01/26/06

15:40 FAX 703 993 1638

Information Processing Letiers 27 (1988) 95-98
North-Holland

GEORGE MASON UNIVERSITY

29 February 1988

CRYPTOGRAPHIC IMPLEMENTATION OF A TREE H]ERARCHY FOR ACCESS CONTROL

Ravinderpal 8. SANDHU

Department of Computer and Information Seience, The Ohio Srqrel University, Columbus, OH 43210, US.A.

Communicated by Fred B. Schneider
Received 1 May 1987
Revised 29 May 1987 and 24 July 1987

A cryptographic implementation is proposed for access control in a situation where users and information items are
classified into security classes organized as a rooted tree, with the most privileged security class at the root. Each user stores a
single key of fixed size corresponding to the user’s security class. Keys for security classes in the subtree below the user’s
security class are generated from this key by iterative application of one-way functions. New security classes can be defined
without alfering existing keys. The scheme proposed here is based on conventional cryptosystems (as opposed to public key

cryptosystems).

Keywords: Cryptography, cryptographic key, one-way function

1. Introduction

We consider a situation where the users and
information items in a computer or communication
system are classified into a rooted tree of security
classes SC,, SC,,...,8C,. 8C,>8C; signifies
that SC, is a predecessor of SC, in the tree while
SC, > SC; also allows for SC;=8C,. If 8C, >

8C,, we say that SC; covers SC,. Each user is

assigned to a security class called his clearance.
And each item of information, be it a file or a
message, is assigned to a security class called its
sensitivity. The requirement is that users with
clearance SC, can read or create information items
with sensitivity SC, if and only if SC; covers SC,.

Let a conventional or symmetric cryptosystem
such as DES [8] be available with enciphering and
deciphering procedures E and D respectively. That
is, u = E(v) is the ciphertext for v uwsing key K
and v =Dg(u). A distinct key K, is assigned to
each security class SC; for encrypting and de-
crypting information classified in that class. An
information item x with sensitivity SC; is stored
(or transmitted) in the system as the pair [Ex (x),
name (SC,;)]. The name of the sensitivity class is

appended to indicate how to decrypt the informa-
tion. Only those users who somehow know K, will
be able to perform the decryption. The access
control problem is solved if we can ensure that
only those users whose clearance covers SC; will
be able to know K.

Akl and Taylor [1] describe an elegant solution
for the general problem where the hierarchy on
security classes is an arbitrary partial order. Each
user stores a single key corresponding to his
clearance, from which keys for security classes
covered by the user’s clearance are computed as
needed, whereas it is (apparently) intractable to
compute keys for security classes not covered by
the user’s clearance even in collusion with other

.users. MacKinnon et al. [6,7] present variations of

this method which are optimal with respect to a
number of criteria. However, these methods all
have the significant disadvantage that when a new
security class is added, new keys need to be com-
puted for existing security classes which do not
cover the new class. This may involve a large
fraction of the existing classes and presents a
nontrivial administrative task especially in a dis-
tributed environment. Moreover, we must either

0020-0190/88/.$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 95

o001

01/26/06

15:40 FAX 703 993 1638

Volume 27, Number 2

re-encipher all previously existing information
items with these new keys or require users to
remember the previous keys. It is particularly
awkward thal keys for existing security classes

which are completely unrelated to the new class '

will be changed.

In this paper we present a novel cryptographic
solution to this access control problem for the
important special case of a rooted tree hierarchy.
Our solution, although limited to this special case,
has the notable property that new security classes
can be defined without affecting keys for existing

classes. As in the solutions of [1,7], each user holds

exactly one key corresponding to his clearance
and the size of this key is the same for all users
irrespective of their clearance.

2. The solution

Our solution is based on the well-known idea of
one-way functions which are easy to compute but
computationally difficult to invert [9]. Their use
for safegnarding cryptographic keys was suggested
by Gudes [4] and has been applied in a number of
different contexts [1,2,3,5,6,7]. It is generally
accepted that a good cryptosystem can be used to
implement a one-way function. A commonly used
approach is to encrypt some fixed and publicly

known constant ¢ using x as the key, i.e., f{x)=.

E (¢). Computing the inverse of f(x) then
amounts to computing the key x given that ¢
encrypts as f(x). This is a known plaintext attack
from which good cryptosystems are expected to be
immune. :

Now, consider the situation where the security
classes are partially ordered in a rooted tree as
discussed earlier. We propose to use a family # of
one-way functions f,(x) where p is a parameter.
We assume that f,(x) is a one-way function for
all p. Furthermore, we require that the functions
in % be independent of each other in a sense
which we will make precise shortly. The kind of
behavior we have in mind is that it should be
infeasible to compute f (x) given f,(x). That is,
the value of f,(x) tells us very little about the
value of f (x). Since f, is a one-way function, it is
of course infeasible to compute f,(x) by first
inverting f,(x) to obtain x and then computing

96

GEORGE MASON UNIVERSITY

INFORMATION PROCESSING LETTERS

29 February 1988

f,(x). We additionally require that there be no
other tractable method of computing f,(x) given
f(x).

Given such a publicly known family of one-way
functions, the keys for the security classes are
generated as follows.

(1y For the security class at the root, assign an

" arbitrary key.

~(2) If 8C, is an immediate child of SC, in the
tree, let K, =f,mme(scl_)(K,-).
That is, for each child of a security class in the
tree we use a different one-way function. The

- choice of the one-way function is based on the

name of the child. A user with security clearance
SC, is given the key K. Since the family % is
publicly known and the names of the security

. classes are public, he can easily compute the key

K, for all security classes SC; covered by SC,.
However, it is computationally infeasible to com-
pute K; for a security class SC, > 8C,; since this
amounts to the inversion of one or more one-way
fungtions. Finally, it should be computationally
infeasible to compute K, for 8C; incomparable
with SC,. It is this last requirement which moti-
vates the independence condition on the family of
one-way functions. A formal statement of the
independence condition is beyond the scope of
this paper. Nevertheless, we will try to make the
requirement precise in the context of a particular
family of one-way functions.

We generalize the well-known one-way func-
tion f(x)= E,(¢) to obtain a family of one-way
functions by replacing the constant ¢ by the
parameter of the family, i.e., f,(x}= E.(p). Now,
inverting £,(x) amounts to computing the key x
given that p encrypts as f,(x). So, this is a known
plaintext attack which is infeasible for a secure
cryptosystem. Hence, f,(x) is a family of one-way
functions. If the parameter p is chosen to be the
name of the security class, then the keys for the
immediate children SC,, SC,,...,8C,; of SC,
are generated from K, as follows:

K, =EKj(name(C,),

S Jl)
K, = EKi(name (SC-)),

iz

K-. = EK‘(name(SCjk)).

Sk

oo2

. 01/26/06

15:41 FAX 703 993 1638

Volume 27, Number 2

To ensure that the sizes of all the keys are the
same we assume here that the names of the secu-
rity classes fit within the block size of the crypto-
system. It must be infeasible to compute any of
KJ:’
do so by computing K, from the fact that
name(SC,) is encrypted as K. Our independence
requlrement is that all other methods of comput-
ing K, from K, also be infeasible without some
additional information.

To prevent collusion among the siblings we also
need the additional property that even with
knowledge of K ..., K, itis infeasible to com-

Jx
pute K;. Once agam the most direct method of

computatlon amounts to a known plaintext attack = -

to find K, given k& — 1 pairs of values

(name (Scjz) ’ sz)

This is infeasible for a good cryptosystem. And,
again, our independence requirement is that all
other methods of computing K; from K;,..., K
also be infeasible without some additional infor-
mation.

The notion of independence of the family of
one-way functions has been illustrated for security
classes which are siblings. The notion generalizes
to arbitrary security classes which are unrelated.
By definition, these security classes have a com-
mon ancestor in the rooted iree from which their
keys are derived by iterative application of one-way
functions. Straightforward attacks by inverting
these functions to obtain the key for this ancestor
are ruled out by the assumed security of the
cryptosystem. The independence assumption rules
out feasibility of other methods of attack either by
an individual user of in collusion with other users.

We believe that this independence requirement
will be satisfied if the family of one-way functions
f,(x)=E,(p) is based on a secure cryptosystem.
One has to be a little careful here about some
extreme-case situations. It is theoretically con-
ceivable that siblings of all possible names exist. If
we know the encrypted form of all but one of
these names, we can determine the encrypted form
of the remaining name since it must be different
from all the others. Situations such as this create

(name(SC) K,)

GEORGE MASON UNIVERSITY

INFORMATION PROCESSING LETTERS

, K;, from K. By the assumed security of
the cryptosystem we "know that it is infeasible to

29 February 1988

difficulties for the formal statement, let alone the
proof, of the independence requirement. Such ex-
treme cases are no real threat. For instance, with a
block size of 64 bits there are 2% = 10'® possible
{(plaintext, ciphertext) pairs for each key. Knowl-

edge of all but one of these pairs for a given key

requires a formidable amount of storage and would
happen in our context anyway only if there were
an astronornical number of siblings in the tree.

In theory, it is possible that two secuiity classes
which are not siblings get assigned the same key.
Consider two security classes with names X and ¥
whose parents in the tree have keys K, and K,
respectively, Our proposal is to assign these secu-
rity classes the keys Ex (X) and Eg(Y) respec-

“tively. Now, for given X, K, and K, it is trivial

to construct a ¥ such that these two keys are
identical. We simply compute Y = Dy (Eg (X)).
However, the likelihood of such a ¥ being chosen
as the name of a security class is exceedingly
small.

Finally, we note that there is a problem in
using DES to implement our proposal. DES has
the peculiar quirk that it uses a 56-bit key to
encrypt a 64-bit block of plaintext yielding 64 bits
of ciphertext. Since we wish to use the ciphertext
as a key it must somehow be reduced to 56 bits,
This introduces an inevitable element of degener-
acy and the accompanying risk that two 64-bit
ciphertexts which are different will be reduced to
the same 56-bit key.

3. Some pragmatic issues

We now consider some pragmatic issues regard-
ing the application of our scheme with f,(x)=
E_(p). To keep the size of keys for all security
classes fixed, the names of the security classes
must fit within the block size of the cryptosystem,
a typical block size being 64 bits. This is an
awkward restriction, especially if we contemplate
having hundreds of security classes. We might
attempt to accommodate longer names by some-
how reducing them to 64 bits. But this method has
potential security flaws. If two siblings SG; and
SC,, have names which are reduced to the same
64-bit quantity, then the keys for both security

97

003

01/26/06

15:42 FAX 703 993 1638

Volume 27, Number 2

classes will be identical. In case the names allowed
are considerably bigger than 64 bits, there will be
significant degeneracy here.

Fortunately, our proposal can accommodate
hierarchical names for the security classes quite
readily. That is, immediate children of a security
class have distinct names limited to 64 bits, but
children of different security classes may have the
same name. The unique name of a security class
SG consists of the names of all security classes in

the path from the root to SC in order, separated .

by some special character, say “/". When gener-
ating keys for the security classes, it s necessary
that the immediate children of SC; get distinct

keys. So, the name used in our family of one-way

functions Ey (rame(SC)) need only be the last
field in the unique pathname of SC. If another
security class SC; has a child with the same name
as SC, there is no conflict since the key for the
child will now be Eg (name(SCY). The name
appended to the encrypted form of each informa-
tion item to identify the sensitivity of the item
must be the complete pathname.

One problem with our solution is that when a
user with a high security clearance SC; needs to
genetate the key for a security class SC, which is
deep down in the tree, an intermediate key must
be generated for each security class in the path
from SC, to SC,. To estimate the computational
overhead incurred due io this, consider a tree with
ten levels and a cryptosystem with a block size of
8 bytes. A user cleared for the root may need nine
applications of the enciphering procedure to de-
rive a key for the security classes at the leaves. If
the same cryptosystem is also used for the encryp-
tion and decryption of files this represents a possi-
ble overhead of 9 X 8 = 72 bytes. If the file is big,
say 72000 bytes, the overhead is a negligible 0.1%.
On the other hand, for a very small file of say 72
bytes the overhead is 100%. In practice we doubt

98

GEORGE MASON UNIVERSITY
L

iNFORMATION PROCESSING LETTERS

29 February 1988

that trees of greater than ten levels will be used, so
these numbers are indicative of the worst case.
Moreover, with a cache for derived keys, when the
user cleared for the root decrypts several files
classified at the leaves, the overhead will be amor-
tized over these files rather than being incurred for
cach file.

Acknowledgment

‘We would like to express our appreciation for
the referees whose comments clarified several

~ technical details in my mind and in the paper.

References

[1] 8.G. Akl and P.D. Taylor, Cryptographic solution to a
problem of access control in a hierarchy, ACM Trans.
Comput. Systems 1 (3) (1983) 233248,

[2] D.E. Denning, H. Meijer and F.B. Schneider, More on
. master keys for group sharing, Inform. Process. Lett. 13 (3)
(1981) 125-126.

[3] D.E. Denning and F.B. Schneider, Master keys for group
sharing, Inform. Process. Lett. 12 (1) (1981) 23-25.

{4] E. Gudes, The design of a eryptography based secure file
system, TEEE Trans. Software Engrg. SE-6 (5) (1980)
411-420.

[5] I. Ingemarsson and CK. Wong, A user authentication
scheme for shared data based on trap-door one-way func-
tions, fnform. Process. Lert. 12 (2) (1981} 63-67.

[6] 5.J. MacKinnon and S.G. Akl, New key generation al-
gorithms for multilevel security, in: Proc. IEEE Symp. on
Security and Privacy (IEEE Press, 1983) 72-78.

[7] 8.J. MacKinnon, P.D. Taylor, H. Meijer and §.G. Akl, An
optimal algorithm for assigning cryptographic keys to con-
trol access in a hierarchy, TEEE Trans. Comput. C-34 (9)
(1985) 797-802.

[8] National Bureau of Standards, Data Encryption Standard,
FIPS Publication 46, NBS, 1977,

[9] M.V, Witkes, Time-Sharing Computer Sysiems (Elsevier/
MacDonald, Amsterdamn, 1972).

1004

!

