Journal of Computer Security 4 (1996} 149-165 149
I0S Press

The expressive power of multi-parent creation in - .
monotonic access control models*

Paul Ammann and Ravi S. Sandhu
Center for Secure Informanon Systems, George Mason Umwversity, Fairfax, VA 22030, USA

Richard Lipton

Department of Computer Science, Princeton University, Princeton, NJ 08544, USA

Formal demonstration of equivalence or nonequivalence of different secunty models helps i1den-
ufy the fundamental constructs and prninciples in such models In this paper, we demonstrate the
nonequivalence of two monotonic access control models that differ only in the creation operation for
new subjects and/or objects, tn particular, we show that single-parent creation 1s less expressive than
multi-parent creation The nature of the proof indicates that this result will apply to any monotonic
access control model The nonequivalence proof 1s carried out on an abstract access control model,
following which the results are mterpreted n standard formulations In particular, we apply the results
to demonstrate nonequivalence of the Schematic Protection Model (SPM) and the Extended Schematic
Protection Model (ESPM) We also show how the results apply to the typed access matnx model
(TAM), which 15 an extension of the well known access matrix model formalized by Harrison, Ruzzo
and Ullman (HRU) The results in this paper offer theoretical justification for regarding single-parent
and multi-parent creation as fundamentally different operations 1n a monotonic context The paper
also demonstrates that 1n nonmonotome models, multi-parent creation can be reduced to single-parent
creation, thereby neutralizing the difference n expressive power

Keywords Access controls, dynamic authonization, model equivalence, multi-parent creation, protection
mechanisms, security

1. Introduction

Access control models provide a formal expression for security policies concern-
ing shared resources in multi-user computer systems Access control models must
be sufficiently expressive to state policies of practical interest Balanced against
the need for sufficient expressive power 1s the safety question, that 1s, can a given
subject ever acquire a given right to some resource 1n the system Since the safety
question 1s undecidable even for relatively simple models, 1t 1s desirable to find
primitive operations that are minimal 1n the sense that they are theoretically nec-
essary to allow the expression of certain policies The main result of this paper 1s

*This work was partially supported by the National Science Foundation under grant CCR-9202270
and the National Security Agency under contract MDA904-92-C-5141 An earlier version of this paper
appeared n the Computer Security Foundations Workshop [15]

0926-227X/96/38 00 © 1996 - 10S Press All nghts reserved

Copyright © 2001 All Rights Reserved

150 P Ammann et ul / The expressive power of multi-parent creation

a demonstration that two primitive operations. namely single-parent creation and
multi-parent creation, differ in fundamental expressive power 1in any monotonic
access control model We elaborate the result in the context of two standard ac-
cess control model formulations, namely the access matrix model [5,6,11] and the
schematic protection modet [9)

We begin with a brief description of the access matrix model The protection
state of a system 1s described by a matrix that has a row and column for each
subject and a column for each object Subject X has access privilege r to subject
or object Y iff r 1s recorded 1n the [X,Y] cell of the matrix In practice, the
matrix 1s typically sparse, and compact representations such as access control hists
(by column) or capabilities (by row) are used

Harrison, Ruzzo and Ullman [5] provided a formalism to specify evolution of
the protection state In the access matrix model of Harrison, Ruzzo and Ullman,
to which we refer as HRU, specifications to change the protection state are in
the form of commands. Each command has a fixed lIist of formal parameters, a
conditional test, and a list of primitive operations When a command 1s invoked,
the conditional, or precondition, 1s evaluated with respect to the actual parameters
The conditional 1s a conjunction of tests for the presence (but not the absence) of
rights in various cells of the access matrix If the conditional evaluates to true, the
primitive operations are carricd out, otherwise no change to the protection state
occurs. Primitive operations can enter a right into a cell of the matrix, delete a
right from a cell of the matrix, create a new subject or object, or destroy an existing
subject or object

A set of commands 1s collectively known as a scheme, and the HRU model 1s
the set of all possible schemes. Sometimes 1t 1s convenient to consider schemes
that do not delete rights once they have been granted or destroy existing subjects
and objects Such schemes are called monotonic The monotonic HRU model 1s
the set of monotonic HRU schemes!

The safety question for access control was first formulated in the context of the
Harrison, Ruzzo and Ullman access matrix formalization. In monotonic models,
once the precondition for an operation 1s satisfied with respect to a given set of
existing subjects, no evolution of the protection state can cause the precondition to
become false Hence the restriction to monotonic models ehminates backiracking
and simplifies safety analysis®. However, the monotonic restriction 1s msufficient

'"Models such as augmented TAM [13] have HRU like commands 1n which the conditional can test
for absence of access nghts Monotonic versions of such models do not allow checking for absence of
nghts

2 Although safety analysts may dictate treating a model as monotonic, the implementation need not
be strictly monotonic For example, the nonmonotonic action of revoking an access right can be
accommodated 1n a monotonic safety analysis 1f the revoked nght may be regranted In such cases, the
revocation can be ignored from the perspective of safety analysis, but nonetheless implemented 1n the
actual system [9]

Copyright © 2001 All Rights Reserved

P Ammann et al / The expressive power of multi-parent creaton 151

to make safety in HRU tractable; both HRU and monotonic HRU have undecidable
safety [4,5]

The search for tractable safety analysis led to proposals for a number of ‘take-
grant’ models, most of which are summarized in [7,8,14] However, a substan-
tial gap 1n expressive power exists between these models and HRU. Sandhu’s
Schematic Protection Model, denoted here as SPM [9], was developed to fill this
gap 1n expressive power while sustaining efficient safety analysis With the ex-
ception of HRU, the various models referenced above are all subsumed by SPM
[9,10]. Although SPM has undecidable safety in general | 12], for a wide variety
of cases of practical interest, 1t has polynomial safety [9].

In SPM, each invocation of the operation to create a new subject or object 1s
associated with a single existing subject The existing subject 1s called the parent of
the creation operation and the new subject or object 1s called the chuld An explicit
identification of parents and children 1s lacking 1n the HRU model, although, as
we note later, HRU commands can be analyzed to reveal this information

Although SPM includes only single-parent creation, multi-parent creation 1s a
desirable operation for many practical applications For example, the mutual sus-
picion problem, the protected subsystem problem, and the confinement problem
have solutions that can be naturally implemented with multi-parent creation {1,2]
ORCON, or oniginator control problems, also have natural multi-parent solutions
{11] Role-based separation of duties, i which joint authorization by multiple
subjects 1s commonly required, also fits naturally into a multi-parent framework
[1,2].

To accommodate multi-parent creation, the Extended Schematic Protection
Model, denoted here as ESPM [1,2], was introduced. SPM and ESPM differ
only in that ESPM has mult-parent creation whereas SPM does not, otherwise the
models are identical The tractability of safety analysis for SPM extends to ESPM
(1.2]

Monotonic HRU and ESPM were shown to have equivalent expressive power
in [2] The expressive power of SPM was not formally addressed by the proof,
but the demonstration of monotonic HRU-ESPM equivalence strongly suggested
that single-parent creation 1s less powerful than multi-parent creation 1n monotonic
models In this paper we formally address the expressive power of single-parent vs
multi-parent creation We show that in monotonic access control models, single-
parent creation 1s strictly less expressive than multi-parent creation An immediate
corollary is that SPM 1s less expressive than ESPM, and hence monotonic HRU
In nonmonotonic models, multi-parent creation can be simulated by single-parent
creation along with certain nonmonotonic operations

The organization of the paper 1s as follows In Section 2 we define an ab-
stract, graph-oriented access control model The model allows the description of
schemes that correspond to single and multi-parent creation. The notion of simu-
lation needed for safety analysis differs from that needed tor other, more common,
purposes In Section 3 we develop and justfy a notion of simulation appropriate

Copyright © 2001 All Rights Reserved

152 P Ammann et al / The expressive power of multi-parent creation

for safety analysis in monotonic models We use this notion of simulation to com-
pare single and multi-parent models We show that single-parent creation 1s less
expressive than multi-parent creation 1n monotonic models, but that the two oper-
ations are equivalent in nonmonotonic models. In Section 4 we relate the results
from the abstract model to standard security models. Section 5 summarizes the

paper

2. Graph model for access control

In this section we present an abstract formalization of the notion of an access
control model Consideration of specific models 1s postponed until Section 4, the
intent here 1s to provide a formalism free of unnecessary detail as a basis for the
theorems 1n the next section. We formalize an access control model as an abstract
state machine The abstract machine has two major components, namely a set of
allowable states and a set of operations to transit between states

We begin with a description of allowable states. The state for the abstract ma-
chine 1s a directed graph, which we call a protection graph. Nodes n a protection
graph correspond to either subjects or objects, no distinction between the two 1s
made here Edges 1n a protection graph correspond to access rights It there 1s an
edge from node A to node B, then the subject corresponding to node A has some
abstract right to the subject or object corresponding to node B

In realistic access control models, 1t 1s useful to distinguish between different
classes of subjects and/or objects We accommodate this distinction, which corre-
sponds to the notion of protection type, by allowing nodes to be typed The type of
a node 1s determined when the node 1s first created, and cannot be changed after-
wards, that 1s, none of the operations defined for the abstract machine are allowed
to change a node’s type Similarly, we accommodate the need to distinguish be-
tween different access rights by allowing edges to be typed as well® Several edges
may exist between the same pair of nodes as long as the edges are all of different
types Types on edges are also static and cannot be altered Formal notation for
denoting node and edge types ts introduced later in this section

The static graph model described so far 1s equivalent to the common access
matrix, minus any commands to change state, and thus 1s sufficiently general to
represent any given protection state of an access control model

To complete the description of the abstract machine, we need to consider opera-
trons to change the state Operations that merely observe the state are not important
to our analysis, and so are 1gnored. Our primary goal 1s to show that multi-parent

*In the literature, access rights are usually not described as being typed In particular, the notion of
protection type 1s quite useful for analyzing subjects and objects but no such role has been 1dentified
for treating access rights as typed objects For our purposes here, however, 1t 1s simpler to treat edges
and nodes in the same way, and so we consider both to be typed

Copyright © 2001 All Rights Reserved

1

7

P Ammann et al / The expressive power of multi-parent creation 153

creation cannot be simulated with single-parent creation tn monotonic access con-
trol models, and so we 1mpose the restriction n our model that no operation can
delete an existing node or edge (n a protection graph or change 1ts type At the end
of the next section we show the secondary result that nonmonotonic models can
simulate multi-parent creatton with single-parent creation Accordingly, a limited
form of nonmonotonicity 1s itroduced at that pont

We allow for three types of operations

1 Initial state operations.
2 Node creation operations.
3. Edge adding operations.

Initial state operations provide nitial states for the protection graph. We allow
one or more such operations, which require no prior state and produce a statically
specified nitial state.

A node-creation operation adds one or more new nodes, and some number of
edges (possibly zero) to the protection graph. Creation operations are classified
by parentage The number of parent nodes 1s defined by the number of parameter
nodes that exist prior to the invocation of the operation Creation operations are
also classified by the number of child nodes, which is the total number of parameter
nodes 1n the operation less the number of parents However, an operation’s number
of children is less important than 1ts number of parents. and so we often omit the
child classification when describing an operation. In Section 4, we discuss multi-
child operations in more detail n the context of the HRU model

For example, a single-parent creation operation might produce a single new node
in the protection graph and create an edge from the parent node to the new node
As another example, a double-parent creation operation might produce two child
nodes 1n the protection graph and install one edge between the two parents and
another edge between the two children

Depending on the number of node and edge types, there may be many permu-
tations of these operations, such that the type of each node and edge 1s taken nto
account For example, a complete description of the single-parent creation opera-
tton above would specify that the parent be of type ¢, the child be of type ¢,, and
that the edge from parent to child be of type #3

Multi-parent creation can be simulated with double-parent creation, a result
shown 1n the context of the ESPM model 1n [2] Figure | shows a construc-
tion for triple-parent (single-child) creation in the graph model used in this paper.
A simple extension to the construction applies to larger numbers of parents

Figure 1(a) shows a three-parent creation of D by A, B and C Figure 1(b-d)
shows the simulation via double-parent creation In Fig 1(b), A and B jontly
create X, a node of a type used only 1n the construction A and B are tied to
X with edges that are also of a type special to the construction. In Fig. 1(c), X
and C jointly create D The edge C — D 1s of the final desired type. The edge
X — D s of a type used only 1n the simulation. In Fig 1(d), the edges A — D

Copyright © 2001 All Rights Reserved

154 P Ammann et al / The expressive power of multi-parent creation

a) 3-parent creation of D by A, B, and C

O
()

b) Simulation A and B jointly create X

@
(Y

¢) Simulation X and C jointly create D

d) Simulation* Edges A — D and B — D added
Fig | Simulation of 3-parent creation with 2-parent creation

and B — D are added by edge-adding operations that rely on the presence of the
A= X,X - Dand B— X, X — D edges, respectively*

“Note that the simulation of multi-parent creation with double-parent creation requires that a single
node be allowed to redundantly function as more than one parent in a multi-parent creation operation
Thus, for example, a tniple-parent creation with A, A and B as parents must be allowed Most access
control models have this property, including HRU, ESPM, and TAM [11]

Copyright © 2001 All Rights Reserved

P Ammann et al / T'he expressive power of multi-parent creation 155

The theorems in the next section are all proved 1n terms of single-parent vs
double-parent creation The equivalence of double-parent creation and multi-parent
creation permits us to avoid direct consideration of multi-parent creation, but still
generalize the results to include multi-parent creation

Edge adding operations (one may think of such operations as zero-child oper-
ations) do not create new nodes. Thus all nodes must be created either by mitial
state operations or by node-creation operations In addition, 1f any operation ever
becomes applicable, then 1t must remain applicable In the abstract machine, 1f
the precondition for an operation 1s ever satisfied for a given set of inputs, then
1t 1s forever satisfied for that set of inputs. Note that our notion of monotonicity
specifically excludes tests for the absence of edges

Definition. A scheme ts a complete abstract machine definition Specifically, a
scheme defines finite sets of node types, edge types, initial states operations, node-
creation operations, and edge-adding operations.

In the discussion below, 1t 1s useful to be able to identify the various parts
of a scheme for reference purposes. Thus we proceed as follows for a scheme
S We designate the set of node types by NT'(S) and the set of edge types
by ET(S)

Schemes are classified according to the largest number of parents tn a creation
operation. For example, all creation operations 1n a single-parent scheme have
exactly one parent Creation operations 1n a double-parent scheme may have either
one or two parents, and so on

We discuss common properties of schemes properties by introducing the notion
of a model.

Definition. A model 1s a set of schemes

Models are classified according to the schemes that make up the model Thus
a single-parent model contains single-parent schemes, a double-parent model con-
tains single-parent and double-parent schemes, and so on In addition, models
whose schemes nclude only monotonic operations are called monotonic mod-
els.

This completes the definition of a family of abstract access control models We
now turn to examining the differences between models with a different number of
parents.

3. Nonequivalence results

In this section we first define the notion of simulation, and then derive compar-
ative results about single-parent models and double-parent models

Copyright © 2001 All Rights Reserved

156 P Ammann et al / The expressive power of multi-parent creation

3 1 Definition of simulation

We eventually wish to decide if one model 1s as expressive as another To do
this, we need to formalize the notion that one scheme simulates another. In the
discussion that follows, the scheme that 1s being simulated, denoted as the original
scheme 1s represented by scheme A The scheme implementing the simulation,
denoted as the simulation scheme, 1s represented by scheme B

An mmportant aspect of our notion of simulation 1s that it 1s defined from the
perspective of safety analysis in monotonic systems. In particular, we arrange
matters such that the simulation scheme B can leak one of the rights from scheme A
(that 1s, create an edge of a type defined in scheme A) if and only 1f scheme A
can leak that same right Thus the definition of simulation presented below differs
from the more common notion used for other purposes

We adopt the following notion of correspondence between schemes We require
the simulating scheme B to maintain as part of its state a subgraph that 1s the entire
state for scheme A We mmplement this requirement as follows Furst, the sets of
node and edge types 1n the simulation scheme must be supersets of the sets of node
and edge types, respectively, in the original scheme, that 1s, NT(A) C NT(B)
and ET(A) C ET(B)®. Second, any actual node or edge in the simulation of the
same type as a node or edge 1n the original must actually correspond to a node or
edge 1n the original Thus scheme B cannot contain extraneous nodes or edges of
the types defined for scheme A. In general, however, scheme B can contain nodes
and edges of other types for use as auxilary structures for the simulation

When B reaches a state that matches a state of A, then the two graphs are the
same with respect to nodes in NT(A) and edges in ET(A) Formally

Definition. A state 1n scheme A, an original scheme, and a state in scheme B,
a simulation scheme, correspond iff the graph defining the state in scheme A 1s
identical to the subgraph obtained by taking the state in scheme B and discarding
all nodes and edges not in NT(A) or ET(A)

The definition of correspond disallows mappings in which a group of nodes
and/or edges 1n B 1s mapped to a single node or edge in A. Our definition
essentially forces any such mapping to be done inside scheme B using only the
operations available 1n scheme B. This 1s appropriate in that 1t 15 the expressive
power of scheme B that 1s being evaluated.

We disallow mappings 1n which the correspondence of a node or edge in the
simulation to a node or edge in the original changes as the simulation proceeds
The correspondence 1s set when a node or edge in the simulation 1s created and
does not change thereafter.

51t 1s certamnly possible to allow the node and edge types mn A to be named differently in B, but for
our purposes, renaming nodes and edges merely complicates the notation without tangible benefit

Copyright © 2001 All Rights Reserved

P Ammunn et al / The expressive power of multi-parent creation 157

Since the simulation might employ a series of operations to accomplish what the
original scheme does in one operation, exact correspondence, as defined above, 1s
too limiting with respect to the simulating scheme. For example, 1n the double-
parent simulation of three-parent creation illustrated earlier in Fig [, the simulation
created the desired node and edges piecemeal 1n three separate operations The
important characteristic of intermediate states tn scheme B 1s that there be sequence
of operations that leads to a state that corresponds to the state reached by scheme A.
We discuss this point in more detail after presenting a definition of simulation.

Two other properties complete the definition of simulation.

Definition. Scheme B simulates scheme A iff the following conditions hold

1. For every state a reachable by scheme A, there exists some state b reachable
by scheme B such that a and b correspond.
2. For every state b reachable by scheme B, either:

(a) the state a that corresponds to b 1s reachable by scheme A, or
(b) there exists some successor state b’ of b such that the state o’ that corre-
sponds to b’ 1s reachable by scheme A

Monotonicity plays a significant role 1n these definitions For example, due to
monotonicity, point 1 ensures the stronger property that for every sequence of states
sA = aj,ap,a3, reachable by scheme A, there exists a sequence sp of states
reachable by scheme B such that some projection of sg equal to by, by, bs,.
corresponds to S, on a pairwise basis

Point 2(b) requires some discussion. Scheme B may use discrete steps to sim-
ulate some atomic action in A We must consider states reachable by an arbitrary
interleaving of these operations. Monotonicity helps the analysis. A partial simu-
lation of any operation in A can always be completed since the conditional tests
n an operation in B, once satisfied, are never falsified. From a safety analysis
perspective, this property 1s sufficient to be satisfied with the simulation provided
by B If B canreach a state b that cannot be evolved to a state b’ that corresponds
to some reachable a’ 1in A, then the simulation 1s not satisfactory The problem is
that some right can be leaked in B even though the corresponding right cannot be
leaked in A

A more elaborate definition of simulation than given above 1s needed for non-
monotonic models. The reason 1s that in the nonmonotonic case it 1s necessary to
prohibit the simulating scheme B from leaking rights from ET(A) in an interme-
diate state where A cannot reach the corresponding state, and then deleting these
rights before arriving in a state where A can reach a corresponding state. We do
not develop a definition of simulation adequate for nonmonotonic models, such as
the definition n [3], since our main result 1s for monotonic models

Finally, we formalize the notion of expressive power

Copyright © 2001 All Rights Reserved

158 P Ammann et al / The expressive power of multi-parent creation

ONONO

Initial state operation

Double-parent creation operation

Fig 2 Operations 1n scheme A

Definition. Model Y 1s less expressive than model X 1ff there exists at least one
scheme A 1in model X that cannot be simulated by any scheme B 1n model Y

Definition. Model Y 1s as expressive as model X iff the following holds: For every
scheme A 1n model X, there exists a scheme B 1n model Y such that scheme B
can simulate scheme A

Definition. Model X 1s equivalent to model Y 1ff model X 1s as expressive as
model Y and model Y 1s as expressive as model X

3 2. A nonequivalence theorem

Before we state and prove the various results below, we describe the scheme A
that 1s used in the proofs Scheme A has exactly one type of node and one type
of edge. There 1s a single mitial state operation that produces an initial state for
scheme A with 3 nodes: X, X, and X3, and no edges. Scheme A has a double-
parent creation operation The double-parent creation operation creates a child
node and introduces an edge from each parent to the child Scheme A 1s illustrated
in Fig. 2.

Eventually we wish to show that monotonic single-parent models are less expres-
sive than monotonic multi-parent models Let us begin, however, with a simpler
result to illustrate the technique used 1n the proof

Lemma 1. There s no single-parent scheme B that can simulate scheme A if the
initial state for B 1s identical to the nitial state for A

Copyright © 2001 All Rights Reserved

P Ammann et al / The expressive power of multi-parent creation 159
New state for scheme A

5t

—> Parent Edge
------- > Desired Edge
= Undesired Edge

Noncorresponding B state via single-parent creation

Fig 3 Identical imtial states simulation by B fals

Proof. The restriction that the initial states be identical means that scheme B
cannot encode any information 1n extra nodes or edges in the 1nitial state. Scheme B
cannot simulate the following creation operation in scheme A: scheme A creates
a new node, Y], using the double-parent creation operation with X, and X, as
parents. The resulting graph has nodes X;, X2, X3, Y1, and edges X; — Y],
X; — Y, as shown m Fig 3.

Let us examine the possible actions of scheme B to see why the simulation fails.
Scheme B must use a single-parent creation to create Y;. Some node must be the
parent, so suppose X 1s the parent and suppose that the single-parent creation
adds a single edge X; — Y|. Scheme B must eventually use some monotonic
edge-adding operation to ntroduce the edge X3 — Y;. Since X; and X3 have no
distinguishing characteristics, we can mimic the operations used to introduce the
edge X, — Y) to similarly introduce the edge X3 — Yj. But since scheme A has
no edge-adding operations, it 1s clear that Y} cannot have an 1n degree of 3 1n any
state of scheme A Therefore, the simulation 1s broken. In summary, scheme B
cannot introduce node Y; and edges X; — Y; and X; — Y| without also allowing
edge X3 — Y;, which corresponds to an unreachable state in scheme A. The
argument is summarized in Fig. 3 O

Copyright © 2001 All Rights Reserved

160 P Ammann et al / The expressive power of multi-parent creation

The argument captured by Lemma 1 is insufficient to show in general that
a single-parent scheme B cannot simulate scheme A, because scheme B may
anticipate the creation of ¥; with an encoding in 1ts imitial state To see one
possible way 1n which this encoding might be done, suppose that there 1s a node,
Y/, and edges X; — Y/ and X, — Y/ that arise from an mitial state operation 1n
scheme B The simulation 1s free to use such nodes and edges as long as they are
of separate types from the types i scheme A Scheme B can use single-parent
creation with parent Y’ to create child ¥; Scheme B can further use monotonic
edge-adding operations to create edges X| — Y} and X; — Y| by referring to the
exisung edges X; — Y/ and X — Y/ By exploiting the structure encoded n
the 1nitial state of the simulation, scheme B avoids adding the edge X3 — Y/, and
thus the simulation 1s correct on this step

There are many possible encodings that can anticipate the double-parent creation
operations by nodes n the original scheme. However, the trick of encoding these
posstbilities into the initial state cannot always be applied, as 1s shown 1n the proof
of the main theorem below Informally, we wish to show that mult-parent creation
adds expressive power unavailable 1n single-parent models Formally, we show

Theorem 1. Monotonic single-parent models are less expressive than monotonic
multi-parent models

Proof. We prove the theorem by showing that the two-parent scheme A cannot be
simulated by any monotonic single-parent scheme B.

The proof agam proceeds by contradiction, but the details are more involved
than 1n Lemma 1. We first show that if a single-parent scheme B can simulate
the double-parent scheme A, then scheme B must have certain properties. We use
these properties to show that scheme B can reach a state that corresponds to an
unreachable state 1n scheme A. The construction 1s illustrated 1in Fig 4.

Consider a candidate scheme B that 1s claimed to be able to simulate scheme A.
Let scheme A perform the following creation: X; and X, produce child Y, and
edges X| — Y| and X, — Y| with double-parent creation. In scheme B, there
must be some node 1n the simulation, call it W, that performs a single-parent
creation of Y]. It does not matter whether W 1s X, X,, or some other node
Further, the simulation must arrange the mtroduction of the edges X; — Y) and
Xy — Y1

The key observation in the proof 1s that the single-parent creation operation 1n
scheme B may be invoked repeatedly with W as the parent, and that the resulting
states must correspond to reachable states in scheme A®. Thus a reachable state
in scheme B 1s for W to create two more children, Y; and Y5. The monotonic

STechnically, the reachability of corresponding states it A applies to erther the resulting states of
scheme B or to successors of these states

Copyright © 2001 All Rights Reserved

P Ammunn et ul / The expressive power of multi-parent creation 161

OROBO
()

Scheme B simulates X; and X, create Y;

Scheme B reaches acceptable corresponding state

OBOB0
&

Scheme B reaches noncorresponding state

Fig 4 Arbitrary imtial states sunulation by B fails

edge-adding operations used to produce edges X| — Y; and X; — Y; can also
be mimicked to produce edges X; =+ Y2, Xo = Y2, X) — Y3, and X; =+ Yy So
far, scheme B is in good shape, in that scheme A can certainly reach the state in
which X and X, have produced three children, Y;, Y2, and Yz with double-parent
creation. The difficulty 1s that Y}, Y3, and Y; are indisinguishable 1in scheme B
Any edge-adding operation in scheme B that can add an edge terminating at Y)
can also be duplicated to add a similar edge that terminates at Y, or Y3 Also,
any edge-adding operation 1n scheme B that can add an edge originating at Y) can
also be duplicated to add a sumilar edge originating at Y5 or Y3 We exploit this
fact to break the simulation. In scheme A, let Y; and Y, produce child Z with
double-parent creation In the simulation, Z must be produced with single-parent

Copyright © 2001 All Rights Reserved

162 P Ammann et al / The expressive power of multi-parent creation

creation. No matter which node m the simulation 1s the single-parent of Z, an
edge-adding operation must be invoked to add at least one of the edges Y| — Z or
Y, =+ Z This edge-adding operation can also be duplicated to introduce the edge
Ys — Z But then the simulation has reached a state that does not correspond to a
reachable state 1n scheme A, because Z has in degree 3, which no node produced
by A has. O

3.3 Nonmonotonic operations

We now illustrate that the nonequivalence of single-parent and double-parent cre-
ation schemes shown 1n Theorem 1 does not hold 1n the presence of nonmonotonic
operations.

We define a limited form of nonmonotonicity for edge-adding operations by
allowing the destruction of edges 1n a graph

Definition. An edge-adding operation 1s nonmonotonic 1f 1t destroys an existing
edge

Definition. A scheme 1s nonmonotonic 1f it includes any nonmonotonic operation
Definition. A model 1s nonmonotonic if 1t includes a nonmonotonic scheme.

Note that changing the type of an edge, which 1s one way of viewing the trans-
formation discussed below, 1s also nonmonotonic, since 1t amounts to destroying
an existing edge and adding a new one.

Observation 1. Nonmonotonic single-parent models are as expressive as mono-
tonic multi-parent models

We establish Observation 1 by construction. We exhibit a single-parent creation
operation and nonmonotonic edge-adding operation that achieves the same state as
a monotonic double-parent creation operation.

Again we denote scheme A as the original and scheme B as the simulation.
Consider a double-parent creation operation 1n scheme A. Scheme B simulates
the operation by performing single parent creation of the new node with a special
type of edge called a pre-parent edge. Scheme B then mnvokes a nonmonotonic
edge-adding operation that has as inputs the original parent, the second parent,
and the child The edge-adding operation deletes the pre-parent edge and replaces
it with a permanent edge The operation also adds an edge between the second
parent and the child. Since the operation destroys the pre-parent edge, there is no
possibility of a third node acquiring an edge to the child via the nonmonotonic
operation. Figure 5 1llustrates the construction

Copyright © 2001 All Rights Reserved

P Ammann et al / The expressive power of multi-parent creation 163

-————> Pre-Parent Edge
_______ > Parent Edge

Fig 5 Nonmonotonic simulation
3.4. Discussion

The two results given above outline the extent to which single-parent creation and
multi-parent creation differ In monotonic schemes, the two operations have differ-
ent expressive power. In nonmonotonic schemes, other nonmonotonic operations
can simulate multi-parent creation Nonetheless, the results offer a compelling case
for considering multi-parent creation as a fundamental operation 1n access control
models.

4. Applying the results to standard models

It 1s observed 1n [1,11] that multi-parent creation 1s a natural and obvious choice
to implement a variety of access control policies, such as protected subsystem,
confinement, mutual suspicion, originator control, and some cases of separation
of duties. Such observations lend only informal support to the conjecture that
single-parent creation 1s less expressive than multi-parent creation. To date, formal
support of such a position has been lacking.

In the previous section it was formally demonstrated that single-parent creation
1s less expressive than multi-parent creation 1n the context of a monotonic, abstract
graph model The nature of the proof indicates that the results apply to any
monotonic access control model for which subject creation 1s defined and for which
the number of parents 1n a creation operation can be enumerated. In this section we
carry out the direct but necessary task of extending the results to standard access
control models.

4.1. Application to SPM and ESPM

SPM and ESPM are monotonic access control models whose only difference
1s that SPM has single-parent creation whereas ESPM has multi-parent creation

Copyright © 2001 All Rights Reserved

164 P Ammann et al / The expressive power of muln-parent creation

Other operations 1n either model can be directly mapped to edge-adding operations
1n the abstract graph model Thus this paper gives a formal demonstration that
SPM and ESPM have different expressive power

4.2. Application to access matrix models

In the monotonic HRU access matrix model there 1s no explicit separation be-
tween creation operations and operations that add rights to cells in the matrix.
A given HRU command may create any number of new subjects and objects and
enter arbitrary values into new and existing cells

However, 1t 1s not difficult to classify monotonic HRU operations as to the
number of parents and children imvolved Define a single-parent HRU creation
operation to be an operation that has N > 1 arguments, of which exactly 1 exists
prior to the command and the remaining N — 1, if the command 1s successful,
are created by the command. Define a multi-parent HRU creation operation to
be an operation that has N > 2 arguments, of which at least two exist prior to
the command and at least one does not. In either case, the number of children is
simply the number of arguments minus the number of parents All other monotonic
operations may be classified as edge-adding operations.

Thus the abstract graph model can be mapped directly to monotonic HRU
Generalizations of HRU, such as TAM, Sandhu’s Typed Access Matrix Model
[11], are also covered

4.3 Multi-child vs. single-child operations

Unlike the difference between multi-parent and single-parent creation operations,
multi-child and single-child creation operations share equivalent expressive power,
even 1 monotonic models. One venfication of this assertion 1s the simulation
of ESPM by monotonic HRU in [2]. In that construction, the monotonic HRU
operations used to simulate ESPM are all single-child. Another venfication 1s the
reverse process of simulating monotonic HRU with ESPM Since all operations
in ESPM are single-child, and since ESPM 15 equivalent in expressive power to
monotonic HRU, multi-child creation does not add to expressive power.

5. Conclusion

In this paper we have presented an abstract framework for comparing different
access control models. We have used the framework to demonstrate that single-
parent creation 1s less expressive than multi-parent creation in monotonic access
control models. Although nonmonotonic models can simulate multi-parent creation,
the results from monotonic models argue for considering multi-parent creation as
a fundamental primitive operation.

Copyright © 2001 All Rights Reserved

P Ammann et al / The expressive power of multi-parent creation 165

We have applied the results 1n this paper to show that the Schematic Protection
Model (SPM), which has single-parent creation, 1s less expressive than the Extended
Schematic Protection Model (ESPM), which has multi-parent crcation. We have
also applied the results to the access matrix model of Harrison, Ruzzo and Ullman
(HRU) and to Sandhu’s Typed Access Matrix Model (TAM), a generalization of
HRU that incorporates the notion of protection types. Without loss of expressive
power, HRU and TAM may be formulated so as to classity operations as multt-
parent or single-parent. In monotonic HRU and TAM, single-parent creation 15
strictly less expressive than multi-parent creation In nonmonotomic HRU and
TAM, muiti-parent creation can be simulated with nonmonotonic operations

References

[1] PE Ammann and RS Sandhu, Extending the creation operation in the schematic protection
model, i Sixth Annual Computer Security Application Conference, Tucson, AZ, December
1990, pp 340-348

[2] PE Ammann and R S Sandhu, The extended schematic protection model, The Journal of Com-
puter Security 1(3&4) (1992), 335-384

[3] S Ganta, Expressive power of access control models based on propagation of rights, Ph D Thesis
School of Information Technology and Engineening, George Mason University, Farfax VA
22030, 1996

[4] M H Harmson and WL Ruzzo, Monotonic protection systems, in Foundations of Secure Com-
putations, DeMillo et al , eds, Academic Press, 1978, pp 337-365

[5) MH Hamson, WL Ruzzo and J D Ullman, Protection 1n operating systems, Communications
of the ACM 19(8) (1976), 461471

[6] B W Lampson, Protection, i 5th Princeton Symposiwum on Information Science and Systems,
1971, pp 437443 Reprinted in ACM Operating Systems Review 8(1) (1974), 18-24

[7] CE Landwehr, Formal models for computer security, ACM Computing Surveys 13(3) (1981),
247-278

[8) RJ Lipton and L Snyder, A linear ime algorithm for deciding subject secunty, Journal of the
ACM 24(3) (1977), 455-464

[9] RS Sandhu, The schematic protection model Its definition and analysis for acychic attenuating
schemes, Journal of the ACM 35(2) (April 1988), 404-432

[10} RS Sandhu, Expressive power of the schematic protection model, The Journal of Computes
Security 1(1) (1992), 59-98

{11} R S Sandhu, The typed access matrix model, in Proceedings IEEE Computer Soctery Symposium
on Research in Security and Privacy, Oakland, CA, May 1992, pp 122-136

{12) RS Sandhu, Undecidability of safety for the schematic protection model with cychic creates,
Journal of Computer and System Sciences 44(1) (February 1992), 141-159

[13] RS Sandhu and § Ganta, On testing for absence of nghts 1n access control models, tn Compuier
Security Foundanons Workshop, Franconia, NH, June 1993, pp 109-118

{14] L Snyder, Formal models of capability-based protection systems [EEE Transactions on Com-
puters C-30(3) (1981), 172-181

[15] PE Ammann, RJ Lipton and R S Sandhu, The expressive power of multi-parent creation in
monotonic access control models, in Computer Securtty Foundanons Workshop, Franconia, NH,
June 1992, pp 148-156

Copyright © 2001 All Rights Reserved

