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Abstract

This paper presents a kernelized architecture (i.e., an architecture in which no sub-
ject is exempted from the simple-security and *-properties) for multilevel secure (mls)
object-oriented database management systems (DBMS’s) which support write-up. Re-
lational mls DBMS’s typically do not allow write-up, due to integrity problems aris-
ing from the blind nature of write-up operations in these systems. In object-oriented
DBMS’s, on the other hand, sending messages upwards in the security lattice does
not present an integrity problem because such messages will be processed by appro-
priate methods in the destination object. However, supporting write-up operations in
object-oriented systems is complicated by the fact that such operations are no longer
primitive; but can be arbitrarily complex and therefore can take arbitrary amounts of
processing time. We focus on support for remote procedure call (RPC) based write-
up operations. Dealing with the timing of such write-up operations consequently has
broad implications on confidentiality (due to the possibility of signaling channels),
integrity, and performance.

We present an asynchronous computational model for mls object-oriented databases,
which achieves the conflicting goals of confidentiality, integrity, and efficiency (perfor-
mance). This requires concurrent computations to be generated within a user session,
and for them to be scheduled so the net effect is logically that of a sequential (RPC-
based) computation. Our work utilizes an underlying message filter security model to
enforce mandatory confidentiality. We demonstrate how our computational model can
be implemented within the framework of a kernelized architecture. In doing so, we
present various intra-session and inter-session concurrency schemes. The intra-session
schemes are concerned with the scheduling and management of concurrent computa-
tions generated within a user session, and we present conservative as well as aggressive
scheduling algorithms. The inter-session schemes provide the traditional condirrency
control functions of managing shared access to database objects, across user sessions.

1 The work of both authors was partially supported by the National Security Agency
through contract MDA904-92-C-5140. We are grateful to Pete Sell, Howard Stainer,
and Mike Ware for making this work possible.
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1. Introduction

The object-oriented paradigm continues to emerge as a useful and unifying one
in computer science. It has borrowed ideas from such diverse fields as software
engineering, artificial intelligence, and databases, and in turn advanced these fields
in new directions. In light of this, we have seen several research and develop-
ment efforts in object-oriented databases. The impetus for these developments can
be attributed to emerging applications and computing environments that demand
capabilities which are beyond those provided by record-based data models and
conventional database technologies. Such applications and environments include
computer-aided design, office automation, and cooperative work. From a data
modeling perspective, object-oriented models not only allow the representation of
complex object structures, but further allow modeling of the behavior of entities
in a domain through methods encapsulated in objects.

As the object-oriented field is still maturing, there exists no single and precise
definition of an object-oriented data model as observed by Maier [16]. However,
there is some agreement on the core concepts that such a data model should sup-
port. We assume a data model that supports the following notions:

® Object: An object is an instance of an abstract data type, and is thus a unit
that encapsulates some chunk of private state with a public interface.

o Object Identity: The object identity (object-id) uniquely identifies an object,
and is further distinct from the internal state of the object.

e Encapsulation of behavior: An object supports operations that are imple-
mented by methods (pieces of code). The state of an object is not directly

manipulable, but can only be accessed by invoking one of the abstract oper-
ations defined in its public interface.

¢ Class/Type: Every object belongs to a type that is determined by its class
(a class is akin to an abstract data type definition). Objects with the same

structure and behavior can be grouped together as belonging to a class, thus
enabling the sharing of information.

e Class Hierarchy: The data model should support the ability to organize
classes into a class hierarchy. Classes in a hierarchy share definitions and be-
havior through the mechanism of inheritance. Classes lower in the hierarchy
inherit from higher super classes. The inheriting class (and any corresponding
instantiated object) is considered to be more specialized than 1ts superclasses.

Variations along several themes of the core ideas above have been proposed in
he literature. These include selective inheritance, class-less objects, and class-less
haring mechanisms such as delegation, to name a few. Discussion on some of
hese issues can be found in [12, 23, 26]. Although the debate on object-oriented
ata models continues, we fortunately do not need to settle the many issues in
rder to deal with multilevel confidentiality. In fact, we take a minimalist view
hat the dynamics of the object-oriented paradigm can essentially be captured by
ncapsulation and message passing. Objects can be considered to be autonomous
ntities taking part in a distributed computation. Objects communicate with each
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other through messages. Message passing betwee'n objeFts can‘be synchronous (?r
asynchronous. The receipt of a message resul‘ts in the invocation of a method in
the recipient object, with possible update of its state and the s'endmg of furthe.r
messages. In synchronous message passing, the sender’s method is susPended until
it receives a reply from the receiver object. This parallels the semantics of remote
procedure calls (RPC’s) in distributed systems.

From the security standpoint, the object-oriented model .has strong appeal. In
particular, there seems to be less of a modeling (semantic) 'mlsmatch betweer'l real-
world entities in the domain being modeled and their ob:]ect‘ counterparts in the
object-oriented representation. This makes it easier to sp'ec1fy, interpret, and‘lm‘p'le-
ment access control and security policies in terms of objects rather than primitive
abstractions or representations. '

Recently, we have seen several models and prototypes for addressing mandatory
confidentiality in object-oriented databases [7, 8, 9, 14, .19, 201 25]. A common
characteristic of most of these proposals is that the security Pohcy tq be enforc'ed
is expressed as a set of properties/constraints. For example, in [19], six proper;]esf
are identified. The first (called the hierarchy property) reqmr.es.that‘the level o
an object dominate that of its class. This is required to permit inheritance along
the class hierarchy. In contrast to these models, the message filter model grot;?o;i
in [7] is based on the view that the task of enforc.mg mandatory con? entiality
essentially reduces to that of controlling and ﬁltermg. the excbangelo T}fssage‘si
between objects. The security policy is thus capt‘;ured in a filtering algori mﬁ;ller
enforced by a message filter component. The main §dvant§ge of the message t :
model is the simplicity and conceptual elegance with wl?lch {nandatory. 1s'ecurtlhy
policies can be stated and enforced. The work we present in this paper utilizes the
message filter model as its foundation. S

In designing multilevel secure database manz‘ig(?ment sy§tems: one”as ’I(‘)h'c: -
sider the conflict that arises between confidentiality z'md integrity []t ] ;ec
because the requirements to enforce integ.rity constraints oftep res111 ll?nsefowe);
being compromised. Conversely, guaranteeing secrecy may reqmr;e tp eral 1d agt Jower
degrees of integrity. The above tension has I?I(‘l to m:)}e:‘t m(l:) I::i :;:or;znventional

rohibiting “write-up” operations. To see this, : ; .
?i):tfl;r:e: (such as?'e]ational systems) where the effect of arbitrary .blmd v:rlll‘lt:;:::)l
operations on integrity is unpredictable ar'ld uncontrollable. Tlll)l}s :‘nta r:bliterate
relational system, there exists the potential for a low—]e\'lel'su Jec e0 opiterate
higher-level data. There is considerable ground for. optimism as w o lely
this issue within the object-oriented framework. If quects can comr?unlhidin ey
through messages, then the properties of encapsulation and mforml; lt(;n hicr foked
ensure that an object state is updated only in. contrqllable ways. Met :semantics,
due to receipt of messages from lower level objects w'ﬂl now h'ave precis s

The feasibility of supporting write-up operations is comph?atedbb); tc f; :ce by
such operations are no longer primitive (Sl‘_ICh as read and write), u i:»jme e
trarily complex and therefore can take arbitrary amounts of Pro;eSS{ng e .Chan_
has broad implications on confidentiality (due to the pote{mal or :'lgnawhge gy
nels), integrity, and efficiency. In this paper we focFls on wnte—uP ;c ions ey
intended semantics is RPC-based. The central pmpt that we wish to tm:, e In L
paper is that abstract RPC-based write-up operations can be supported in
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level object-oriented databases while meeting the conflicting goals of confidentiality,
integrity, and performance. Our main contribution is an asynchronous computa-
tional model coupled with a multiversioning scheme that achieves these goals, as
well as an elaboration of how this computational model can be implemented under
a kernelized architecture. The computational model calls for concurrent compu-
tations to be generated on behalf of a user session whenever messages are sent
upwards in the security lattice. Multiversioning and scheduling schemes are used
to ensure that such concurrent computations preserve the originally intended RPC
semantics.

The kernel (as in an operating system) performs the lower-level functions. Ina
secure system, the security kernel implements the security mechanisms of the oper-
ating system. The successful application of the security kernel approach to building
secure systems is based on the theory that only a small fraction of the total func-
tions in an operating system are needed to enforce security, and that these functions
can be isolated into a security kernel. We present a kernelized architectural frame-
work for implementing the above computational model. As there exists no trusted
subjects! in such an architecture, the assurance of mandatory confidentiality comes
directly from the operating system. Further, the absence of trusted (multilevel)
subjects necessitates that the concurrent computations generated by a user session
be scheduled and coordinated in a distributed fashion, as no system component has
a global snapshot of the various computations as they progress. Database integrity
now requires that these concurrent computations under distributed coordination
produce the equivalent effect as computations that are serviced sequentially. It
should be noted that if write-up operations were not supported, the architecture
would be straightforward, as no concurrency is involved.

We present algorithms and techniques to handle intra-session as well as inter-
session concurrency. The intra-session schemes are concerned with the scheduling
and execution of the computations generated within a user session. We present two
scheduling algorithms that represent extreme points in a spectrum of conservative
and aggressive strategies. We also develop a framework and a metric for the anal-
ysis of a family of scheduling algorithms, all of which preserve integrity but offer
varying tradeoffs between complexity and performance. The inter-session schemes
provide the classical database functions of concurrency control, and thus pertain
lo how database objects can be shared in a secure and correct manner, across
multiple user sessions. We present an approach to concurrency control based on
he checkin/checkout paradigm. Our main ob jective is to show how such an inter-
ession scheme can mesh with the intra-session schemes developed in this paper. A
omplete treatment of inter-session mls concurrency control is outside the scope of
his paper.

The work reported in this paper advances many of the ideas presented ear-
ier in the literature [21, 22, 24]. Initial investigations of architectural issues in
21] were followed by the study of secure (signaling channel-free) scheduling algo-

! The term “trusted” is used often in the literature to convey one of two different notions
of trust. In the first case, it conveys the fact that something is trusted to be correct.
In the second case, we mean that some subject is exempted from mandatory confiden-
tiality controls; in particular the simple-security and *-properties in the Bell-LaPadula
framework. It is the latter sense of trust that we refer to in this paper.
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Figure 1: Objects in a payroll database

rithms [22]. A conservative scheduling algorithm th.at required no trPstegdsi?il);:c::
for its implementation was presented in [24]. In this paper we give in ative o
aggressive scheduling algorithm, followed by a fram.ewor.k for compara © oy,
sis of different scheduling strategies, and finally various inter-session con
1 schemes. . ‘ .

coan‘r;e rest of this paper is organized as follows. Sec?mn 2 r.notlvatt.estt.h'fi ISilil::
addressed in this paper by means of an ex?.mple. Sfactlon 3 gives an 1n4r3ist§sseg
to the message filter model and the filtering algonthrfl, an_d section o
a kernelized architecture. Section 5 presents'the various mtra—sessnlortl checy
ing schemes. This is followed by the inter-session concurrency contrfor ;(;tur: e
in section 6. Section 7 concludes the paper and discusses avenues 10

search.

2. A Motivating Example

We motivate the usefulness of write-up operations by an 1l.lusttr.atg\;& ;:2(1)131]);;
Consider a database for payroll applications, that has three obs;)ec st.‘) N ot
(Unclassified), WORK-INFO (Unclassified), and PA.Y-IN.FO ( ecr; ,Sin b e
tributes shown in figure 1. In other :cz-dst,hevlery OI)IJ::; lls‘3 ;isls)lfgey EaE . ng e

oll processing is initiated by the lower _
Xz:e:gd}i):)g”of tﬁe (a) PAY message to the higher. level P‘Y-I;‘ILFO c;b]tiasctl.'eﬁz ;::
receiver is at a higher level than the sender, an innocuous N r'?])l y gt
by the message filter (as mandated by the message filtering algorithm, |

i i i ling limitations.
2 As explained in the next section, this does not pose any modeling
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be discussed in the next section). On receiving the PAY message, the method
in PAY-INFO sends a read-down message (b) GET-HOURS, to the lower level
WORK-INFO object in order to retrieve the hours worked. This information is
retrieved and returned in the reply message (c) HOURS-WORKED. However the
method invoked in the lower level object WORK-INFO on receipt of the GET-
HOURS message, is prevented (restricted) by the message filter from updating the
state of object WORK-INFO. This is required to prevent write-down violations.
Finally, the accumulated hours for the week is reset to zero by the message (e)
RESET-WEEKLY-HOURS.

Another scenario for write-up arises when the child-benefits an employee is eli-
gible for needs to be updated due to an increase in the number of children. Such
an update is most efficiently accomplished by a trigger fired in the lower level
EMPLOYEE object when the NO-CHILDREN attribute changes. The trigger
would result in the sending of a message (with the value of number of children,
NO-CHILDREN, as a parameter) to the higher level object PAY-INFO. The al-
ternative to such a write-up would be that the PAY-INFO object scan the corre-
sponding EMPLOYEE object for such changes, whenever the payroll is computed.
However, this alternative imposes a significant performance cost for slow-changing
information such as NO-CHILDREN.

The benefits of write-up operations in object-oriented databases come at the
cost and complexity of implementation mechanisms needed to support them. The
complexity arises due to the intrinsic abstract nature of object-oriented computa-
tions. Conventional databases generally have a flat view of data, and the operations
are generally primitive reads and writes. Hence these operations may be assumed
to take constant time.> Now contrast this with object-oriented systems where ob-
jects exhibit more complex structure and richer semantics. In this case, whenever
a message is sent from a low level object to a higher one, we cannot assume that
the invoked method in the receiver will terminate and return a reply in some con-
stant time. Now, in the multilevel context, the actual reply from the higher level
object cannot be returned to the lower level receiver as this will violate confiden-
Liality. Hence we are faced with a fundamental dilemma. How and when do we
resume a suspender sender method to mimic RPC semantics? Further, can this be
done without violating confidentiality? In other words, a suspended sender method
should be resumed in such a way that the sender cannot make any inference about
processing at higher levels.

Since the actual reply from a high level receiver cannot be returned, let us
assume for a moment that an innocuous reply such as a NIL is substituted and
eturned (as in the payroll example above). This assumption is made only for
miformity with the original message filter model [7] and for uniformity of coding.
Thus we assume the receipt of the NIL reply as the logical point to resume a
uspended sender method. If a reply (NIL or otherwise) is always guaranteed, the
ode for the sender method can be written to expect a reply whether the message
s going up, down, at the same level or sideways in the lattice. Let us now examine

3 In reality, even this is an approximation, albeit one that is normally made in the Bell-
LaPadula style of models. Variations in read/write times occur due to caching, bus
contention, disk buffers, demand paging, etc., and are usnally manifested as timing
covert channels.
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how the timing of such a reply can have broad implications on confidentiality and

integrity. To elaborate, consider the following alternate ways to deal with message

replies:
e Option 1: Return a NIL reply on completion of the method in the receiver
object;
e Option 2: Return the reply independent of the termination of the receiver
method:

— Option 2a: Return the NIL reply after some constant time interval
that represents an upper bound for completion times;

~ Option 2b: Return the reply after some random delay;
— Option 2c: Return the NIL reply instantaneously.

With the first option, we have a sequential execl}tion of methods governed by
remote procedure call semantics. However, the’timmg.of a reply can now be mod-
ulated by the method in the higher level receiver 'object, am‘i this opens up the
potential for a signaling channel.* Thus under this first Optlol.l, the m@gnty of
the database is easy to maintain (as we have a simple sequential execution that
requires no synchronization) but secrecy %s cor'npromlsed. The sec‘or@ c'ategoryl;l)f
options attempts to eliminate the above signaling char{nel by making 1t impossible
for delivery of the NIL reply to be modulated by a hlgher. level method. Optlo.n
2a imposes a heavy performance penalty whenever the receiver method has termi-
nated and the sender remains unnecessarily suspended, wa_:t{ng for the constant
time interval to elapse. If we adopt option 2b, by randomizing the deléy beff)tre
returning the reply, we are faced with a tradeoff between peri:orm?nce and mtegp y.
This is because if the reply is returned well after the termination of the 1':'ecetlzer
method, we are again unnecessarily holding up the sgnder method. On t e ot ;;
hand, if we return the reply too early (before the receiver method has terminate
we have to deal with the concurrent execution of methot!s. Copcurrent e);ecut‘;lons
introduce synchronization problems that can affect the. integrity of the ?,‘t;ale:;s:(;
In particular, it is essential that the concu.rrent executions guarantee ;(\1;;116 asuCh
to a sequential (serial RPC-based) execution, as in the first option. IL such
equivalence can be guaranteed, we say that the concurrf:nt cor.nputatlons pr serve
serial correctness. Note that this requirement of preserving shen‘al co.rrectn‘ess 1t e
tirely dictated by integrity considerations. From : confidentiality viewpoint,

i need to synchronize these concurrent executions. )

’ n'(I)‘o illustrati a scenario of how the integrity of the data.b'ase can bet com;.>111‘olm1§e:l(
consider again the payroll database in figure 1. A sequential e?(ecutlon wi ducz |
the message sequence a, b, ¢, d, ¢, f; while a concurrent execution may pro

4 In order to be precise, we distinguish between .covert clhnannels and.snhglfa]fnﬁe:::?;:ls.
A signaling channel is a means of downward mformah.(m flow v.»vlni is 1:1 erent
data or computational model, and will therefore occur in eve‘ry imp er.nenla o
model. A covert channel on the other hand is a property o specific implemen sion
and not a property of the data/computational .mod.el. In other wm:ds,leven i
data/computational model is free of downward mgnalfng chan'nels, an imp emen
may well contain covert channels due to implementation specific quirks.
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sequence q, d, ¢, f, b, c. When weekly payroll Processing is initiated by the sending
of the PAY message from the lower level EMPLOYEE (U) object to the higher level
PAY-INFO (S) object, a NIL reply is returned to object EMPLOYEE and the
suspended method in EMPLOYEE resumes execution. Now it is possible for the
RESET-WEEKLY-HOURS message (which resets the hours worked to zero) to be
received and processed by object WORK-INFO before the message GET-HOURS.
Thus the message GET-HOURS will retrieve the reset hours as opposed to the
actual accumulated hours, resulting in an erroneous calculation of the weekly pay.
In other words, with this second option, secrecy can be assured by eliminating the
above category of signaling channels. However this is done at the cost of integrity.

Finally, option 2c above calls for replies to be returned instantaneously. We
thus no longer incur the performance penalty that is possible with options 2a and
2b. However, we still have to address the integrity issue, as concurrent computa-
tions are now inevitable. We will demonstrate later in this paper how integrity can
be achieved by the use of a multiversioning scheme that synchronizes concurrent
actions on objects so as to guarantee serial correctness. To see how the multiver-
sioning scheme applies to the payroll example, the (¢) RESET-WEEKLY message
would result in the creation of a new version of object WORK-INFO with the reset
hours. However, an earlier version of object WORK-INFO that existed before the
method in PAY-INFO was invoked, is used to process the (b) GET-HOURS mes-
sage. Serial correctness is now ensured as the GET-HOURS message Now retrieves
the intended weekly accumulated hours as in the sequential execution.

The objective of satisfying the requirements of confidentiality, integrity, and ef-
ficiency within a kernelized architectural framework (i.e., without the use of trusted
subjects) restricts us considerably in choosing one of the above options to deal with
message replies. To start with, we observe that the signaling channels that arise
with option 1 are only possible in an architecture with trusted subjects. Thus at
first sight, it might appear that we could overcome this problem by utilizing a ker-
nelized architecture. Unfortunately, option 1 is not implementable in a kernelized
architecture as the x-property prevents information flow from a higher level to a
lower one, by disallowing write-downs. Such write-down operations are required
to inform lower sender methods of the termination of higher level receivers. Op-
tion 2a and 2b are implementable in a kernelized architecture but at the cost of
performance and integrity. Option 2c needs to address the integrity issue just as
option 2b, but offers better performance than the latter (although as with option
2b, this comes at the cost of managing concurrency and multiversioning). Thus
option 2c represents the best approach to handling write-up operations in a kernel-
ized architecture. In summary we are forced to execute computations (methods)
concurrently but nevertheless want to guarantee the original RPC-based semantics
S0 as to preserve integrity (serial correctness).

3. The Message Filter Model

In this section we give some formal background to the message filter model. The
model has evolved considerably since its original proposal. Our presentation in this
section is limited to those aspects relevant to the understanding of this paper. For
a more comprehensive discussion, the reader is referred to [7, 21, 22, 24}.

Multilevel Secure Object-Oriented Databases 239

3.1. The Message Filter Specification

Objects and messages constitute the main entities in the message .ﬁlter model.. As
far as the security model is concerned, an entire object is classified at a S}ngle
level. Modeling flexibility is not lost due to this as a user may model multilevel
entities. The multilevel entities form a conceptual schema that is broken down
into an implementation schema of single-level objects [7]. Messages are assumed,
and required to be, the only means by which objects communicate and excl‘1ar}ge
information. Thus the core idea is that information flow be controlled by mediating
the flow of messages. Consequently, even basic object activity such.as access to
internal attributes and object creation, are to be implemented by having an object
send messages to itself (we consider such messages to be primitive messages)."l?he
message filter takes appropriate action upon intercepting a message and examining
the classifications of the sender and receiver of the message. It may let the message
pass unaltered or interpose a NIL reply in place of the actual r'eply; or set the
status of method invocations as restricted or unrestricted ('explamed later).. The
message filter is the analog of the reference monitor in traditional access-mediation
models. . .

The message filter algorithm is given in figure 2. (In this and other algonthr'nS,
the % symbol is used to delimit comments.) Cases (1) through (4) deal with
abstract messages, which are processed by methods. Cases (5) thr.ough (7) deal
with primitive messages, which are directly processeq by the security kernel. In
case (1), the sender and receiver are at the same security leYel, and the message ¢,
and its reply are allowed to pass. In case (2) the levels are .mcomparable an.dl ‘thus
the filter blocks the message from getting to the receiver object, and further injects
a NIL reply. Case (3) involves a receiver at a higher level than the sender.. The
message is allowed to pass but the filter discards the actyal reply, and‘ subsm.tu.tes1
a NIL instead. (As we have argued, the timing of this NIL reply is a critica
consideration.) In case (4), the receiver object is at a lower level than the sender
and the filter allows both the message and the reply to pass upalte.re('i.

In cases (1), (3), and (4) the method in 'the receiver F)bject is mvoke(.i a}t1 z:
security level given by the variable rlevel. The mtmtlvg significance of rle.vel is ; a
it keeps track of the least upper bound (lub) of all ob Jects‘encountered in a ¢ alnl
of method invocations, going back to the root of the cl'lam. The value of rleve
needs to be computed for each receiver method invocation. In cases (1) and (4)
the rlevel of the receiver method is the same as the rlevel of the sender method.tin
case (3), rlevel is the least upper bound of the rlevel of the sender method, and the
classification of the receiver object. ' ‘ .

The purpose of rlevel is to implement the nf)tlon of restricted .metyod mv&ca‘;
tions so as to prevent write-down violations. It 1s easy to see that if t,-‘ isa mte ot‘
invocation in object o; then rlevel(t;) > L(o;). We say that a',methf)d mvocallon i
has a restricted status if rlevel(t;) > L(o;). When ¢; is re§tr1ct.ed, it can no otr;lge:
update the state of the object o, it belongs to. We can VIsua.hze chains of me 0-
invocations as belonging to a tree such as in figure 3. Regtricted method mvoc;
tions in these chains now show up as restricted paths and subtrees. In ﬁgureth
tr represents a method in object or that sent a message, ar}d t!, represent§ ]

method invoked in the receiver object o,. The method ¢, is given a restrictec
status as L(o,) < L(ox). The children and descendants of ¢, will continue to hav



240 R. K. Thomas and R. S. Sandhu

% let g1 = (h1,(p1,...,pk), 1) be the message sent from o, to o, where
% hy is the message name, p;, ... » Pk are message paramelers, r is the return value

if oy # 02 V hy ¢ {read, write, create} then case
% i.e., g1 is a non-primitive message -
(1) L(o1) = L(o2) : % let g1 pass, let reply pass
invoke ¢, with rlevel(t2) «— rlevel(t);
r «— reply from {3; return r to t;;
(2) L(o1) <> L(02) : % block g1, inject NIL reply
r — NIL; return r to t;;
(3) L(oy) < L(02): % let g1 pass, inject NIL reply, ignore actual reply
7 « NIL; return r to t;;
invoke t; with rlevel(t;) «— lub[L(0,), rlevel(t1)];
% where lub denotes least upper bound
discard reply from ¢;
(4) L(oy) > L(o2) : % let g1 pass, let reply pass
invoke t; with rlevel(t2) — rlevel(t,);

r — reply from ¢,; return r to t,;
end case;

if o1 = 02 A h1 € {read, write, create} then case
% i.e., g1 is a primitive message

% let v; be the value that is to be bound to attribute a;

(5) g1 = (read, (a;),7) : % allow unconditionally
r «— value of a;; return r to t;

(6) g1 = (write, (a;,v;),r) : % allow if status of t, is unrestricted
if rlevel(t,) = L(01)
then [a; — v;; r — SUCCESS]
else r — FAILURE;
return r to ¢;;

(7) g1 = (create, (v1,...,vk,5;),7) : % allow if status of ty
% is unrestricted relative to S;
if rlevel(t)) < S;
then [CREATE i with values vy,. .., vk
and L(i) — Sj; r 1]
else r — FAILURE;
return r to y;
end case;

Figure 2: Message filtering algorithm
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Figure 3: A tree with restricted subtrees

a restricted status till such point as t;. At t,, the restricted status 1s r'emovec
since L(os) > L(ox) and a write by ¢, to the state of o, no longer constitutes :
write-down violation. .

The cases (1) through (4) that we have seen so far deal w1t}1 abstra.ct messages
However abstract messages will eventually lead to the invocation of pr;mltlve mes
sages. These include read, write and create (cases (5) through (7)).> Now rt}ala(
operations always succeed, while writes succeed only if the status of the met c;)(
invoking the operation is unrestricted. Thus if a message is sent tq a receiver o
ject at a lower level (as in case (4)), the resulting method invocation will alwaﬁ'
be restricted and the corresponding primitive write operation will not succee
This will ensure that a write-down violation will not occur. Finally, the creat:
operation allows the creation of a new object at or above the rlevel of the metho

invoking the create.

4. A Kernelized Architecture

Figure 4 illustrates our kernelized architecture. It is motivated and built upont ‘th
architecture of existing object-oriented database management sy§tems. In par l1]cu
lar, the demarcation into storage and object layers can be found in systems such 3

ORION, IRIS, and GEMSTONE [6, 11, 15]. The lower storage layer interfaces t
the oper’ating system and file system primitives, and is responsible for the manag
ment (i.e., the read, write, and creation) of typeless chunks of bytes representin

5 The delete operation has not been directly incorporated into the model. It can t
viewed as a particularly drastic form of write and is subject to the same restriction
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Figure 4: A kernelized architecture

objects. Every object is represented by a unique object-identifier. In our kernelized
framework, the subset of this layer that is within the security perimeter consists
of a single-level storage manager for every security level. A storage manager is
responsible for the management of all objects at its level.

In contrast to the storage layer, the object layer is not typeless, but rather
supports the abstraction of objects as encapsulated and typed units of information.
This layer is thus responsible for implementing the object-oriented data model. It is
important to note that much of the functionality required to implement the object-
oriented data model lies outside of the scope of the TCB. Thus even support for
the notion of objects as units of encapsulation, is provided by the object layer
subset outside the TCB. Increasing the functionality of the object layer within the
TCB, would increase its complexity, and would go against the design principles of
security kernels.

The modules of the object layer that are within the security perimeter consists
of level managers and message managers. A level manager is dynamically cre-
ated for every level that can potentially have a method (computation) running®,

6 In our further discussions, we use the terms message managers, computations, and
methods, interchangeably. A message manager is merely a concurrent computation
executing a chain of methods.
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procedure send(gi, 01,02)
% let g1 = (hy, (p1,...,px),7) be the message sent from 0y to o2

% where h, is the message name, py,...,pr are message parameters,

% and r is the return value

% p is the parameter set py,...,px

% and lmsgmgr is the level of the message manager t;

if o1 # 0z V h € {read, write, create} then case

% i.e., g1 18 a non-primitive message

(1) L(o1) = L(o2) : push-stack(p); t2 — select method for o2 based on hy;
execute ty;

(2) L(o1) ~ L(o2) : write-stack(NIL); resume;

% Let rstamps be a vector that is passed to a forked message manager

(3) L(01) < L(o2): append-rstamps-vector(rstamps, wstamp);
fork(lmsgmgr, lub[lmsgmgr, L(02)}, fork-stamp, rstamps);
wstamp — wstamp + 1;
write-stack(NIL); resume;

(4) L(o1) > L(02): push-stack(p); t2 — select method for 02 based on hy;
execute i3;

end case;
if 01 = 02 A h; € {read, write, create} then case
% i.e., g1 is a primitive message
(5) hy =read: if L(01) = Imsgmgr then v — wstamp
else v «— local-stamp (L(01));
read o0, with version — max{version: version < v};

(6) ki1 = write : write 0, with version « wstamp;

% Let o be the object-identifier of the new object created at level S,

(7) hi = create : create o with L(o) — S; and version «—wstamp;
write-stack(o);

end case;

end procedure send;

procedure quit(r)
pop-stack;
if empty-stack then terminate(lmsgmgr, wstamp, fork-stamp)
else [write-stack(r); resume;]

end procedure quit; .

Figure 5: Message manager algorithms for SEND and QUIT
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although conceptually we assume that it exists permanently to simplify our ex-
position. Its primary function is to coordinate the various computations (both
queued and running) at a single level, and it is thus relatively long-lived. A mes-
sage manager process is created dynamically whenever a message is sent upwards
in the security lattice and concurrent execution of the sender and receiver methods
is required. Once created, it implements the message filtering algorithm for the
chain of methods emanating from such a concurrent receiver method. A message
manager is thus a relatively short-lived process, and one that eventually terminates
along with the last method in the associated chain.

The security perimeter of the object layer exports the following operations:
send, quit, read, write, and create. The read, write, and create handle
primitive messages. The system primitives send and quit are used by methods to
send messages and replies. The interface between a message manager and a level
manager consists of two calls: (1) fork issued by a message manager to request
creation of a new message manager (at a higher level), and (2) terminate issued
by a message manager to its local level manager (i.e., the level manager at the
same level as the message manager) to terminate itself.

In reviewing the security perimeter of the above architecture, we wish to stress
that the object layer plays no part in maintaining confidentiality. Now a primary
objective in designing a kernelized architecture is to minimize the size of the security
perimeter. Could we not then realize a secure database system without having the
storage and object layers in the TCB (security perimeter)? If confidentiality were
our only objective, the answer to the latter question would be “yes”. The operating
systern alone would suffice to enforce the basic mandatory controls required to
guarantee confidentiality. However, in a database system integrity is vital. This is
why in our architecture, we have chosen to show the object and storage layers to
be within the TCB. These modules are thus “trusted”, but only in the sense being
orrect, and not in the sense of being exempt from mandatory controls. Even
f correctness fails, these modules cannot compromise confidentiality by leaking
nformation. In other words, the correctness of these modules can affect integrity
>ut not confidentiality.”

The message filtering algorithm presented earlier can be thought of as an ab-
tract (non-executable) specification of the filtering functions. An executable spec-
fication, as implemented by a message manager, is given in figure 5. As mentioned
vefore, the send call is invoked by methods to send messages, while the quit is
1sed to return replies. A stack is used to save the contexts associated with nested
nessage sends. Whenever a message is sent by a method ¢, in an object o; to a
econd object o7 at the same or lower level (cases (1) and (4)), the message man-
\ger saves the message parameters on a new stack frame, suspends execution of ¢;,
ind begins execution of the method ¢» in object 0,. When ¢5 terminates, the stack
s popped and the return value from {5 is recorded on the stack. The suspended
ender method ¢; is then resumed, and it retrieves the return value from ¢, from the
op frame of the stack. However, when messages are sent to incomparable or higher

7 We believe it is misleading to assume that once a module is within the TCB, it will
affect security. This is because security itself consists of three distinct, but inter-related
areas: confidentiality, integrity, and availability. A module may be placed in the TCB
for one or more of these reasons.
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levels (cases (2) and (3)), a NIL value is recorded on the st.ack and t; i‘s resun:ned
immediately. In case (3) when a message is sent upwards in the secun‘ty lattice,
a message manager issues a fork call resulting in concurrent computations (as ¢;
is resumed independently of the termination of t3). The parameters of this call
include the level of forking message manager, the level of the forked message man-
ager, a unique fork stamp (identifying the start order in the equivalent sequential
execution) for the forked message manager, and a vector (rstamps) of timestamps
to process read down requests. Whenever a reply is returned and a message man-
ager finds its stack to be empty, it means that there are no suspended methods
waiting to be resumed. The message manager then issues a terminate call to its
local level manager, to terminate itself.

The parameters of the terminate call include the level and fork stamp of the termi-
nated message manager, as well as a timestamp identifying the last written version.
A message manager utilizes the following data structures in the algorithm.

local-stamp: a vector of timestamps to process read down requests,
with one entry for each level dominated by the level
of the message manager;
rstamps: this is an incrementally constructed vector that is used
to initialize the local-stamp structure.
fork-stamp: a stamp identifying the message manager’s fork order;
wstamp: the write stamp for versions written
by the message manager;

The local-stamp structure is needed to ensure serial correctness as it identiﬁgs
the proper versions to read at all levels dominated by the message manager. Thn's
structure is initialized (partially) with the values of a vector rstamps, that is
passed down by the ancestors of a message manager. When a message manager
forks a new child computation, it appends the rstamps vector w1t'h a var.lable
wstamp, and in turn passes it on to the new child (this is accqmphshed with a
call to a predefined routine append-rstamps-vector, as shown in figure 5)..The
wstamp is a scalar variable which identifies the next version of ob.]ec'ts. that will be
written/created at the level of the message manager. The wstamp 1s 1nc.remfented
by the message manager every time a fork request is issued. On the ter,mmatlon of
the message manager, its wstamp is saved in the local level manager’s chrent-
wstamp variable. When a new message manager subsequently starts at this level,
it will initialize its wstamp entry by reading off this current-wstamp _value and
incrementing it by one (as shown in algorithm start in ﬁgur(? 13). This {ncrement
is needed to avoid the latest created versions from being initially overwritten.

In moving from an abstract to an executable specification, we have so far de-
scribed how the filter allows and blocks messages, and how return Yalues are set
to NIL. Now it remains to show how the notions of rlevel and restricted method
invocations are implemented. The basic idea is very strz.Lightf(.)rward. Every mes-l
sage manager (process) is assigned a security level that is ¥quivalent to the rleve
assigned in the filtering algorithm, and all methods e:-cecuted'by a message Tnan(i
ager run at this level. The effect of restricted method invocations is now achlev.e
by the enforcement of the standard % property in the Bell-LaPadula type security
models [2] In other words, whenever a method’s status is restricted, its level (and
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he level of its message manager) will be higher than the object accessed, and the
« property will prevent any write-down attempts.

As all our modules are single-level, our architecture needs to handle polyinstan-
iation of object identifiers. What if a subject requests the creation of a low-level
)bject with an object-id that has already been assigned to a previously created
righer level object? If the request is honored, we have an integrity problem as
he object identifiers are no longer unique. If the request is rejected a signaling
hannel may be opened up. A solution would be to consider the user given iden-
ifiers as logical ones mapped to unique physical object identifiers that are system
lerived. The address space for the physical object identifiers could now be parti-
ioned across the security levels. This will ensure that objects at different levels
re not assigned the same physical id. An alternative to partitioning the physical
\ddress space would be to rely on a system component that generates identifiers
n some cryptographically-strong pseudo-random fashion. This ensures that object
dentifiers cannot be used as a signaling channel.

. Intra-session Concurrency and Scheduling

n this section we focus on issues related to concurrency and scheduling within a
ingle user session. We begin by discussing the notion of serial correctness and
ow this governs the degree of concurrency that can be allowed within a session.
Vlaintenance of serial correctness requires that we capture the serial order of com-
yutations. This is done by means of a hierarchical scheme to generate forkstamps.
[wo extreme scheduling strategies both of which preserve serial correctness, but
ffer varying degrees of concurrency, are then discussed. Finally we present a
ramework for the analysis of these and other scheduling schemes.

.1.  Serial Correciness versus Concurrency

n section 2 we discussed the synchronization problem caused by concurrent com-
yutations and how this can affect serial correctness. To elaborate in more general
erms, we can visualize a set of concurrent computations as a computation tree
uch as that shown in figure 6. In this figure we see that message manager 1 at
he unclassified level has sent messages to one secret object, one top-secret object,
nd one confidential object in this sequence (we consider message manager 1 to
e the ancestor (parent) of the three). As these objects are higher in level than
inclassified, message filtering has resulted in the creation and concurrent execution
f message managers 2, 3, and 4 as children of the root message manager 1.

Ne can now formally define serial correctness in terms of such a tree.®

8 1t is important to realize that even though the notions of serial correctness and seri-
alizability may appear to be analogous, they are not equivalent. Serializability theory
in classical transaction management and concurrency control realms reasons about
correctness and integrity in terms of the fundamental abstraction of a “transaction”.
Serial correctness on the other hand, is a more primitive notion as it does not rec-
ognize the abstraction or semantics of transactions, and is further more restrictive as
it allows only a single serial order (ie., the order of an RPC-based serial execution
of computations (methods)). However, if we were to map individual computations to
transactions and derive the transaction serialization order from the forkstamps, serial
correctness amounts to a stricter form of the multiversion concurrency control notion
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Figure 6: A session’s computation tree of concurrent message managers

Definition 1 We say a session preserves serial correctness if for any computation
c in the session’s compulation tree, and running al level 1, the following hold:

1. ¢ does not see any updates (by reading-down) of lower level computations that
are lo ils right (in the tree);

2. For any of c’s ancestor compulatlions a, (i.e., any compulalion on the path
from the root to c) c should see only the latest updates made by a just before
a’s child (or c itself) on this path was forked.

9. For any level k that is not the level of an ancestor of c, andk <1, ¢ should
see the latest updates made by the rightmost terminated computations at level

k that are still to the left of c.

Given the above definition, let us see the complications concurrency poses to
the maintenance of serial correctness. Now if we were to execute the above tree
sequentially, the messages sent to higher level objects would be proceSSfed in the
order given by the labels on the arrows. Note that this order can‘be 'de‘nved b.y a
depth-first traversal of the tree. However, with concurrent execution it is possible
that message managers 4(C) and 6(S) may terminate well ahead of 3(TS). Therefore
our synchronization schemes must ensure that message manager 3' does not see any
updates by message managers 4 and 6, since 4 and 6 are to the ngh? of 3.

Solving the above synchronization problem using classical techniques, such as
those based on locking and semaphores, is known to be insecure as they open
up signaling channels. Also, it is not possible to implement’ them in a kernelized

of one-copy serializability [3]. We intentionally do not give such a definition as this
would give the impression that we are dealing with transactions, and would further
introduce unnecessary formal machinery in our exposition.
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architecture without introducing trusted subjects (since we need the ability to
write-down and read-up). Our solution instead relies on a multiversioning scheme.
The scheme calls for multiple versions of objects (created and accessed by a session)
to be kept in memory. Such versions are invisible to other user sessions. Of course,
if object versions are in virtual memory, they may migrate to the disk, but will
still be unavailable to other sessions.® Each version is uniquely identified with a
timestamp, and can be thought of as a checkpoint in the overall progress of a tree
of computations. Thus although 4(C) and 6(S) may terminate well ahead of 3(TS),
we are guaranteed that a read-down request from 3(TS) will always read versions
that existed before 4(C) and 6(S) were started.

Given a computation, say ¢, the multiversioning scheme suggested above can
provide synchronization when other computations to ¢’s right (in the tree) get
ahead. But to guarantee serial correctness, we must in addition ensure that ¢ itself
does not get ahead of earlier forked computations to its left. For example, under
a sequential execution of the tree of computations in figure 6, we would expect
message manager 2(S) and its descendants (if any) to terminate before message
manager 3(TS) to its right, is started. Message manager 3(TS) should thus see all
the latest updates by 2(S) and any of its descendants. Allowing arbitrary concur-
rency may not ensure this. Thus, in addition to multiversion synchronization, we
need to enforce some discipline on these concurrent computations by scheduling
them in a manner that guarantees serial correctness.

A scheduling strategy which guarantees serial correctness must take into account
the following considerations.

¢ The scheduling strategy itself must be secure in that it should not introduce
any signaling channels.

¢ The amount of unnecessary delay a computation experiences before it is
started should be reduced.

The first condition above requires that a low-level computation never be delayed
waiting for the termination of another one at a higher or incomparable level. If this
were allowed, a potential for a signaling channel is again opened up. Fortunately,
such channels cannot be introduced in a kernelized architecture and the confiden-
tiality of the scheduling strategy thus comes for free. The second consideration
admits a family of scheduling strategies offering varying degrees of performance.
Some of these are discussed later in the next section.

In summary, the maintenance of serial correctness requires careful considera-
tion on how computations are scheduled as well as on how versions are assigned
to process read down requests. Collectively we have to guarantee the following
constraints (as discussed in section 5.2, we assume that every computation is as-
signed a strictly increasing forkstamp that is consistent with the start order in a
sequential execution):

Whenever a computation c is started at a level I,

e Correctness-constraint 1: There cannot exist any earlier forked compu-
tation (i.e. with a smaller forkstamp) at level /, that is pending execution;

9 Inter-session object sharing and visibility is discussed in the next section on inter-
session concurrency control.
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e Correctness-constraint 2: All current non-ancestral as well as future exe-
cutions of computations that have forkstamps smaller than that of ¢, would
have to be at levels { or higher;

e Correctness-constraint 3: At each level below [, the object versions read
by ¢ would have to be the latest ones created by computations such as k,
that have the largest forkstamp that is still less than the forkstamp of ¢. If
k is an ancestor of ¢, then the latest version given to c is the one that was
created by k just before ¢ was forked.

We state formally as a theorem the sufficiency of these constraints.

Theorem 1 Correciness consirainis 1, 2, and 3 are sufficient to guarantee serial
correciness of concurrent computations in a user session.

Proof:
Constraints 1 and 2 ensure that when computation ¢ at level ! is started, there
will be no more writes/updates forthcoming from earlier forked non-ancestral com-
putations (the ancestral computations of ¢ are those that are on the path from
the root to c, in the computation tree) This guarantees that write operations by
non-ancestral computations at levels { or below (and, therefore inductively across
all levels) will occur in the same relative order as in a sequential execution. Write
operations from ancestral computations may however be issued in an order differ-
ent from the sequential execution. Such out of order writes can affect the values
obtained by later read operations from higher level methods. However, constraint
3 ensures that read down operations under concurrent execution will obtain the
same state as in a sequential execution. To see this, consider any computation
such as ¢ at a level I. In a sequential execution all non-ancestral computations
at lower levels and with smaller forkstamps than ¢, would have terminated be-
fore ¢. Thus higher level reads by computations such as ¢ would obtain the last
written versions by such non-ancestral computations. The ancestors of ¢ on the
other hand would be suspended in a sequential execution, waiting for ¢ and its
future children to terminate. Thus read operations issued by c should see the
versions written by the ancestors just before they were suspended. Constrai‘nt
3 requires this and prevents ¢ from reading out of order writes (versions) of its
ancestors. O '
The multiversioning scheme requires a new object version to be created with
every fork request issued (message sent upwards in the security lattice). In the
worst case, what is the maximum number of versions at a level ! that need to be
concurrently retained by a user session, at any given time? This is egual to the
number of subtrees rooted at the immediate children of any computation at level
I, with one or more non-terminated computations. From an integrity stanqpoi.nt,
prematurely purging older versions may cause high level methods to fail, on issuing
read requests.

5.2. Maintaining Global Serial Order L

We now discuss an implementation consideration for our scheduling schemes which
has to do with maintaining knowledge of the equivalent global serial order in which
computations are forked within a user session. In scheduling various computa-
tions, such knowledge is used to determine when a computation will be started. In
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Figure 7: Generation of forkstamps for a session’s computation tree

an architectural framework without multilevel trusted subjects, no single system
component has a global view (such as the tree in figure 6) of the entire set of com-
putations as they progress. In coordinating various computations, an individual
level manager has to determine where in the global serial fork order, the compu-
tations at its level belong. One could be tempted to pursue a solution requiring
the value of a global real-time clock to be appended to every message manager
(computation) as it is forked. However, computations are not always forked in
the equivalent serial order and thus a solution based on a real-time clock will not
always work.

In [24] we proposed a hierarchical scheme to generate fork-stamps that is in-
dependent of the scheduling strategy used. The fork-stamps so generated, reflect
the equivalent serial order of execution of the computations. We now present a
variant of this scheme. Figure 7 shows a tree of computations and the fork-stamps
generated for it. Every message manager (except the root) is assigned a unique
fork-stamp by the parent issuing the fork. The scheme starts by assigning an initial
fork-stamp of 0000 to the root message manager 1(U). Every subsequent child of
the root is then given a fork-stamp derived from this initial one by progressively
incrementing the most significant (leftmost) digit by one. To generalize this scheme
for the entire tree, we require that with increasing levels, a less significant digit be
ncremented. In general for a security lattice with a longest maximal chain of n
elements, we need to reserve p * (n — 1) digits for the forkstamp. In a lattice with
 levels, and ¢ compartments, n = [ 4+ ¢. The value of p would depend on the
maximum degree of a node in a computation tree. For example if we assume that

any computation sends a maximum of 99 messages to higher levels, then setting
p = 2 would be sufficient.
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5.3. A Conservative Level-by-Level Scheduling Scheme

We now discuss a level-by-level scheduling scheme [24]. We characterize this ap-
proach as being conservative (as opposed to being aggressive) since the objective
here is not to maximize concurrency. In other words, a computation may be unnec-
essarily delayed before being started even if its earlier execution would not violate
serial correctness. Although this scheme may not always be optimal in terms of
performance, it does give insights into how concurrent computations can be sched-
uled and completed in a simple, yet secure, correct, and distributed fashion. If in
an application, the individual computations are of very short durations, the con-
servative scheme might be a good (or even the preferred) choice since it requires
fewer data structures, is easier to implement, and the unnecessary delay induced,
tolerable.

The conservative scheme maintains the following invariant:

Inv-conservative: A computation is ereculing al a level I only if all computa-
tions at lower levels, and all computations with smaller fork stamps at level I, have
lerminated.

Thus the basic idea is to execute forked computations in a bottom up fashion
in the lattice, starting with the lowest level. At any point, only computations
at incomparable levels can be concurrently executing. We thus begin with the
root computation and allow it to run to completion. Meanwhile, all higher level
computations that are forked by the root are unconditionally queued (in forkstamp
order) at these higher levels, by the respective level managers. Upon termination
of the root, its level manager signals that it is okay to release computations at all
immediate higher levels by sending a WAKE-UP message to these levels. Thus
when a level manager receives a WAKE-UP message from all immediate lgwer
levels, it proceeds to dequeue and execute computations at its level one at a time.
Note that, at this point, this level manager is guaranteed that no more fork reques.ts
will be forthcoming from lower levels. Eventually, the level manager will find its
queue to be empty. The next higher levels are then released through WAKE-UP
messages.

For a more visual explanation of this level-by-level scheduling strategy, con-
sider the lattice in figure 8. On termination of the root computation at level
[U,{}], WAKE-UP messages are sent to all the immediate higher levels [C,{A}],
[C,{B}], [C,{D}], and queued computations at these levels are.then rfaleased. Next,
computations at [S,{B,D}] are started when all those at the 1m.med1ate lowe'r lev-
els [C,{B}] and [C,{D}] have terminated. Eventually, computfltlons at the highest
level [TS,{A,B,D}] are started on the termination of computations at levels [S,{A}]
and [S,{B,D}] followed by the receipt of a WAKE-UP message from each of these
levels. .

Figures 9(a) through 9(g) illustrate the progressive execution of the computa-
tion tree in figure 6, as governed by the level-by-level scheluling scheme. At eac‘h
stage the termination of a computation results in the start-up of .a.nother. In this
example, there can only be one computation executing at any given momen.t as
the lattice is totally ordered. More generally, we could have multiple computations
running, provided they are at incomparable levels. As shown in figure 9(a), the
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Figure 8: Conservative level-by-level scheduling in a lattice

startup of the root computation has resulted in its forked children to be queued
(the unborn computations have not yet been created, and are shown in the figures
for visual completeness only). The subsequent termination of the root (see figure
9 (b)) has resulted in the forked child, at the lowest level 4(C), to be executed.

The level manager algorithms to implement this scheduling strategy are given
in figures 10 through 13. The level manager data structnres utilized in these algo-
rithms are described below:

Level manager data structures:

current-wstamp: the current timestamp given to objects written;
queue: a queue of message managers waiting to be activated;
terminate-history: a list of ordered pairs (fork-stamp, wstamp);

When a computation is forked, it is unconditionally queued by the local level
manager, as shown in procedure fork in figure 10. When notified of the termina-
tion of a message manager at its level, a local manager dequeues and starts the
next computation at the head of its local queue; if the queue is found to be empty,
a WAKE-UP message is sent to all immediate higher levels (see procedure ter-
minate in figure 11). When a level manager receives a WAKE-UP message from
each of the immediate lower levels, it dequeues its local queue and starts the next
computation; if the queue is empty, the WAKE-UP message is simply forwarded
to all the immediate higher levels in the lattice.

A message manager’s local-stamp vector is initialized in two phases, with the
first one undertaken when a message manager is forked and the second one deferred
until the message manager actually starts. For a message manager just forked,
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Figure 9: Progressive execution under conservat.i@. scheduling
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Procedure fork(level-parent, level-create, fork-stamp, rstamps)

% Let level-create be the level of the local message manager
Create a new message manager mm at level level-create;

% Record the fork-stamp passed on by the parent
mm fork-stamp « fork-stamp

% Begin phase 1 of acquiring local-stamp entries
For (every level I < level-parent)
do

initialize mm.local-stamp table entries from rstamps;
End-For

' % This is a priorily quene maintained in fork-stamp order
enqueue(queue, mm);

end procedure fork;
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Procedure wake-up

% Proceed if the necessary condilion has been met
If a WAKE-UP message has been received from all lower levels
then
If the queue is not empty
then
dequeue(queue, mm);
start(mm);
else
Send a WAKE-UP message to all immediate higher levels;
End-If
End-If

Figure 10: Level manager algorithm for fork processing

Procedure terminate(lmsgmgr, wstamp, fork-stamp)

{

% Let 1t be the message manager that just terminated at level Imsgmgr
%Let Im be the level manager at level Imsgmgr

% Update local current write stamp from it
Im.current-wstamp «— wstamp

% Update local Terminate-history with the fork-stamp and wstamp of tt
Append-terminate-history(terminate-history, fork-stamp, wstamp);

If queue is not empty
then
dequeue(queue, mm);
start(mm);
Else
Send a WAKE-UP message to all immediate higher level managers;
End-If
}

end procedure terminate;

Figure 11: Level manager algorithm for terminate processing

end procedure wake-up;

Figure 12: Level manager algorithm for wake-up processing

Procedure start(nn)

{

% Lel nn represent the message manager to be started
% Let Im represent the level manager managing nn

% Complete phase 2 of acquiring local-stamp eniries
For (every level [ lower than the level of nn for which no timestamp
has been obtained so far)
do
nn.local-stamp[l] — mm.wstamp;
where mm is the message manager eniry
in the lerminale-history at level |
with max{fork-stamp: fork-stamp < nn.fork-stamp}
End-For

% Update the write stamp (wstamp) from the level manager
nn.wstamp — lm.current-wstamp + 1;

% Begin execulion of the message manager nn
execute(nn);

end procedure start;

.
Figure 13: Level manager algorithm for start processing
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the first phase entries identify the versions to be read at the levels of ancestors,
on the path from the root to itself (i.e., the path in a computation tree for a
session). These first phase entries are actually obtained by a message manager
from another vector that is passed along by its parent. Such a vector can be seen
as one that is incrementally constructed along a path in the computation tree. To
do this, every message manager is required to save the timestamps in the vector
(rstamps) obtained from its parent and on issuing a fork, to reconstruct a new
vector to give to its child (see figure 5). This newly constructed vector will contain
the timestamps from the old vector appended with the write stamp wstamp at
the level of the issuing message manager. Finally, in the second phase we obtain
local-stamp entries for the levels that did not participate in phase one (this is
done in the start procedure of figure 13). To enable this, every level manager
maintains a terminate-history data structure that contains a list of terminated
computations (identified by their forkstamps), and their associated wstamp values
at termination time. At each level, the computation with the largest forkstamp that
is still less than the forkstamp of the message manager to be started, is selected,
and the associated version/timestamp is read into the corresponding local-stamp
entry.

We conclude this subsection by giving proofs of correctness and termination for
our conservative level-by-level scheduling algorithms.

Proof of correciness.

Theorem 2 The conservative (level-by-level) scheduling algorithms maintain the
invarian{ inv-conservative.

Proof:

While there are two message manager algorithms, namely send and quit and four
evel manager algorithms fork, start, terminate and wake-up, we focus only
he latter two for the proof. The terminate and the wake-up algorithms in-
/oke the start procedure whereby computations get activated (started). It suffices
herefore to show that these algorithms (procedures) maintain the invariant inv-
onservative.

Consider the terminate procedure first. If we assume that the invariant holds
as a pre-condition) before the procedure was invoked, then it follows that there are
10 active or queued computations at level Imsgmgr or lower. Now if the start(mm)
tatement is reached, the following pre-conditions are true: (a) there exists one
r more queued computations at level lImsgmgr; (b) the computation mm, with
he lowest forkstamp will be started. The start(mm) statement further ensures
he post-condition: (c) mm, being the computation with the smallest forkstamp
s started, and there are no queued or active computations at lower levels. This
mplies (maintains) the invariant. On the other hand, if the start(mm) statement
s not reached the invariant obviously continues to be true.

Consider the wake-up procedure next. From the terminate procedure we see
hat a WAKE-UP message is sent to all immediate higher levels only if there are no
ctive or queued computations at or below the level that sent the message. Hence,
hen a WAKE-UP message has been received at a level say lwake, from all lower
vels, the following are true:

d. there are no queued or active computations at levels lower than lwake;
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e. there are no active or terminated computations at level Iwake.

The latter condition is true since a computation can be started only as a result of a
previous terminate at the same level or due to the receipt of a WAKE-UP message
(and no terminate event would have occurred at Iwake at this point). Thus whgn the
statement start(mm) is executed, the following post-condition is true: (f) mm is t'he
first computation to be activated at level Iwake and there exists no queued or active
computations at levels lwake or lower. This clearly maintains the desired invariant.
Once again, if the start(mm) is not reached, the invariant continues to hold. O

Having shown how our algorithms maintain the invariant inv-consgryative,
we now argue how these algorithms preserve serial correctness by maintaining cor-
rectness constraints 1, 2, and 3. We state this below as a corollary.

Corollary 1 The conservative (level-by-level) scheduling implementation under
tnvarianl inv-conservative mainlains serial correctness.

Proof:

Whe{1 a computation c is started at a level [, the invariant inv-conservative
requires all computations that are forked at level I with smaller forkstamps, to h'ave
terminated. This maintains correctness constraint 1. The invariant also requires
that on the start of computation ¢, all computations at levels lower than I.to have
terminated. This requirement clearly maintains correctness constraint 2 since the
constraint requires only computations with smaller forkstamps than ¢ and at leyels
{ or lower to have terminated. In other words, as far as lower level computations
are concerned, the invariant inv-conservative is more restrictive than correctness
constraint 2, and clearly maintains (implies) the latter. The local-stamp.ta.ble
entries collected in the first phase (at fork time) by ¢ reflect versions identlfy!ng
the states of objects written at the level of these ancestors before each successive
child in the ancestral path was forked. The second phase entries on the other hand
identify latest versions written at lower levels for which there were no a..ncest‘ors.
In summary, all read down operations that are mapped to the versions 1dent1ﬁ'ed
by the local-stamp entries, will read the same object states as in a sequential
execution, and thus maintain correctness constraint 3. O

Proof of lermination

In order to proceed with a proof of termination, we assume that once a metho}(i
(computation) is started, it runs uninterrupted to completion. Ob.v10usly, suc
an assumption can be valid only if the body of the meth'od contains no errors
such as an infinite loop. We assume that there is some'tm.le‘—out mechamsrr'l in
place, to handle such situations. We argue termination of individual computations
(methods) by formally stating and proving the lemma below:

Lemma 1 Once a computation is started, it is guaranteed to terminate.

Proof: The proof follows from two observations:

1. Whenever a computation issues a send which resu!&‘-in a FORK, it is not
blocked, but rather runs concurrently with the receiver Fomputatlon. Thus,
if a computation only issued forked new compu.t.a.tlons, it is guaranteed to run
to completion and terminate (since only a finite number of FORK requests

can be issued).



258 R. K. Thomas and R. S. Sandhu

2. Whenever a method issues a send that does not result in a FORK, it will be
blocked and in general this could result in a chain of blocked methods. How-
ever, there will always be a method executing and progressing to termination
at the end of such a chain, and if are no cyclical send relationships, such a
method will eventually resume its blocked predecessor. It follows that any
blocked method will be resumed eventually and allowed to run to completion
in finite steps.

We formally state as a theorem, that a session will eventually terminate.

Theorem 3 Under the conservative scheduling scheme, all computations in a ses-
sion will eventually terminate and thus guarantee the termination of a user session.

Proof:

By induction on the number of security levels, n, at which computations are forked
in a session.

Basis: Consider the basis with n = 0. Then the only level with active computa-
tions will not have any fork requests emanating from it. It follows from the second
part of the proof of lemma 1 that the session is guaranteed to terminate.
Inductive Step: For the induction hypothesis assume that when n is equal to m, all
computations terminate at the m levels and a WAKE-UP is sent to all immediate
higher levels. For the inductive step consider m+1 levels where level lp41 is a max-
imal element in the security lattice and dominates a subset of the m levels. Now by
the induction hypothesis, all computations at the m levels would have terminated
and hence a WAKE-UP message would have been received at level I 41 from all
immediate lower levels in m. It now remains for us to show that a WAKE-UP is re-
ceived at level I, from all immediate lower levels (dominated by I, 41) that never
had active computations in the user session. These levels thus do not belong to
m. The argument to show this can be made from the following: (1) The induction
hypothesis guarantees that the root computations which are at the lowest level, say
l1, in m, would have terminated and sent a WAKE-UP message to all immediate
higher levels; (2) WAKE-UP messages are always forwarded across empty levels.
Hence all levels which dominate {; and in turn are dominated by ln4+1 would have
WAKE-UP messages forwarded through them. This guarantees that lpm+1 would
receive these messages from all immediate lower levels, and when this happens the
computation at the head of the queue (which has the smallest forkstamp) will be
dequeued and started. The termination of this first computation at level /,,, 4 leads
to the startup of the next one in the queue. Every terminate results in the next
computation in the queue to be subsequently started in turn. The queue will thus
be progressively emptied in finite steps and all computations at level Iny1 would
have then terminated. Thus the entire session will terminate. O

5.4. An Aggressive Scheduling Scheme

We now describe an aggressive scheduling algorithm. It is governed by the following
nvariant:

[nv-aggressive: A compulation is ezecuting at a level | only if all non-ancestor
compulalions in the corresponding session with smaller fork stamps at levels | or
lower, have terminaled.

R ——
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We characterize this as an “aggressive” scheme as every attempt is ma'de to execute
a forked computation immediately. The above invariant implies that if a computa-
tion is denied immediate execution, then there must be at least one n?n-ancestral
lower level computation with an earlier forkstamp, that has not terminated. The
invariant ensures that the correctness constraints 1 and 2 are never violated. The
correctness of read-down operations is again dependent on multi-versioning.

The implementation algorithms for the aggressive scheduling scheme are given
in figures 14, 15, and 16 (the start algorithm is the same as in figure 13 for the
conservative scheme). In addition to the data structures needed to implement the
conservative scheme, the aggressive one requires that every level manager maintain
a fork-history consisting of a list of ordered pairs (fork-stamp, level). This helps
a level manager keep track of the fork requests generated at its level.

The major differences between the aggressive and conservative schemes as evi-
dent in these algorithms, can be summarized as follows:

e On being forked, a computation may be immediately started, if doing so
would not violate the invariant inv-aggressive (see figure 14).

o The termination of a computation may result in the start-up of the next
queued computation at the same level as well as multiple computations at
other higher levels (as shown in figure 16).

o A wake-up is sent to a higher level only if there exists at least one queued
computation pending execution at the higher level (see the second hal_f of the
algorithm in figure 16). The fork-histories at lower levels are examined to
determine this.

e A level may receive multiple wake-up messages before all its queued compu-
tations are released.

We now elaborate on these algorithms. When a computation is forkec.i (see
the if statement in figure 14), we have to decide if it can be started immed'la,tely.
A forked computation is started immediately if there exists no non—term}nated
computations at lower levels and with smaller forkstamps. We can de:termme all
the computations forked at lower levels by examining the fork hlStOI'IES. at these
levels. We can further determine which of these computations have t‘ermmate'd by
examining the terminate histories at these lower levels. When processing termmatei
requests, a similar check is made upon the termination of a computzftlon at a leve
to see if the next computation (if any) at the head of the queue for this le_vel, can be
started (see figure 16). We also check to see if computations queued at hlgl}er levels
can be released. We examine the fork histories at lower levels for computations t.hat
have been forked from these lower levels but have larger forkstamps than the :;ust
terminated computation (see the for statement in figure 16). Such computations
with larger forkstamps can be started so long as they are no‘t preceded by lower
level non-terminated computations to the left (in the computa.tlon tree). A WAKE—
UP message is sent to the level managers at the levels for ghich computations can
be stared. On receiving such a message, a level manager dequeues and starts the
next computation at the head of its queue (see figure 15). o

Figure 17 illustrates how a tree of computations can advance to 'terrfnnatlon
under the aggressive scheme. In particular, we note that the termination of a
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Procedure fork-aggressive(level-parent, level-create, fork-stamp, rstamps)
{

% Let level-create be the level of the local level manager

Create a new message manager mm at level-create;

% Record the fork-siamp passed on by the parent
mm fork-stamp — fork-stamp

% Begin phase 1 of acquiring local-stamp entries
For (every level I < level of the parent of mm)
do
initialize mm.local-stamp table entries from rstamps;
End-For

% Check to see if a forked compulation can be starled immediately
K V¥ I < level(mm), =3 any computation ¢ : (c.fork-stamp < mm.fork-stamp
A ¢ ¢ terminate history at {)
then
start(mm);
else
% This is a priorily queue maintained in fork-stamp order
enqueue(mm);
end-if
}

end procedure fork-aggressive;

Figure 14: Processing fork requests under aggressive scheduling

Procedure wake-up-aggressive

{

dequeue(queue, mm);
start(mm);

end procedure wake-up-aggressive;

Figure 15: Processing wake-up requests under aggressive scheduling

Procedure terminate-aggressive(lmsgmgr, wstamp, fork-stamp)

%Let t1 be the message manager that just terminated at level lmsgmgr
%Let Im be the level manager al level Imsgmgr

% Update local current write stamp from tt
Im.current-wstamp «— wstamp

% Updale terminate history
Append-terminate-history(terminate-history, fork-stamp, wstamp)

% Check if a compulation at level Imsgmgr can be started
If queue is not empty
then
% Let mm be the computation al the head of the queue
If Vi < level(mm), =3 ¢ : (c.fork-stamp < mm.fork-stamp
A ¢ ¢ terminate history at level [)
then
dequeue(queue, mm);
start(mm);
End-If
End-If

% Check if a computation al levels > Imsgmgr can be started
For all levels | < Imsgmgr
do

If 3 ¢ € fork-history at [ with (level(c) > Imsgmgr A

c.fork-stamp > tt.fork-stamp) : =3 any computation k with (tt.fork-stamp
< k.fork-stamp < c.fork-stamp A k ¢ terminate history at level(k) A k is not
an ancestor of ¢)

% We checked to see if ¢ was not preceded by a lower-level active or queued

% non-parent compulation in any of the fork-histories searched

then

Send a WAKE-UP message to the level manager of ¢ at level I;

End-If

End-For

}

end procedure terminate-aggressive;

N .
Figure 16: Processing terminate requests under aggressive scheduling
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computation may result in multiple start-ups of others at higher levels (even with
a totally ordered security lattice), so long as the invariant is not violated (see
figure 17 (b) where computations 3 and 6 are started on termination of 2). We also
observe that with aggressive scheduling, by the time the first three terminations
have occurred, namely, 2(S), 3(TS), and 5(TS), the entire tree of computations has
been released for execution (see figure 17(d)). Now compare the progress of this tree
under conservative scheduling where the first three terminations as shown in figure
9 (d), still leaves three others queued and awaiting execution. In summary, the tree
progresses to termination at a much faster rate, under the aggressive scheduling
scheme.
We now give proofs of correctness and termination for the aggressive scheme.

Proof of correciness.

Theorem 4 The aggressive scheduling algorithms maintain the invariant inv-
aggressive.

Proof:
We start with the fork-aggressive procedure in figure 14. We see that for the
statement start(mm) to be executed, the following pre-conditions are true:

a. there exists no non-ancestral queued or active computations at or below
level(mm) and with a smaller forkstamp than mm;

b. mm is the only computation at level(mm).

After computation mm has been started the condition (a) above still holds and thus
the invariant is maintained. A similar argument can be made for the start(mm)
statement in procedure terminate-aggressive. When mm is dequeued, condi-
tion (a) above holds, and since mm has the smallest forkstamp in the queue, the
invariant is maintained after the execution of start(mm).

It now remains to show that the start-up of a computation due to the receipt of a
WAKE-UP message at a level, will not violate the invariant. To see this, we observe
that a WAKE-UP message is sent to a higher level (in the terminate-aggressive
procedure) only if there exists a pending computation say, ¢ (at the higher level)
that was denied immediate execution at fork time. Further, ¢ has to have the
smallest forkstamp among others at its level and should not be preceded by active
or queued (pending) computations at lower levels and with a smaller fork than
itself. Thus on receiving a WAKE-UP message, a level meets all the necessary
conditions to start a computation. The post-condition following the start(mm)
statement in procedure wake-up-aggressive thus maintains the invariant. O

We now state and show how the invariant inv-aggressive maintains serial
correctness under our implementation.

Corollary 2 The aggressive scheduling implementation maintains serial correct-
ness.

Proof:

We basically have to show how the correctness constraints 1, 2, and 3 are main-
tained. For a computation to be dequeued and successfully started, invariant inv-
aggressive requires all earlier forked computations at level ! or lower, to have
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Figure 17: Progressive execution under aggressive scheduling
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terminated. But this is what is precisely required to maintain correctness con-
straints 1 and 2. The argument for the maintenance correctness constraint 3 is
independent of the scheduling algorithm used. Thus the earlier argument given for
the conservative case still holds. O

Proof of termination

Theorem 5 Under the aggressive scheduling scheme, all computations in a session
will evenlually terminate and thus guaraniee the termination of a user session.

Proof:

To argue proof of termination for the aggressive algorithm, we observe that if a
computation is denied immediate execution this can only be at fork time. Again
we assume that once started, a computation is guaranteed to terminate (by lemma
1). Our task is thus basically to show that every queued/pending computation
will eventually be started. Now if on fork, a computation f is denied immediate
execution, then there must be at least one active computation say ¢, with a smaller
stamp than f and at or below level(f). Now the termination of c is guaranteed by
lemma 1. The termination of ¢ will cause at least one computation with a greater
forkstamp than ¢ and a smaller forkstamp than f, or f itself, to be started. Now
if f is not started, there can only be a finite number of computations that can
potentially block f. Subsequent terminate events will progressively decrease the
number of such computations with a smaller forkstamp than f. This will result
in the eventual release of f for execution. With a similar argument, we can show
that every queued computation will eventually be released for execution and thus
run to termination. Thus the entire session will eventually terminate, concluding
the proof. O

5.5. Analysis and Discussion

The conservative and aggressive schemes discussed above can be seen as two that
approach the ends of a spectrum of secure and correct scheduling strategies. This
is because it is meaningless to come up with any algorithm that does worse than
the conservative one, in terms of the degree of concurrency allowed. At any given
time, if there is a computation active at a maximal level in the lattice, then no
other computations may be concurrently active. The conservative scheme thus
exhibits the least (meaningful) degree of concurrency within a session. The only
way to do worse would be to allow computations at incomparable levels in the
lattice to execute one at a time. On the other hand with the aggressive scheme,
we can potentially have concurrent computations running at every level. This can
happen if a computation is forked at the highest level in the lattice, and this is
followed by consecutive fork requests where each request is at the next lower level
(and the lifetimes of these computations are long enough to overlap). One can
always increase the degree of concurrency by exploiting intra-level concurrency.
But conflicts at the same level can be easily handled by well-known concurrency
control techniques. We do not explore this issue further in this paper as it lies
outside the scope of the execution model and scheduling protocols we present.

In this subsection we briefly outline a framework for the comparative analysis of
various scheduling schemes. In particular, we develop the notion of delay-degree as
a metric for analyzing scheduling strategies. We demonstrate how by varying this
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metric, we can derive (and admit) a family of scheduling strategies offering varying
degrees of concurrency, while guaranteeing confidentiality and serial correctness.

We begin with some definitions.
Definition 2 A level is inactive if no computation is executing at the level.
Definition 3 A level is active if there ezists an execuling computation at the level.

Definition 4 We say a level l is serial-execution enabled (or s-enabled for short),
if there erists al least one forked computation ¢, at I, and there are no active or
queued non-parent computations with smaller fork stamps than c, at levell or below.

Intuitively, when a level is s-enabled, executing the next computation at the head
of the queue at this level will not violate serial correctness. A computation that
is denied execution by a scheduling scheme when its level becomes s-enabled is
therefore experiencing an unnecessary delay. We build on this observation and
extend it below to an entire security lattice in order to formulate a metric for
analysis purpose.

Definition 5 A scheduling algorithm introduces an unnecessary delay whenever
any level is s-enabled bul remains inactive.

Definition 6 We say a chain of n securily levels in a lattice is fully-enabled when-
ever every level in the chain is concurrently s-enabled.

Definition 7 We define a computalion tree to be a full-enabler for a given security
lattice, if it causes a longest mazrimal chain in the latlice to be fully-enabled.

Thus when a maximal chain in the lattice is fully-enabled, computations can be
concurrently running at every level in the chain. However, when scheduling is
governed by some scheme, it is only certain scenarios that can lead to such chains
being fully-enabled. We characterize below the computation trees associated with
such scenarios as realizers.

Definition 8 For a given scheduling algorithm and security lattice, we define a re-
alizable full-enabler (orrealizer for short) to be a full-enabler, which when scheduled
by the algorithm, causes a longest mazimal chain in the latlice to be fully-enabled.

Definition 9 We say a realizer has a delay-degree (d-degree) of k for some schedul
ing algorithm, if il causes k compulations lo experience unnecessary delays.

Definition 10 Given a securily lattice (SC), a scheduling algorithm (A) is con-
sidered to have a delay-degree ( d-degree) of k, where k = max {d-degree of ali
realizers for SC under A}. w. .

Given a set of secure scheduling algorithms (schemes), we can now use their d-
degrees as a basis for comparison. We thus need to derive the d-degree for any
given scheduling scheme. To do this, we consider all the realizable full-enablers
(realizers) and observe the maximum number of computations (excepting the root)
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Figure 18: Full-enablers for a longest maximal chain of 3 elements (n = 3)
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Figure 19: Full-enablers for a longest maximal chain of 4 elements (n = 4)
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that are denied immediate execution, on being forked. This number would give u:
the d-degree.

As an illustration, consider the full-enabler trees in figure 18 for a lattice witl
a longest maximal chain of three levels U, C, and S (where U < C < S). Fo
the aggressive scheme, we see that both trees are realizers and in either cases nc
computation would be unnecessarily delayed. For the conservative scheme, only
the tree in 18(a) is a realizer and we see that computations 2(S) and 3(C) would
be unnecessarily delayed. For a further illustration, consider all the full-enable
trees for four levels U, C, S, and TS, as shown in figures 19(a) through 19(e). Al
the trees are realizers for the aggressive scheme, and in each case no computatior
would be unnecessarily delayed. However, only the tree in figure 19(a) is a realize
for the conservative scheme and the computations 2(TS), 3(S), and 4(C) would be
unnecessarily delayed.

In both of the examples above, we see that the aggressive scheduling schemse
would have a d-degree of zero (0), while the conservative scheme would have &
d-degree of n — 1 (for a lattice with a longest maximal chain of n elements). These
results are general and not specific to these two examples. To be more precise, the
d-degree, say k, of the conservative (or aggressive) scheme holds true for any lattice
with a longest maximal chain of n elements, as long as k£ < n. Also, it follows that
for any scheduling scheme with a d-degree of 0, a level is inactive only if it is nof
s-enabled.

Now are there other scheduling schemes that have d-degrees between the ex
treme values of 0 and n — 1?7 To answer this question, we explore a variation o
the level-by-level scheduling scheme. Recall that with the level-by-level scheme
computations are executed one level at a time. Thus at any given time, there is :
curreni-level at which computations are dequeued and executed. While our varian
would also require that computations be dequeued and executed one level at a time
it would in addition permit the execution of all the immediate child computation:
of any active computation at the current-level. To derive the d-degree of this vari
ant, consider again the full-enabler trees in figures 18 and 19. Both trees in figures
18(a) and 18(b) are realizers with d-degrees of 0 and n — 2 respectively, and thu:
giving a d-degree of n — 2 for this variant (i.e., max{0, n — 2}). In figure 19 the
trees (a), (c), (d), and (e) are realizers with d-degrees 0, n —2, n —3, and n —.
respectively, giving again a d-degree of n — 2 for this variant. It thus introduce:
fewer delays (due to increased concurrency) than the conservative scheme with :
d-degree of n — 1. We conjecture that by varying the metric d-degree, one coulc
derive several scheduling schemes.

6. Inter-session Concurrency Control and Object Sharing

So far we have looked at the issues of concurrency and scheduling within a singl
user session. We now focus on how objects can be shared across multiple concurren
user sessions. In the database literature, schemes to achieve this generally fall unde
the category of concurrency control and transaction maWagement. Our purpos
here is not to discuss a comprehensive concurrency control scheme, but only to giv
a basic usable secure solution to object sharing across user sessions. Discussion o
a comprehensive transaction model for multilevel systems is beyond the scope o
this paper.
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Figure 20: A computation tree and its hierarchical transaction mapping

Our approach to object sharing is based on a checkin/checkout access data
model [13]. There exists a public (single-version) database from which user sessions
checkout objects as needed. The objects are checked out into local workspaces
(private databases) of individual user sessions. When all activity associated with
an object has ceased, the object is checked back into the public database. Due
to concurrent activity in a user session, computations within a user session may
view several versions of the same object. However, visibility across user sessions
is limited to the public database which maintains only the latest version of every
object.

6.1. Modeling User Sessions as Hierarchical Transactions

In order to reason about the effects of concurrent user sessions on objects, we cast
our solutions in terms of the familiar concept of transactions. For this, we present
a model of a user session as a hierarchical set (tree) of multilevel subtransactions.
We model the actions of each computation as a set of subtransactions. To be more
precise, all the actions from the start-up to the issuing of the first fork request
is considered to be one subtransaction. The subtransaction is considered to be
running at the level of the corresponding computation. All actions between each
subsequent pair of fork requests are considered to belong to individual subtransac-
tions. Finally, all actions between the last fork request and the termination of the
computation are modeled as one subtransaction. A subtransaction is considered to
be the smallest unit of execution and is thus atomic. Thus if a subtransaction fails,
it leaves the database objects unchanged, and as far as the database is concerned
the subtransaction was never created. The atomicity property also means that
operations from individual subtransactions cannot interfere with each other. In
other words, subtransactions execute serially. Also, it follows from our hierarchical
formulation above, that a subtransaction writes only at its level.
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In figure 20, the computation 1(U) forks two computations 2(C) and 4(C) and
is thus modeled as a set of subtransactions 1Uy, 1Uz, 1Us. All transactions gen-
erated by a single computation are numbered by a transaction stamp derived by
concatenating the forkstamp of the computation with the next consecutive integer.
This guarantees the uniqueness of the transaction stamps thus assigned. Modeling
all the nodes in a tree results in a hierarchical (tree-like) structure of subtransac-
tions. In figure 20, we see that there is a subtree rooted at 2C;. This means that
a fork (of computation 3(S)) was issued by transaction 2C,. The subtree consists
of all the transactions generated by the forked computation 3(S).

6.2. Multilevel Checkin/Checkout of Objects

One of the considerations in designing an object sharing and transaction manage-
ment scheme is that of formulating and maintaining some notion of inter-session
correctness. Conventional database management schemes primarily support trans-
actions that are short-lived and competitive. Interactions and visibility across such
transactions are curtailed and the correctness of concurrent transactions is gov-
erned by serializability. However, if we examine the applications that are impelling
the development of object-oriented database technology, we find that they are char-
acterized by requirements that differ from those utilizing conventional databases.
These applications are generally found in environments that call for cooperative
work (such as computer-aided design). In such environments, serializability as
a correctness criterion needs to be relaxed, and interactions between concurrent
transactions have to be promoted rather than curtailed. In light of this, in our
further discussions we do not assume that serializability is enforced.

We now discuss how a checkin/checkout scheme can be coupled with our hi-
erarchical transaction model so as to facilitate object sharing across concurrent
user sessions. Our choice of a checkin/checkout scheme (as opposed to other con-
ventional schemes) directly follows from the above assumption that transactions
are cooperative in nature. We provide the following commands to implement a
checkin/checkout scheme:

1. Public-checkout(R/W): Checks out an object from the public database.
2. Public-checkin: Checks in an object into the public database.

3. Local-checkout(R/W): Checks out an object from the local workspace of
a user session.

4. Local-checkin: Checks in an object into a session’s local workspace.

The local commands differ from the public ones as their effects are internal to
a session, and thus do not affect the visibility or availability of objects to other
concurrent user sessions. A checkout operation can be requested in read (R)‘or
write (W) mode. A checkout in W mode is permitted agly if the computation
generating the requesting subtransaction and the object to be checked out are at
the same level. On the other hand, whenever a computation (or more precisely a
subtransaction) requests a checkout of a lower level object, the request is gran'ted
in read (R) mode only. Multiple subtransactions may checkout the same object
(or version of an object) in R mode. However, if a subtransaction checks out a
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version in W mode, then no subtransaction may check out the version in either R
or W mode (as checkouts in R mode conflict with those in W mode). The W mode
checkout operation is thus exclusive with respect to an object. While the checkin
operation is necessary for any object checked out in W mode, it is redundant (and
can be ignored) for any object checked out in R mode.

If a requested object has not been checked out by a user session so far, a public
checkout request is issued. If however the object had been previously checked out
from the public database by the session, it is simply checked out from the session’s
local workspace. In either case, when the subtransaction terminates, the object is
checked back into the local workspace of the session. A final version of every object
that has been updated will eventually be checked back into the public database (as
explained in the remainder of this section).

When a subtransaction succeeds in checking out a version of a lower level object,
it is guaranteed that the state of the object so read will never be invalidated
in the future. This is because once a version becomes available for checkout in
R mode to higher level subtransactions, we are guaranteed that such a version
will never be updated again. To put it another way in transaction processing
terminology, a checkout in R mode will always read commitied values of objects.
The implication of this is basically that high level subtransactions cannot develop
abort dependencies on lower level ones. If such dependencies were possible, then
a high level subtransaction would have to abort if a low level subtransaction from
which it read, aborts.

We now give two variations of a checkin/checkout scheme. They differ basically
in how and when objects checked out from the public database are checked back
into the public database, for access by other user sessions. They thus offer different
granularities of interactions across user sessions. These variations can be applied to
both conservative and aggressive intra-session scheduling strategies. In a level-by-
level checkin/checkout variation, an object that is updated at a level I by a session,
is made visible to another session only when all updates to all objects at level I,
by the session, have been completed. In the second computation-by-computation
checkin/checkout variation, an object is made visible (checked in) as soon as all the
subtransactions associated with a computation have terminated.

As mentioned before, serializability is nof enforced across user sessions. How-
ever, a subtransaction in a session will see only committed states of objects that
are updated by other sessions. This is ensured by requiring all public checkin op-
erations from a session to be deferred until the root computation in the session
terminates. We consider a session to be logically and semantically committed at
the point the root computation terminates normally (i.e., not due to an error or
exception). This guarantees that no abort dependencies will develop across user
sessions. The absence of such dependencies ensures that a session A would not
have to abort because another session B from which it read, aborts.

6.2.1. Level-by-Level Checkin/Checkoul Schemes

The basic idea is to checkin (commit) objects to the public database, one level at a
fime. Thus conceptually, we can implement this with processing and propagation of
A level-has-commilled message upwards in the security lattice. With a conservative
scheduling scheme, the level-has-committed message can be piggybacked onto the
wake-up message. On the other hand, with aggressive scheduling, the level-has-
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commilled message has to be explicitly propagated. We describe both variations
below.
The level-by-level checkin/checkout scheme can be combined with the conser-

vative scheduling strategy as follows:

1. A subtransaction checks out the required objects from either its session’s local
workspace, or from the public database (the latter if any required object has
not been previously checked out by the session).

9. When a subtransaction terminates all checked out objects are checked back
in to the session’s local workspace.

3. If a wake-up/level-has-commilled message has been received from all imme-
diate lower levels, and all computations and associated subtransactions at a
level say I, have terminated (i.e., when the level manager at [ finds its local
queue to be empty), then the level manager at [ checks in the latest versions
of all updated objects into the public database. This is followed by step 4.

4. After all updated objects at level | have been checked into the public database,
a wake-up/level-has-commitled message is sent to all immediate higher levels
by the local level manager at level l.

In the conservative scheme above, the receipt of a wake-up/level-has-commitiec
message from a lower level is a guarantee that no fork requests will be forthcoming
from the lower level. However, in an aggressive level-by-level scheme, this is nc
longer true. In fact, a level may receive many wake-up messages from a lower level
A level-has-commitied message can thus no longer be piggybacked onto a wake-ug
message, but rather has to be explicitly propagated, starting with the terminatior
of the root computation. In addition to steps (1) and (2) given above for the
conservative scheme, we require the following additional steps to achieve this:

3’. When the root computation terminates, we check in all updated object§ tc
the public database and send a level-has-committed message to all immediate

higher levels.

4. When a level-has-committed message has been received from all immediat.
lower levels, and the local level manager finds its queue to be empty, it check:
in all updated objects to the public database. The level manager then prop:
agates the level-has-committed message to its immediate higher levels.

6.2.2. Compulation-by-Computation Checkin/Checkout Schemes

A computation-by-computation checkin/checkout scheme releases (checks in) ob
jects to the public database much earlier in comparison to the level-by-level schfeme
Thus on the average, the availability of objects for checkout, across user sessions
is increased (as waiting times are reduced). The schemgcan be combm'ed' agall
with both conservative and aggressive scheduling. In either ‘case the basic idea 1
the same. All objects checked out by a computation (the set of subtransaction:
generated by the computation) are checked back into the public database as soon a
the computation terminates. Contrast this with the level-by-level checkin schem
where we have to wait for all computations at the associated level to terminate. I
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other words, when the last subtransaction associated with a computation termi-
nates, all checked out objects are checked back into the public database. However
for objects checked out in W mode, only the latest version of every object is checked
back in. It is obvious that this variation can result in objects being shuffled back
and forth from the public database with much greater frequency than the level-by-
level scheme.

7. Summary and Conclusions

In this paper we have discussed an approach to securely and correctly support
write-up in terms of abstract operations, within a kernelized architectural frame-
work. Our solution is novel in that it meets the conflicting goals secrecy, integrity,
and efficiency. The major complication arises due to the non-primitive nature of
such operations. We have discussed an asynchronous computational model that
calls for concurrent computations to be generated to service RPC-based write-up
requests, and a multiversioning approach to synchronizing such concurrent com-
putations. Although our solution is fitting for object-oriented databases and cast
n that context, it is important to emphasize that it has wider applicability in any
environment that needs to support write-up operations.

The confidentiality of the scheduling schemes that we have presented is not a
concern in a kernelized architecture. However, these scheduling schemes are all
nherently secure in that they cannot introduce signaling channels. Hence they can
be easily implemented under architectures that are not truly kernelized (i.e., there
exists some degree of trust).

In contrasting our work with other proposals for enforcing mandatory security
n multilevel object-oriented systems, we note that while they all address confiden-
iality, the dimension of integrity is largely ignored. Many of the other solutions
assume that the TCB provides protection against signaling channels. But how
will the TCB do this? Solutions which are implementation dependent are highly
vulnerable to the changes and evolution of computer hardware and performance
haracteristics. Even if timing channels were closed, without synchronization the
ntegrity problem remains unsolved. We believe it is not possible to coin a com-
lete implementation independent solution without the rigor and detail that we
1ave discussed in this paper.

There are several avenues that require further investigation. The multiversion-
ng scheme holds promise for optimizations to reduce the number of versions that
1eed to be concurrently maintained within a user session. Some of these optimiza-
ions can be trivially implemented. For example, there is no need to create a new
rersion of an object with the issuing of a fork, if the object state has not been
1ipdated since the last fork request. QOur focus in this paper has been to demon-
trate the feasibility of a solution. Any implementation must consider the many
ptimizations possible.

Our approach to session management does not address the issue of atomicity of
1ser sessions in the presence of failed computations. If we take the view that the
ictions of individual (single-level) computations belong to individual subtransac-
ions, then a user session is analogous to what has been referred to in the literature
s a maullilevel transaction. Such a transaction consists of individual single-level
ubtransactions. The need for multilevel transactions arises when users have to
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read and write data classified at multiple levels. Perhaps a good example (and
one given in [18]) is a transfer transaction in a bank that transfers money from
a low-level account to a higher one. Such a task cannot be accomplished by a
single-level flat transaction as mandatory access control rules will not permit it to
read and write both accounts. Further, this transfer task has to be atomic. Initial
investigations of multilevel transactions can be found in [4, 5]. Perhaps the most
significant result is the observation in [18] that atomicity and security are con-
flicting properties. This is because ensuring atomicity will always open up covert
channels. The authors in [18] argue for a compromise that limits the bandwidth of
such channels in the course of ensuring atomicity.

Closely connected with the above atomicity requirement is the issue of recov-
ery itself, within the context of object-oriented systems and applications. In order
to incorporate recovery management semantics into our computational model, we
would have to consider the distributed nature of computations as well as the im-
plications of multilevel security. Some of the specific issues/questions that need
to be addressed include: (a) How can distributed recovery be incorporated and
managed? (b} How can we handle recovery at high levels without interference to
lower level computations? (c) What are good granularities for recovery units? Is
it a transaction? Is it the state of an object? (d) Can we provide variable granu-
larities of recovery units, so that the amount of loss of work that is tolerable, can
be tailored to individual application needs?

A performance evaluation of the various scheduling schemes for computations
with varying input-output (I/O) and CPU demands would be interesting. Also
interesting is the potential to exploit intra-level concurrency. In both the conser-
vative and aggressive scheduling schemes, there exists only one active computation
at a security level, at any given time. This restriction may be relaxed at the
cost of managing intra-level conflicts and concurrency. In particular, updates from
multiple concurrent computations (at the same level) may have to be serialized
at object boundaries. Alternatively, object level seman'ics may be exploited to
allow non-serializable behavior. Such enhancements will impact the level manager
algorithms.

The hierarchical model of transactions highlighted in this paper is indeed a
primitive one. In particular, it is tightly coupled to our asynchronous compu-
tational model. A more advanced object sharing and transaction model should
reflect at a more semantic level, the various models of user activity and cooper-
ation in multilevel secure systems (such transaction models for non-secure envi-
ronments are discussed in [1, 10]). Also, such a transaction model should appear
from a user’s perspective, to be independent of our underlying asynchronous com-
putational model. Implementing this may naturally lead to a layered transaction
scheme, with the higher semantic layer mapped to a lower layer that _reﬂe.ct;s th.e
underlying computational model. Another direction worth investigating 1s a hi-
erarchical model of transactions defined across all user sfsions, and to extend
the aggressive scheduling strategy across the computations in the vz‘xrious s¢.assions.
However, the algorithms in the current form would allow one active session per
security level. Hence these algorithms would have to be extended to distinguish
computations originating from various sessions as well as to exploit more intra-level
concurrency.
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