expressions is based on the fol-
lowing difference between vouchers and accounrs.

® The voucher is tramsient in that it comes into
existence, has a relatively small sequence of steps
applied to it and then disappears from the system
(possibly leaving a record in sotne atchive). The
history of a voucher can be prescribed as a finite
sequence of steps with an « préerf maximum length.

® The account on the other hand is persistent in the
sepse that it has a long-lived, and essentially
unbounded, existence in the system. During ics life
there may be a very large number of credit and
debit entries for it. Of course, at some point the
account may be-closed and archived. The iey point
is that we can only prescribe its history as a
vatiablc-lcngth sequence of steps with no a priori
maximum length,

Both kinds of objects are essendal to the logic and
correct operation of an information system.
Transient objects embody a logically complete
history of transactions corresponding to a unit of
setvice provided to the external world by the
organizaticn. Persistent objects embody the inter-
na% records required to keep the organization funec-
t'mning with an accurate correspondence o its
interactions with the external world,

Separation of duties is achieved by enforcing con-
trols on transient objects, for the most part. The

o1l

02/07/06

20:

14 FAX 703 993 1638

GEORGE MASON UNIVERSITY

Computers and Security, Vol. 10, No. 5

USERS

TRANSAGTIONS

TRANS!IENT
DATA

PERSISTENT
bATA

Limited Separailon
of Dutles

Strict Separation of Culles
Trall

Ojstributed Avdlt

Data Abstracilan
and Encapsulatlan

* Fig. 1. Layered updates.

crucial idea, which makes this possible, is that
transactions can be cxecuted on persistent objccts
only as a side effect of executing transactions on
transient objects. This thesis is actually simply
borrowed from the papet-based world where it has
been routinely applicd ever since bookkeeping

“became an integtal part of business operations.

With this perspective we atrive at the diagram

shown in Fig. 1. The idea is that sequence of I

transactions is viewed as transient data in the
database. In this picture there is a double encap-
sulation of the database, first by transactons on
persistent data and then by transactions on tran-
sicnt data. Users can direetly execute only the
latter. The former are triggered indirectly as a
result when the transient data are in the proper
state fOf ClOiIlg 50. In Ol'her WDrCIS transient data are
singly encapsulated and have direct application of
separation of duties. Persistent dam are doubly

encapsuléted and have inditect application of
separation of duties by means of transient data.

3.6 Reconstruction of Events

The ability to reconstruct cvents in a SyStetn serves
as a deterrent to improper behavior. In the DBMS
context the mechanism to record the history of a
system is traditionally called an “audit mail”. As
with che principle of least privilege, a high-end
DBMS should be capable of LECONSIIUCHNG events
to the finest detail. In practise this ability must be
tempered with the reality that gathering audit data
indiscriminately can generate overwhelming
volume. Therzfore 2 DBMS must also allow fine-
grained seleetivity regarding what is audited. Tt
should also structure the audit trail logically so that
it is easy to query. For instance, [oggin g every kcy-
stroke does give us the ability to reconstruct the
system history accurately. However, with this
primitive logical structure one necds substantial
effort to reconstruct a pardicular transaction. In
addirion to the actual recording of all events that
take place in the database, an audit erail must also
provide support for true anditing, i.e. an audit trail
must have the capability “for an authorized and
CDmPEtent agent Lo access ﬂnd C'Vahla.te accounta-
bility information by a secure means, within a
reasonable amount of time and withour undue dif-
ficuley” [7]. Iu this respece DBMSs have a signifi-
cant advantage, since their powerful querying
abilities can be used.

The ability to reconstruct cvents has different
meanings to different people. Ar one end of che
spectrum, we have the requirements of Clark and
Wilson [3], They require only two things:

{1) A complete history of each and every modifica-
tior made to the value of an item.

(2) With each Change in value of an item, store the
identity of the person making the change.

Of course, the system must be reliable in that it

makes exacily those changes that are requested by
users and the binding of a value with its author is

423

02/07/06

20:14 FAX 703 993 1638

GEORGE MASON UNIVERSITY

R. Sandhu and S. Jafodia/integrity in Database Management System

also exact. Clark and Wilson call this “attribution
of change”,

This can be easily accomplished if we are willing to
extend slightly th standard logging techniques for
tccovery putposes. For each transaction, a recovery
log contains the transaction identifier, some hefore-
images, and the corresponding after-images. If we
augment this by recording in addition the user for
each transaction, we have the desited binding of
each value to its author. There is one other change
that needs to be made. In order to support
recovery, there is a need to keep a log on.[y up to a
point from which a complete database backup is
available. Of course, there is now a need to arc]Eive
the logs 50 they remain availzble.

Gthers have argued that this simple “actribudon, of
change” 1s not sufficient. We need an audit trail, a
mechanism for a complete reconstruction of every
action taken against the databaser whe has been
accessing what data, when, and in what erder. Thus,
it has three basic objects of interest

(l) The user—who initdated a transacton, from
what tertninal, when etc.?

(2) The transaction—what was the exact trans-
action that was initiated?

(3) The data—what was the result of the trans-
action, what were the database states before and
after the transaction inidadon?

For this purpose a dalabase activity model has
recently been proposed [12] thar imposes a uniform
logical structure upon the past, present and fucnre
data. There is never any loss of historical or current
information in this model, and thus the model pro-
vides a mechanism for complete reconstruction of
every action taken on the database. It also logically
structures the audit data to facilitate their querying,

3.7 Delegation of Authority

The need te delegate authority and responsibility
within an orgamization is essential to its smooth

424

functioning, It appears in its most developed form
with respect w monetary bUdgftS' However, the
concept applies equally well to the control of other
assets and resources of the organization.

In most organizations the ability to grant authori~
zaton is never comPletel’y unconstrained. For
example, a departmene manager may be able 1o
delegate substantial authority over departmiental
resoutces to project managers within his depart—
ment and yet be prohibited from delegating this
suthotity to project managers outside the depart~
ment. These situations cloud the classic distineton
between discretionary and mandatory policies [17,
24]. The traditional concept of ownership as the
basis for dclegaling authariry also becomes less
applicable i this context [14]. Finally we need the
ability to delegate privileges without having the
ability to excrcise these privileges. Some mechan~
isms for this purpose have been recently proposed
[14,23]. |

The complexity introduced by dynamic authoriza-
ton has been recognized ever since tesearchers
considered this problem, eg. as stated in the follow-
ing quote [20]:

“..it is relatively easy to envision (and design)
systems that statically express 4 particular protection
intent. But the need to change access authorizations
dynamically.. . introduces much complexity into
protection systets.”

This fact continues to be true in spite of substantial
theoretical advances in the interim [21]. Existing
products provide few facilities in this respect and
their mechanisms tend to have an ad hoc flavor.

3.8 Reality Checks

This principle inherendy requires activity outside
of the DBMS. The DBMS does have obligaﬁon to
provide an internally consistent view of that
portion of the database which is bei externally
verified. This is particularly so if the external
inspeetion is conducted on an ad hoc on-demand
basis. The DBMS can also play a significant role in

013

20:15 FAX 703 993 1638

GEORGE MASON UNIVERSITY

Computers and Security, Vol. 10, No. 5

ensuring that information known to be only par-
tially valid and complete is presented as such. That
is the DBMS can qualify its answers based on the
scope of its knowledge about deviations from the
external reality. A mechanism for chis purpose has
been proposed in ref. 15,

3.9 Ease of Safe Use

Ease of safe use is more an evaluation of the DBMS
mechanisms than something to be enforced by the
mechanisms themselves. The mechanisms should
of course have fail-safe defaults [20], eg. access is
not available unless explicitly granted or this
defaulr rule is explicitly changed to grant it auto-
madcally. DBMSs do offer a significant advantage
in providing user-friendly intcrfaces intrinsically
for their main objective of dara manipulation.
These interface mechanisms can be leveraged to
make the authorizadon mechanisms casy to usc.
For instance, having the power of SQL queties to
review the current authorizations is a tangible
benefit in this regard.

4. Conclusion

In a nutshell cur conclusion is that realistic DBMS

mechanisms do exist to support the integtiry objec-
tve of information systems, Somne ate well estb-
lished in the lireracire while others have been
proposed more recently and are not so well known.
Our principal contribution is to identify these
mechanisms and to identify the paps where none
existed or had been Fully articulated,

In terms of what DBMS mechanisms can do for us,
we can group the nine principles enumerated in
this paper as shown in Table 2. Group 1 principles
are adequately treared by current DBMS mechan-
tsms and have been extensively studied by database
researchers. With the single exception of assuring
correctness of state cansformations these principles
can be achieved by DBMS mechanisms. Tech-
nicéues for implementing well-formed transactions
an mainta.ining contiquity of opcration across
failures have been studicd extensively. Their practi-
cal feasibility has been amply demonstrated in

TABLE2 Integrity principles

Group I Group IF Group {1
Well-formed Least privilege Authenticared
transactions uscrs
Continuity of Separation of Rezlity checks
operation duties
Recounstruction of Ease of safe use
events '
Delegation of
authority

actual systerns. Assuring that well-formed trans-
actions are cotrect state transformations retains a
formidable problem, but there is Little that the
DBMS can do to alleviate it. As such itis a problem
outside the scope of DBMS mechanisms. The
DBMS can (i} enforce encapsulation of updates by
restricting their occurrence to be within trans-
actions, and (i) provide controls for installing and
mainraining these transactions.

Group II principles need newer mechanisms and
conceprual foundations, Several promising
approaches have emerged in the literature. Practical
demonstration of their feasibility repaains ‘to be
done, bur in concept they do not present prohibi-
tive iraplementation. problems. They do require
that current DBMSs be estended in significant
ways. Group IL principles are chose where addi-
donal DBMS mechanisms hold the promise of
greatest bencfit,

Group IIT principles are important but there is little
that DBMS mechanisms can do to achicve them,
Authenticadon i principally an OS problem.
Reality checks necessarily involve exvernal pro-
cedures. Ease of safc use is more an evaluation of
the DBMS mechanisms than something to De
caforced by the mechanisms themselves. It is facili-
tated in the DBMS context because of the intrinsic
DEMS requirement of user-friendly query
languages.

In conclusion for group I principles we need little
more than has currendy been demonstrated in

425

1014

02/07/06

20:16 FAX 703 993 1638

GEORGE MASON UNIVERSITY

R. Sandhu and S. Jajodialintegrity in Database Management System

actual products. For group II principles, current
systerns do something for cach one but do not go
far enough. There are several promising proposals
but no “wotked examples.” Group 111 principles are
important but are not fully achievable by DBMS

- mechanisms alone.

Acknowledgments

We arc indebted to John Campbell, Sylvan Pinsky
and Howard Stainer for their suppott and
encouragement, making this work possible.

References

[1] D. D Clack and D, R. Wilson, A comparison of commer-
cial and military computer security policics. Proc. [EER
Symp. on Security and Privacy; IEEE, New York, 1987,
PR 184-194,

[2] D. D. Clark and I, R. Wilson, Cormunents on the integrity
madel. In 8. W, Katzke and Z. G, Ruthberg (eds.), Report of
the nvitationol Workrhcrp on Integrity Pai'icy in Computer
Iniformation Systems (WIPCIS), NIST Spec. Publ. 500-160,
1989, Section 9, pp. 1-6.

[3] . D. Clark and D. R. Wilson, Bvolution of 2 model for
computer integrity. In Z. G. Ruthberg and W. T. Palk
(cds.), Report ryr the Invitational Wark.rpr on Data Iniegrity,
NIST Spec. Publ, 500~ 168, 1989, Section A.2, pp. 1-13.

[4] E. F. Codd, Extending the relational database model to
capture more meaning. ACM Trans. Database Systems, 4 (4),
(1979) 397-434.

[5] C. J. Tate, An Introduction o Database Systems, Vol. 1,
Addison-Wesley, Reading, MA, 4th edn.,, 1986.

[8] D. B Deoning and P,] Denning, Data Sccurity, AGM
Comput. Surveys, 1t (3] (1979) 227-249,

[7] Department of Defense National Computer Security
Center, Department of Defense Teusted Computer
System Systems Evaluvation Criteria, DoD 5200.28-STD,
1985,

[8] E. B. Fernandez, . C. Summers and C. Wood, Database
Security and Tntegrity, Addison-Wesley, Reading, MA, 1981,

{9] M. Gasser, Building a Secure Computer Systent, Van Nostrand
Reinhold, 1988

fL0] J. Gray, Notes on data base operating systems, In T, Bayer
at al. (eds.), Operating Systems—An Advanced Cousse,
Springer-Verlag, Heidelberg, 1978, pp. 303-481.

[11]]. Gray, Why do computers siop and what can be dene
about it?, Proc. IEEE Symp. on Reltability in Distributed Soft-

426

ware and Database Sysiems, 1EEE, New York, 1985, [
3-12

[12] S. Jajodia, S. K. Gadia, G. Bhargava and E. Sibley, Audit
trail organization in relational dathases. In D. L. Spooner
and C. E. Landwehr {eds), Darabase Security III: Status
atid Prospects, North-Holland, Awsterdam, 1990,
pp. 269-281,

[13] T. A Linden, Operating system structures (o support
sceutity and reliable software. ACM Contput, Surveys, 8 (4)
{1976) 409-445, ‘

[14] J. 2. Moffetr and M. 5. Sloman, The source of anchority
for commetcial access control, Compui, 21 (2) (1988)
59-69,

[15] A. Motro, Integrity = validity + completeness. ACM Trans.
Da!abmcSystems, 14 {4} (1989) 480-502.

[16] W. H. Mutxay, Data integtity in a business data processing
system. In 5. W, Kaczke and Z. G. Ruchberg (eds)), Report
on the Invitational Workshop on Tntegrity Policy in Computer
Information Systems (WIPCIS), NIST Spec. Publ. 500-160,
1989, Sect. Aé, pp. 1-13.

[17] W. H. Murtay, On the tse of mandatery. In S. W. Katzke
and Z. G. Ruthberg (eds.), Repart on the Invitational Wark-
shap on Integrity Pelicy in Computer Information Systems (W/TP-
CIS), NIST, Sper. Publ. 500160, 1989, Sect. A4, pp. 1-2.

[18] 5. W, Katzke and Z. G. Ruthberg (cds.), Report of the Invita-
tional Workshop on Tntegrity Policy it Gompwier Information
Systems (WIPCIS), NIST Spec. Publ. 500-150, £985.

[t9) 2. G. Ruthberg and W. T. Polk (zds.), Report of the Invita-
tional Workshop on Data Integrity, NIST Sper. Publ,
S00- 168, 1989,

[20] J. H. Saltzer and M. D Schroeder, The protection of infor-
mation. {n computer syseems, Proc. IEEE, 63 {9) (1975)
1278-1308.

[21] R. S. Sandhu, The schematic protection model: its defini-
den and ana]ysis for acyclic attenuating schemes, JACM,
35 (2) (1988) 404-432.

[22] R. 8. Sandhu, Transaction contrel expressions for separa-
tion of dutics, Proc. 4th Aerospace Computer Security Appiica-
tiots Conf,, IEEE, New York, 1988, pp. 262-286.

[23] R. S. Sandhy, Transformation of access rights, Proc, IEEE
Symp. on Seewrity and Privacy, TEEE, New Yeork, 1989,
pp- 259-268. ’

[24] R. S. Sandhu, Mandatory Controls for Database Integrity.
In D. L. Spooner and C, E, Landwehr (eds.), Database Secur-
ity IM: Status and Prospects, North-Holland, Amsterdam,
1990, pp. 143-150.

[25] P. G. Selinger, Authorization and views. In . W. Draffan
and F. Pocle (eds), Distributed Data Bases, Cambridge
University Press, Cambridge, 1930, pp. 233-246.

[26] J- H. Wimbrow, A lnrgc—scale interactive administration
system, IBM Syst.], 10 (4) (1971) 260-282.

1015

02/07/06

20:

16 FAX 703 993 1638

GEORGE MASON UNIVERSITY

Computers and Security, Vol. 10, No. 5

* Ravi Sandhu is an. Associate Professor
of Information and Software Systems
Engineering at the George Mason Uni-
i vetsity, Fairfax, Virginia. He is also
- affiliated with the Center for Secure
nformarion Systems at GMU. He joined
- GMU after serving as an Assistant Pro-
; fessor of Computer and Information
Scienge at The Ohio Statc University,
Columbus, Ohjo. He held several teach-
ing and rescarch positions in New Delhi, India prior to coming
to the US.A. for his doctorate.

Dr. Sandhu recsived a PhID. in Computer Scicnce from
Rutgers University, New Brunswick, New Jersey, He also holds
an M.S. degree in Compater Scisnce from Rutgers University
and MTech. and BTech. degrees in Elecmrical Engineering
ftom the Indian Instirtites of Technology in New Delhi and
Bombay respectively.

Dr. Sandhu's principal zesearch interest is in Informarion
Syscems Security particularly in Database Management
Systems, Diseributed Systems and Formal Models. He has
published more than 30 technical PApers on compurer security
in tefereed journals and conference proceedings, He has served
on’ the Program Committee and been a reviewer for scveral
compnter security conferences. He has refereed computer
security papers for pumerous journals. He is currendy program
chaitman of the 1991 IEEE Compurer Security Foundations
Wotkshop and is on the editordal board of the Journal of Com-
puter Security. He is a Senior Member of the IEEE and a member
of ACM.

Sushik Jajodia is currendy Professor of
Information. and Software Systerns
Enginecring and Director of Center for
Secure Information Systems at the
| Géorge Mason University, Fairfax,
Viirginia. He joined GMU after serving
asi the ditector of the Datzbase and
Expert Systems Program within the
 Dikvision of Information, Robotics, and
“ Intelligent Systerns at the National Sci-
ence Foundation, Beforcithar he was the head of the Dambage
and Distributed Systems Section in che Compurer Stience and
Systemns Branch ac the iNaval Research Laboratory, Wash-
ingcon, and Associate Professer of Computer Scicnce and
Dircctor of Graduate Studics ar the University of Missouri,
Columbia, He has also been a faculty mentber at the Universicy
of Wisconsin, Stevens Point and the University of Cklahoma,

Dr. Jajodia teceived 2 PhD. from ¢he University of Otegon,
Eugene, His tesearch interests include informarion systems
sceurity, database management and distributed systems, and
paralle] computing. He has published mare than 60 technical
papers in the refereed journals and conference proccedings and
has co—cdired four books.

Dr. Jajodia has served in different capacities for various jonrnals
and conferences, He is the founding co-editor-in=chicf of the
Josraal of Computer Secutity. He is on the editorial board of the
IEEE Tramsactions on Knowledge and Data Enginecring and the
International fournal of Inielligens & Cooperative Infarmation Sys-
ters, He is 2 member of the 1EER Compueer Society Magazine
Advisory Committee and is serving as the program co-chair of
the Fifth IFIP Working Group 113 Wotkshop on Database
Sccurdry. He is 2 senjor member of the IEEE Computer Society
ahd a member of the Association for Computing Macbinel:y,

427

1016

