
Web servers and browsers

typically use cookies to capture

information for subsequent

communications, which

provides continuity and state

across HTTP connections.

At present, Internet e-commerce

is somewhat limited in using

cookies because sensitive

information cannot be securely

stored and communicated in

typical cookies. Secure cookies

offer a potential solution to

this problem.

Secure Cookies on the Web

JOON S. PARK AND RAVI SANDHU

George Mason University

T he World Wide Web facilitates e-commerce on the Internet via its
underlying hypertext transport protocol, which carries all interac-
tions between Web servers and browsers.1 Since HTTP is stateless,

however, it does not support continuity for browser-server interaction
between successive user visits. Without a concept of a session in HTTP,
users are strangers to a website every time they access the Web server.

Cookies were invented to maintain continuity and state on the Web.2,3

They contain text-character strings encoding relevant information about
the user. Cookies are sent to the user’s hard drive or RAM via the browser
while the user visits a cookie-using website. The Web server retrieves the
user’s information from those cookies when the user later returns to the
same website. The cookie’s purpose is to acquire information for use in
subsequent server-browser communications without asking for the same
information.

It is not technically difficult to encode cookies with relevant informa-
tion. For instance, a merchant Web server could use a cookie that contains
the user’s name and credit card numbers. Although this would be conve-
nient for users, it would also be risky. Because they are stored and trans-
mitted in clear text, cookies are readable and easily forged. One way to
solve this problem is to make cookies secure, and in this article we discuss
several techniques that render cookies secure for carrying and storing sen-
sitive data.

We show how secure cookies enable secure attribute services between
(and without modifying) existing Web servers and browsers, and identify
representative applications for this technology. Secure cookies are con-
structed using well-known cryptographic techniques such as message
digests, digital signatures, message authentication codes, and encryption.
The detailed mechanism depends on how these techniques are applied to
implement secure cookies and to which Web services secure cookies are
applied. Notably, secure cookies can be issued by one Web server for use by
another, which facilitates secure attribute services.

Different techniques for secure cookies are needed to provide trade-
offs between security and convenience for end users, system adminis-
trators, and application developers. Since cookies are inherently user-
pull,4 we focus on the user-pull architecture in this article. Our focus is
on integrity, authenticity, and confidentiality for nonanonymous Web
transactions.

36 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ 1089-7801/ 00/$10.00 ©2000 IEEE IEEE INTERNET COMPUTING

A
P
P
LI

C
A

TI
O

N
S

S E C U R E C O O K I E S

37IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

COOKIES
Cookies serve many purposes on the Web, such as
selecting display mode (for example, frames or text
only), maintaining shopping cart selections, and
storing user identification data.

All cookies are fundamentally similar. A typical
cookie, shown in Figure 1, has several fields. Cook-
ie_Name and Cookie_Value contain information
a website would want to keep—for example, in the
figure, the values of Name_Cookie and Role_Cookie
are “Alice” and “Manager,” respectively. Date is the
cookie’s valid lifetime. Domain is a host or domain
name where the cookie is valid. Flag specifies
whether or not all machines within a given domain
can access the cookie’s information. Path restricts
cookie usage within a site (only pages in the path
can read the cookie). If the secure flag is on, the
cookie will be transmitted only over secure com-
munications channels, such as the Secure Sockets
Layer (SSL) protocol.5 For detailed cookie specifi-
cations, see Kristol2 and Moore.3

According to the current HTTP state manage-
ment mechanism, whenever a browser requests a
URL to a Web server, it sends only the relevant
Cookie_Name and Cookie_Value fields (selected
by means of the Domain and Flag fields) to the
server. Cookies received by the server are used dur-
ing this browser-server communication. If the serv-
er does not receive any cookies, however, it either
works without using cookies or it creates new ones
for subsequent browser-server communication.

A Web server can update cookies’ contents
whenever the user visits the server. The cookie-
issuer is not important for validation; any Web
server can issue cookies for other Web servers.

Security Concerns
Web servers often use cookies to identify visitors
and their status. For instance, if a merchant web-
site has a customer database containing informa-
tion such as names, payment histories, and credit
card numbers, the site uses cookies to store point-

ers to individual customer records. Because cook-
ies are easily forged, it is reasonable to store a sim-
ple customer ID number (pointer) in a cookie
rather than all the customer’s information. This ID

number is exposed in a cookie without exposing
the actual customer data, although even this ID can
be forged.

Privacy—or lack thereof—is one of the main
concerns about cookies in the popular press. Cook-
ies allow Web servers to track a user’s browsing
behavior, although cookies cannot release contents
of a user’s hard drive because a cookie is written in
a text file. Privacy concerns, however, are outside
the scope of this article.6

Security Threats
There are three types of threats to cookies: network
threats, end-system threats, and cookie-harvesting
threats. All three are easy to implement. First, cook-
ies transmitted in clear text on the network are sus-
ceptible to snooping (for subsequent replay) and to
modification by network threats. Although SSL can
foil such threats, it can protect cookies only while
they are on the network.

Second, once the cookie is in the browser’s end
system, it resides on the hard drive or memory in
clear text. Such cookies can be trivially altered by
users and easily copied from one computer to anoth-
er, with or without the cooperation of the user on
whose computer the cookie was originally stored. We
call this the end-system threat. The ability to alter and
copy cookies lets attackers easily forge cookies’ infor-
mation and impersonate other users.

Domain Flag Path Cookie_Name Cookie_Value Secure Date

acme.comCookie 1 True / Name_Cookie Alice False 12/31/2000

acme.comCookie n True / Role_Cookie Manager False 12/31/2000

Figure 1. An example of typical cookies on the Web.

Although SSL can foil network
threats, it can protect cookies only

while they are on the network.

F E A T U R E

38 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Finally, if an attacker collects cookies by imper-
sonating a site that accepts cookies from users (who
believe that they are communicating with a legiti-
mate Web server), the attacker can later use those
harvested cookies for all other sites accepting them.
We call this the cookie-harvesting threat.

SECURE COOKIES
Secure cookies provide three types of security ser-
vices: authentication, integrity, and confidentiali-
ty. Authentication verifies the cookies’ owner.
Integrity protects against unauthorized modifica-
tion of cookies. Finally, confidentiality protects
against the cookies’ values being revealed to an
unauthorized entity.

User Authentication
Since typical cookies do not support authentication,
a malicious user can simply snatch cookies from
other users and impersonate the real owner to the
server that accepts those cookies. To solve this prob-
lem, we introduce three possible authentication
methods for cookies. Authentication cookies can be
address-based (IP_Cookie), password-based
(Pswd_Cookie), or digital-signature-based
(Sign_Cookie). Figure 2 shows each of the three
types. We can use one of those authentication cook-
ies with typical cookies, depending on the situation.

Address-based authentication. An IP_Cookie grabs
the user’s IP address for address-based authentica-
tion. As the IP address is one of the environment
variables for Web users, a Web server (cookie issuer)
can readily obtain the user’s IP address and put it
into the IP_Cookie. Whenever the user (say, Alice)
tries to access a Web server (which accepts the
IP_Cookie), the server first checks if Alice’s current
IP address matches the one in the IP_Cookie she
sent. If they are identical, the server believes that
Alice is the real owner.

Address-based authentication is a convenient
authentication mechanism because the authentica-
tion process is transparent to users, but such a
method is not always desirable. For example, what
if Alice’s IP address is dynamically assigned to her
computer whenever she connects to the Internet?
In this case, although Alice consistently uses the
same computer, the IP_Cookie she received on a
previous Internet connection is invalid once the IP
address changes.

Furthermore, if Alice’s domain uses a proxy serv-
er, an attacker can collect Alice’s cookies, including
IP_Cookie, by cookie-harvesting and easily imper-
sonate her through the same proxy server, because
the proxy effectively provides the same IP number
to the users in the domain. In addition, we cannot
avoid IP spoofing, which is a technique for gaining
unauthorized access by sending messages to a com-
puter with a trusted IP address.

Password-based authentication. Password-based
authentication supports dynamic IP addresses or
proxy servers and avoids IP spoofing. Passwords
are transmitted from browser to Web server and
should be protected on the network by means of
SSL. If the Web server obtains Alice’s passwords
and puts the hashed password into Pswd_Cookie,
other Web servers can authenticate the cookie
owner later using the Pswd_Cookie. Alice must
type the same passwords whenever she tries to
access other servers accepting the cookie. If the
hash of the passwords matches the one in
Pswd_Cookie, then the server believes Alice to be
the real owner. Alternatively, servers can use
encrypted passwords in the Pswd_Cookie to
authenticate the cookies’ owner (a detailed encryp-
tion process is described in the “Providing Confi-
dentiality” section).

This mechanism, however, is inherently vulner-
able to dictionary attacks (attempts to gain access to

Domain Flag Path Cookie_Name Cookie_Value Secure Date

acme.comIP_Cookie True / IP_Cookie 129.174.100.88 False 12/31/2000

acme.comPswd_Cookie True / Pswd_Cookie hashed_password False 12/31/2000

acme.comSign_Cookie True / Sign_Cookie Signature_of_Alice False 12/31/2000

Figure 2. Authentication cookies. The top one contains an IP address for user authentication; the mid-
dle one, a hashed password; and the bottom one, a digital signature of the cookie owner.

S E C U R E C O O K I E S

39IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

a resource by trying passwords or keys from a pre-
compiled list of values), since the Pswd_Cookie
reveals hashed or encrypted passwords. This tech-
nique requires users to enter passwords for authen-
tication whenever they connect to the site, where-
as using an IP_Cookie is transparent to users.

Digital-signature-based authentication. If Web
servers know users’ public keys, digital signature
technologies like DSA7 or RSA8 can be used to
authenticate users with cookies. In this method,
users need additional browser software to generate
a cookie that contains a signed time stamp. For
instance, when Alice needs to access a remote Web
server that knows Alice’s public key, Alice’s com-
puter generates a time stamp and creates the
Sign_Cookie shown in Figure 2, which has Alice’s
digital signature (signed with her private key) on
the time stamp. When Alice connects to the remote
Web server, it receives Alice’s Sign_Cookie and ver-
ifies the signature with Alice’s public key.

Secure cookies can also work with other authen-
tication services such as Radius9 and Kerberos.10

Alice’s authentication information (which depends
on the authentication protocol) can be stored in a
set of secure cookies and used in conjunction with
that protocol.

Client-to-server authentication is handled
directly in our secure-cookie mechanism. When
server-to-client authentication is required, we can
use the server’s public-key certificate by means of
SSL. Mutual authentication can be achieved by the
SSL handshake protocol, if the client certificate—
required by an optional SSL configuration—is sent
to the server from the client. However, some clients
do not have their client certificates, and some SSL
packages do not yet support client-to-server
authentication.

Providing Integrity
Cookies also have integrity problems. For instance,
an attacker can copy Alice’s IP_Cookie and edit it
with an IP number, then later impersonate Alice to
a Web server. Even Alice can change the contents
of her own cookies. Figure 3 shows a set of secure
cookies, and Figure 4 (next page) shows how the
secure cookies are used on the Web.

The Cookie_Value field of the Life_Cookie
shows the lifetime (expiration date) of the secure-
cookie set and enables the Web server to check the
integrity of the secure-cookie set’s lifetime if the
cookies are valid. Even though the browser sends
only the relevant Cookie_Name and Cookie_Value
fields to the Web server (selected by means of the

Domain Flag Path Cookie_Name Cookie_Value Secure Date

acme.comName_Cookie True / Name_Cookie Alice False 12/31/2000

acme.comRole_Cookie True / Role_Cookie Manager False 12/31/2000

acme.comLife_Cookie True / Life_Cookie 12/31/99 False 12/31/2000

acme.comPswd_Cookie True / Pswd_Cookie hashed_password False 12/31/2000

acme.comKey_Cookie True / Key_Cookie encrypted_key False 12/31/2000

acme.comSeal_Cookie True / Seal_Cookie Seal_of_Cookies

Sealing cookies

False 12/31/2000

Figure 3. A set of secure cookies on the Web. The Pswd_Cookie can be replaced with either IP_Cookie or Sign_Cookie.
Sensitive fields are encrypted in the cookies. Seal_of_Cookies can be either MAC or a signed message digest of cookies.

F E A T U R E

40 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

Domain and Flag fields), the cookie-issuing server
can establish a policy with the Web servers in the
domain to check the integrity of other fields. For
example, if the policy presets the values of the
Domain, Flag, Path, and Secure fields with
acme.com, True, /, and False, respectively, the Web
server uses those values to check the cookies’
integrity.

It is best not to preset an expiration date for all
cookies under a domain policy, however, because
each secure-cookie set may require a different life-
time. The Life_Cookie is used to solve this prob-
lem. Since each cookie is deleted from a user’s
machine automatically after its expiration date, the
integrity of the cookie set would be changed (if
cookies have different lifetimes). Therefore, it is rea-
sonable to set the same expiration date for all the
cookies that are stored in the Cookie_Value of the
Life_Cookie.

If necessary, we can include other typical cookies
in the secure-cookie set, containing information to
be protected, such as credit card numbers, accord-
ing to applications. The optional Key_Cookie facil-
itates encryption of sensitive data, as we describe

later. In some cases, if we do not need cookies to be
confidential—for example, if they lack sensitive
information—we clearly do not need encryption.

Finally, the Seal_Cookie determines if cookies
have been altered. The Seal_Cookie’s contents
depend on the cryptographic technologies used—
essentially, either a public- or secret-key-based solu-
tion. The key distribution between servers can be
achieved by key agreement algorithms such as RSA8

or Diffie-Hellman.11

Public-key-based solution. With public-key cryptog-
raphy, the cookie-issuing server uses a message digest
algorithm, such as MD512 or SHA,13 to create a mes-
sage digest from the rest of the cookies. It then signs
the message digest using its private key and puts the
signature in the Seal_Cookie. Consequently, all secure
cookies are stored in the user’s computer.

When the user connects to a Web server—which
accepts and can verify the cookies—next time, the
browser sends the relevant secure cookies to the
server. The server verifies the signature in the
Seal_Cookie using the cookie-issuing server’s pub-
lic key and the values set by the policy (between the

browser

Client

cookies

KeyPswd

Cookie_Issuer

Get
user information

Set secure
cookies

1. Access

2. Get cookies

ResponseSeal

Life

cookies

KeyPswd

Get cookies

Seal

Life

cookies

KeyPswd

3. Send cookies

Seal

Life

Get cookies

Server 1

Check integrity and
authentication

Access to
resources

Get cookies

Server n

Server communication

Access to
resources

4. Response

Check integrity and
authentication

Figure 4. Using secure cookies on the Web. The Pswd_Cookie can be replaced with either IP_Cookie or Sign_Cookie.

S E C U R E C O O K I E S

41IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

cookie-issuing server and the Web server). A suc-
cessful integrity verification means the cookies have
not been altered.

In the public-key-based solution, only the serv-
er with the private key for the Seal_Cookie can
update the contents of the secure cookies; thus for
updates, the user must return to the cookie-issuing
server with the private key. (If the private key is
shared among other servers, it is possible to update
the secure cookies at multiple sites.)

Secret-key-based solution. With secret-key cryp-
tography, the cookie-issuing server creates a mes-
sage authentication code (MAC) from the rest of
the cookies using a key-dependent, one-way hash
function such as HMAC14 and puts it in the
Seal_Cookie. When the user connects to a Web
server, the server obtains all relevant cookies from
the browser. If the Web server shares a secret key
with the cookie-issuing server, the server creates a
MAC from the cookies and the values set by the
policy, and compares it with the one in the user’s
Seal_Cookie. If both MACs are identical, the Web
server believes the cookies have not been altered.

If we use the secret-key-based solution for secure
cookies, any server with the shared secret key can
update the cookies’ contents. For instance, a Web
server can extend the cookies’ expiration date,
which means the user need not return to the orig-
inal cookie-issuing server to update the cookies.

Providing Confidentiality
To prohibit individuals, perhaps even the cookie
owner, from reading sensitive information in cook-
ies, the Web server can encrypt names, roles,15 cred-
it card numbers, and so on. We use the Key_Cook-
ie, shown in Figure 3, to store an encrypted session
key, which is used to encrypt sensitive information
in other cookies. The session key can be encrypted
either by the server’s public or secret key. We can
encrypt the cookie’s contents directly with the serv-
er’s secret key or public key, eliminating the need
for the Key_Cookie. However, for better secure ser-
vices, we recommend a session key to encrypt the
cookie’s contents. For public-key encryption, we
recommend separate public-key pairs for encryp-
tion and digital signature because a server may
share the private key for information decryption
with other servers while keeping the other private
key for digital signature secret.

When a Web server receives secure cookies,
including the Key_Cookie, it decrypts the
Key_Cookie’s Cookie_Value using its master (pri-

vate key or secret key)—which can be shared with
other servers—to get the session key. With this key,
the server decrypts and reads the information in the
other cookies. If the cookies’ contents were
encrypted directly by the server’s secret or public
key, the server decrypts the information using the
corresponding key.

Enhancement
An organization might have hundreds of Web
servers, all requiring integrity, authentication, and
confidentiality services in cookies. In such an envi-
ronment, it is unwise to make individual Web
servers share a secret key with others in the
domain, as this increases the likelihood that the
key will be exposed. To support more secure ser-
vice, verification servers can share the secret key
with other verification servers to verify, decrypt, or
update cookies issued by cookie-issuing servers in
the domain.

When a Web server receives secure cookies from
a user, the server forwards them to a verification
server, which verifies the cookies and sends the
result to the Web server over a secure channel. The
verification server can, if necessary, decrypt the
cookies’ encrypted values or update the cookies’
information. Finally, the Web server trusts, and
uses, the decrypted and verified information
received from the verification server.

Encrypted Versus Secure Cookies

Some commercial products, such as getAccess (http://www.
encommerce.com/productbrief.asp), use encrypted cookies. How-
ever, such products differ substantially from our approach. Simply
encrypted cookies support confidentiality, but they cannot support
authentication and integrity. For instance, a user (say, Alice) can
use another’s (say, Bob’s) cookies even though she cannot read the
encrypted cookies’ contents. Furthermore, nonencrypted parts in
the cookies can be altered without notice to the cookie issuer. Since
there is no way to check the cookies’ real owner and integrity of
copied or forged cookies, those cookies should not be stored in the
user’s computer after each session. This means the user must receive
new cookies from the cookie-issuer for every session, which causes
the stateless problem of HTTP between Web browsers and server.

Our secure cookies, on the other hand, can be stored in the
user’s computer, even when it is off, after each session. This is pos-
sible because the secure cookies can be provided integrity and
authentication services as well as encryption. Therefore, once the
user obtains secure cookies, the cookies’ information can be used
until the cookies expire. This approach completely solves the state-
less problem of HTTP and security problems in typical cookies.

F E A T U R E

42 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

APPLICATIONS
Four representative applications will illustrate the
use of secure cookies. The applications determine
which kinds of secure cookies are used. Regardless
of application, however, at least one authentication
cookie and the Seal_Cookie are required to frame
basic security services.

User Authentication
Web servers can simply use secure cookies to
authenticate their visitors. One or more authenti-
cation cookies (IP_Cookie, Pswd_Cookie, or
Sign_Cookie) can support the Web server’s user
authentication service in conjunction with the
Seal_Cookie, which supports the integrity service
for the cookies.

Electronic Transactions (e-Commerce)
Because typical cookies lack security, a merchant
site usually sets a cookie to hold a pointer such as
an ID number, which is a key field in the site’s cus-
tomer-information database. However, the ID itself
can be easily changed; moreover, this approach
implies that a customer-information database must

be maintained in a server. A disadvantage to this
method is that if the server holding customer infor-
mation is penetrated by an attacker, all of that
information is vulnerable. Furthermore, a domain
including multiple servers with multiple customer-
information databases faces burdensome mainte-
nance and synchronization tasks. Such data also
arouse significant privacy concerns, as it can easily
be misused. Users may feel more comfortable with
servers that pledge not to maintain such data.

Secure cookies can solve these problems, espe-
cially in e-commerce. If a merchant site creates
secure cookies like those shown in Figure 5, it does
not need a customer-information database unless
it tracks customer access histories, because each cus-
tomer’s information is distributed and stored
securely in the secure cookies on the customer’s
hard disk. Secure cookies offer more security by
eliminating customer-information databases that
can cause a single-point failure; furthermore, the
merchant reduces database maintenance costs.

In Figure 5, the Card_Cookie and Coupon_
Cookie have pairs of cookie name and value in their
Cookie_Value fields. Intuitively, a merchant site

Domain Flag Path Cookie_Name Cookie_Value Secure Date

acme.comName_Cookie True / Name_Cookie Alice* False 12/31/2000

acme.comCard_Cookie True / Card_Cookie number::123456789*&
exp_date::Jan.2001* False 12/31/2000

acme.comCoupon_Cookie True / Coupon_Cookie False 12/31/2000

acme.comLife_Cookie True / Life_Cookie 12/31/2000 False 12/31/2000

acme.comPswd_Cookie True / Pswd_Cookie hashed_password False 12/31/2000

acme.comKey_Cookie True / Key_Cookie encrypted_key* False 12/31/2000

acme.comSeal_Cookie True / Seal_Cookie Seal_of_Cookies**

Sealing cookies

False 12/31/2000

 * Sensitive fields are encrypted in the cookies.
** Seal_of_Cookies can be either MAC or a signed message digest of cookies.

ID::123&off::10%*&
valid_date::9/17/2000*

Figure 5. An example of secure cookies for electronic transactions.

S E C U R E C O O K I E S

43IEEE INTERNET COMPUTING h t tp ://computer.org/ in te rne t/ JULY • AUGUST 2000

should set the Card_Cookie to expire before the
credit card’s expiration date. For more convenient
services, the merchant can issue special tokens for
customers, such as electronic coupons, which con-
tain the coupon’s ID number, discount informa-
tion, and expiration date. In this case, the merchant
site must keep a record for the coupon by the ID
to prevent replay usage (the same coupon’s being
reused).

Pay-Per-Access
Many pay-per-access websites provide various
information services, such as performances, games,
and movies. Secure mechanisms—such as secure
cookies—to sell, buy, and use tickets to such sites
are obviously needed.

Suppose Alice wants to buy access to such a site.
After she pays, the server gives her a token that
affords her access until the ticket expires. If Alice
receives, say, a Ticket_Cookie that contains her
access limit and valid date, along with other secure
cookies, she alone can access the site as long as the
Ticket_Cookie is valid.

To prevent replay attacks, a merchant site must
keep information about tickets—such as accumu-
lated usage of each ticket—at least until the Tick-
et_Cookie becomes invalid. This does not mean
that the merchant site must keep all customer
information; the merchant need track only the tick-
et ID and its accumulated usage. In this case, mer-
chant sites need not update the cookies’ contents.
For instance, if Alice’s accumulated access usage
exceeds the access limit denoted in her
Ticket_Cookie, then the merchant site rejects
Alice’s request.

Attribute-Based Access Control
If a user’s attribute information is stored in cook-
ies securely, as shown in Figure 3, Web servers can
use those cookies for attribute-based access control.
Since the attribute information is protected from
possible security threats on the Web as well as in
end systems, a Web server can verify and trust
attributes, such as roles, in the secure cookies.

CONCLUSIONS
We have implemented role-based access control on
the Web as a possible application for secure cook-
ies.16 We used CGI scripts and Pretty Good Priva-
cy17 to create and verify secure cookies crypto-
graphically. The role server issues a set of secure
cookies, including the user’s authentication infor-
mation (encrypted passwords or IP number), role,

and the server’s signature. These cookies are trans-
ferred to and stored in the user’s computer. When
the user connects to a Web server, the relevant
cookies are transmitted to the Web server. After
cookie-verification procedures, the server—which

accepts those cookies and can verify them—trusts
the information and permits the user access on the
basis of roles.

Rather than extend the current HTTP or cook-
ie specification to satisfy our security requirements,
we decided to stay with the standard HTTP and
cookie specification for reasons of compatibility
and current high usability. An area for future
research would be the extension of our techniques
for ensuring integrity, authenticity, and confiden-
tiality of Web transactions for e-commerce. ■

REFERENCES
1. J. Gettys, J. Mogul, and H. Frystik, “HyperText Transfer

Protocol (HTTP/1.1),” RFC 2616; available online at

http://www.ietf.org/rfc/rfc2616.txt, June 1999.

2. D.M. Kristol and L. Montulli, “HTTP State Management

Mechanism,” work in progress; available online at http://ftp.

ietf.org/internet-drafts/draft-ietf-http-state-man-mec-12.txt,

Aug. 1999.

3. K. Moore and N. Freed, “Use of HTTP State Management,”

work in progress; available online at http://ftp.ietf.org/

internet-drafts/draft-iesg-http-cookies-03.txt, Apr. 2000.

4. J.S. Park and R. Sandhu, “Smart Certificates: Extending

X.509 for Secure Attribute Services on the Web,” Proc.

22nd National Information Systems Security Conf., U.S.

Govt. Printing Office, Washington, D.C., 1999.

5. D. Wagner and B. Schneier, “Analysis of the SSL 3.0 Pro-

tocol,” Proc. Second Usenix Workshop on Electronic Com-

merce, Usenix Press, Berkeley, Calif., Nov. 1996, pp. 29-40.

6. V. Mayer-Schonberger, “The Internet and Privacy Legisla-

tion: Cookies for a Threat?”, West Virginia J. Law and Tech-

nology, West Virginia Univ. College of Law, Morgantown,

W. Va., 1997.

7. Federal Information Processing Standards Publication, “Dig-

ital Signature Standard (DSS),” FIPS PUB 186, Nat’l Inst.

of Standards and Technology, Gaithersburg, Md., 1994.

Secure cookies offer security
by eliminating customer-

information databases that can
cause a single-point failure.

F E A T U R E

44 JULY • AUGUST 2000 h t tp ://computer.org/ in te rne t/ IEEE INTERNET COMPUTING

8. R.L. Rivest, A. Shamir, and L. Adleman, “A Method for

Obtaining Digital Signatures and Public-Key Cryptosystems,”

Comm. ACM, Vol. 21, No. 2, Feb. 1978, pp. 120-126.

9. C. Rigney et al., “Remote Authentication Dial-In User Ser-

vice (RADIUS),” RFC 2138, Apr. 1997; available online

at http://www.ietf.org/rfc/rfc2138.txt.

10. B.C. Neuman, “Using Kerberos for Authentication on Com-

puter Networks,” IEEE Comm., Vol. 32, No. 9, Sept. 1994.

11. W. Diffie and M.E. Hellman, “New Directions in Cryp-

tography,” IEEE Trans. Information Theory, Vol. IT-22, No.

6, Nov. 1976, pp. 644-654.

12. R.L. Rivest, “The MD5 Message-Digest Algorithm,” RFC

1321, Apr. 1992; available online at http://www.ietf.org/

rfc/rfc1321.txt.

13. Federal Information Processing Standards Publication,

“Secure Hash Standard,” FIPS 180-1, Nat’l Inst. of Stan-

dards and Technology, Gaithersburg, Md., 1995.

14. M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash

Functions for Message Authentication,” in Proc. Advances

in Cryptography—CRYPTO 96, Vol. 1109, Lecture Notes

in Computer Science, Springer-Verlag, Berlin, 1996.

15. R.S. Sandhu et al., “Role-Base Access Control Models,”

Computer, Vol. 29, No. 2, Feb. 1996, pp. 38-47.

16. J.S. Park, R. Sandhu, and S. Ghanta, “RBAC on the Web

by Secure Cookies,” Proc. 13th IFIP WG11.3 Conf. Data-

base Security, Kluwer Academic Publishers, Boston, 1999.

17. P.R. Zimmermann, The Official PGP User’s Guide, MIT

Press, Cambridge, Mass., 1995.

Joon S. Park works for the U.S. Naval Research Laboratory’s

Center for High Assurance Computer Systems via ITT

Industries as a research scientist. His research interests

include designing and implementing security services on

the Web, workflow security, security assurance,

CORBA/JAVA security, secure electronic commerce, secu-

rity models, PKI, information systems policy and admin-

istration, and cryptography. Park received a PhD in infor-

mation technology, specializing in information security,

from George Mason University in 1999.

Ravi Sandhu is a professor of information and software engi-

neering and the director of the Laboratory for Information

Security Technology at George Mason University. His prin-

cipal research interests are in information and systems secu-

rity. Sandhu holds PhD and MS degrees from Rutgers Uni-

versity, and BTech and MTech degrees from IIT Bombay

and Delhi. He is the founding editor-in-chief of the ACM

Transactions on Information and Systems Security and is an

editor for IEEE Internet Computing. He chairs the ACM’s

Special Interest Group on Security Audit and Control

(SIGSAC).

Readers can contact Park at the Naval Research Laboratory,

Code 5540, 4555 Overlook Ave. SW, Washington, DC 20375;

jpark@itd.nrl.navy.mil; or Sandhu at George Mason Universi-

ty, MS4A4, 4400 University Dr., Fairfax, VA 22030-4444;

sandhu@isse.gmu.edu.

Career
Service
Center

• Certification

• Educational Activities

• Career Information

• Career Resources

• Student Activities

• Activities Board

http://computer.org

Career Service Center

Introducing the
IEEE Computer Society

Career Service Center

Advance your career

Search for jobs

Post a resume

List a job opportunity

Post your company’s profile

Link to career services

http:/computer.org/careers/

