Constraints Specification in
Attribute Based Access Control

Khalid Zaman Bijon
Institute for Cyber Security
Department of Computer Science
Univ of Texas at San Antonio
zaman.khalid@gmail.com

Ram Krishnan
Institute for Cyber Security
Department of Electrical and
Computer Engineering
Univ of Texas at San Antonio

Ravi Sandhu
Institute for Cyber Security
Department of Computer Science
Univ of Texas at San Antonio
ravi.sandhu@utsa.edu

ram.krishnan@utsa.edu

ABSTRACT

Recently, attribute based access control (ABAC)
has received considerable attention from the secu-
rity community for its policy flexibility and dynamic
decision making capabilities. In ABAC, authoriza-
tion decisions are made based on various attributes
of entities involved in the access (e.g., users, sub-
jects, objects, context, etc.). In an ABAC system,
a proper attribute assignment to different entities
is necessary for ensuring appropriate access. should
be constrained much like user-role assignments are
constrained in Role-Based Access Control. Although
considerable research has been conducted on ABAC,
so far constraints specification on attribute assign-
ment to entities has not been well-studied in the
literature. In this paper, we propose an attribute-
based constraints specification language (ABCL) for
expressing a variety of constraints on values that dif-
ferent attributes of various entities in the system can
take. ABCL can be used to specify constraints on a
single attribute or across multiple attributes of a par-
ticular entity. Furthermore, constraints on attributes
assignment across multiple entities (e.g., attributes
of different users) can also be specified. We show
that ABCL can specify several well-known constraint
policies including separation of duty and cardinality
policies. We demonstrate the usefulness of ABCL in
different usage scenarios including banking and cloud
computing domains. We also discuss enforcement of
ABCL constraints and its performance.

Keywords: Attributes, Access

Specification,

Constraints, Policy,

Control, Security, Policy Language,

Cloud Computing

I INTRODUCTION

Over the last few years, attribute based access con-
trol (ABAC) has been emerging as a flexible form of
access control due to its policy-neutral nature (that
is, an ability to express different kinds of access
control policies including DAC, MAC and RBAC)
and dynamic decision making capabilities. Generally,

ABAC regulates permissions of users or subjects to
access system resources dynamically based on associ-
ated authorization rules with a particular permission.
A user is able to exercise a permission on an object
if the attributes of the user’s subject and the object
have a configuration satisfying the authorization rule
specified for that permission. Hence, proper attribute
assignment to these entities is crucially important in
an ABAC system for preventing unintended accesses.

In this paper, we focus on constraint specifications
on attribute assignment to the entities in an ABAC
based system as a mechanism to determine which en-
tity should get which attribute values. By entities, we
refer to users, subjects and objects which are common
in access control systems. A user is an abstraction
of human being, a subject is an instantiation of a
user and can refer to a particular session much like in
RBAC and an object is a resource in the system. In
general, constraints are an important and powerful
mechanism for laying out higher-level access control
policies of an organization. While ABAC is policy-
neutral, it is also complex to manage. Thus it should
have proper constraint specification and enforcement
mechanisms in order to effectively configure required
access control policies for an organization.

Constraint specification in ABAC' is more complex
than that in RBAC since there are multiple attributes
(unlike a single role attribute in RBAC) and at-
tributes can take different structures (e.g., atomic
or single-valued attributes such as security-clearance
and bank-balance and set-valued attributes such as
role and group). Constraints may exist amongst dif-
ferent values of a set-valued attribute (e.g. mutual
exclusion on group memberships) and also on val-
ues across different attributes. For instance, suppose
that an organization wants only their vice-presidents
to get both a top-secret clearance and membership
in their board-members email group. The ABAC
system should have mechanisms to specify such con-
straints. In this case, there are three attributes for
each user namely role, clearance and group. If the
role attribute of a user is not ‘vice-president’, then



the user’s clearance and group attributes cannot take
the value of ‘top-secret’ and ‘board-member-emails’
respectively. Note that these constraints are not con-
cerned about users’ access to objects directly. In-
stead, they focus on high-level requirements that a
security architect would specify, which may indirectly
translate into enabling or disabling certain accesses.
This is much like separation of duty constraints in
RBAC such as a particular employee cannot take
both ‘programmer’ and ‘tester’ roles for the same
project. Such a constraint eventually prevents the
employee from simultaneously working on both de-
veloping and testing code for same project.

In general, the more expressive power a model has,
the harder it is (if at all possible) to carry out
many types of security analysis. It has already been
shown that the safety problem of an ABAC sys-
tem with infinite value domain of attributes is un-
decidable [29]. Nevertheless, ABAC is the leading
mechanism that overcomes the limitations of discre-
tionary access control (DAC) [24], mandatory ac-
cess control (MAC) [23] and role-based access control
(RBACQ) [15]. NIST recognizes that ABAC allows an
unprecedented amount of flexibility and security that
makes it a suitable choice for large and federated en-
terprizes over existing access control mechanisms [5)].
Given that ABAC is known to be hard to analyze,
constraint specification on attribute values is a pow-
erful means to ensure that essential high-level access
control requirements are met in a system that utilizes
ABAC.

Our Contributions. We develop an attribute based
constraint specification language (ABCL) for speci-
fying constraints on attribute assignments. ABCL
provides a mechanism to represent different kinds
of conflicting relations amongst attributes in a sys-
tem in the form of relation-sets. Relation-sets con-
tain different attribute values and ABCL expressions
specify constraints on attribute assignments based on
these values. There is considerable literature, such
as [7,11}|141[16|21}[25L27], on the utility of attributes
in managing various aspects of security in a system.
Our work is the first investigation on how attributes
themselves could be managed based on their intrin-
sic relationships. We show that ABCL can express
many types of constraints including those that can
be expressed using the role-based constraint language
(RCL-2000) [1] and those supported by the NIST
standard RBAC model [9]. We demonstrate the use-

fulness of ABCL in different usage scenarios such as
in banking and cloud computing application domains.
We also discuss enforcement of ABCL constraints and
its performance. We also discuss A BCL enforcement
and its performance.

II RELATED WORK

Attribute Based Access Control. There is a siz-
able literature on ABAC in general. Damiani et al 7]
described a framework for ABAC' in open environ-
ments. Wang et al [27] proposed a framework that
models an ABAC system using logic programming
with set constraints of a computable set theory. The
Flexible access control system [14] can specify various
ABAC policies and provide a language that permits
the specification of general constraints on authoriza-
tions. Yuan et al [28] described ABAC in the aspects
of authorization architecture for web services. Lang
et al [16] provided informal configuration of DAC,
MAC, and RBAC through ABACin the context of
grid computing. These authors seek to develop an
access control system either for open systems such
as web, Internet, etc., or to overcome the limitations
of conventional access control models by utilizing at-
tributes. Park et al [18] categorized attributes ac-
cording to their mutability during execution of opera-
tions and developed a mechanism in which attributes
of entities can be updated as a side-effect of an ac-
cess. More recently, Jin et al [15] proposed an at-
tribute based access control model in which they pro-
vide an authorization policy specification language
and formal framework using which DAC, MAC and
RBAC policies can be expressed. These works focus
on ABAC in general and not much on attribute con-
straints in ABAC.

Constraints. Several authors have focussed on is-
sues in constraints specification in access control
systems primarily in RBAC. Constraints in RBAC
are often characterized as static separation of duty
(SSOD) and dynamic separation of duty (DSOD).
These two issues date back to the late 1980’s [6], [22].
A number of attempts initiated afterwards to identify
numerous forms of SSOD and DSOD policies [8,[26]
and to specify them formally [10,{13] in RBAC sys-
tems. The RCL-2000 language for specifying these
policies in a comprehensive way was proposed by Ahn
et al [1]E| More recently, Jin et al [15] proposed an at-
tribute based access control model in which they pro-
vide an authorization policy specification language

1Several aspects of ABCL have been inspired by RCL-2000, including the use of conflict sets and the oneelement (OE) and
allother (AO) operators. By dealing with attributes in general rather than just a single attribute of ‘role’, it will become evident

that ABCL goes well beyond RCL in many aspects.



that could also specify constraints on attribute as-
signment. However, their constraints specification fo-
cuses on what values the attributes of subjects and
objects may take given that users are currently as-
signed with particular attribute values. This is much
like constraints on what roles can be activated in
a user’s session in RBAC given that a user is pre-
assigned to a set of roles. Thus, prior work does
not address ABAC constraints comprehensively. In
this paper, we will show that ABCL can specify var-
ious types of constraints for configuring several of
these RBAC constraints, including those expressible
by RCL-2000 [i].

Attribute Based Encryption. This body of litera-
ture concerns cryptographic enforcement mechanisms
for attribute based access control systems. Sahani et
al [21] introduced the concept of Attribute Based En-
cryption (ABE) in which an encrypted ciphertext is
associated with a set of attributes, and the private
key of a user reflects an access policy over attributes.
The user can decrypt if the ciphertext’s attributes
satisfy the key’s policy. Goyel et al [11] improved
expressibility of ABE which supports any monotonic
access formula and Ostrovsky [17] enhanced it by in-
cluding non-monotonic formulas. Several other works
examine different ABE schemes.

This paper builds on our preliminary work on at-
tribute based constraint specification language [3].
In [3], we described the basic structure and func-
tionalities of ABCL. In this paper, we extensively
discuss ABCL structure including enforcement com-
plexities and performance evaluation. We also discuss
the expressiveness of ABCL by configuring a number
of well-known RBAC constraints as well as several
security requirements in different security domains.

IIT MOTIVATION AND SCOPE

Attributes can capture identities, security clearances
and classifications, roles, as well as location, time,
strength of authentication, etc. As such ABAC
supplements and subsumes rather than supplants
currently dominant access control models including
DAC, MAC and RBAC. Figure 1 shows a typi-
cal ABAC model structure that contains users (U),
subjects (9), objects (O) and different permissions
(P). There are also user attributes (UA), subject at-
tributes (SA) and object attributes (OA) associated
with users, subjects and objects respectively. A sub-
ject is the representation of a user’s particular inter-
action with the system. Each permission is associated
with an attribute-based authorization policy that de-
termines whether a subject should get that permiss-

! OA .
Authorization @
— , ABACa

Constraints

+ #» Association g——pp Creator

ABCL
Constraints

Figure 1: ABAC model with ABAC, and ABCL Constraints

ion on an object. An authorization policy compares
the necessary subject and object attributes to make
an authorization decision. Hence, proper attribute
assignment to the entities is crucially important in
ABAC.

As discussed in related work, recently, an ABAC
model called ABAC,, [15] proposed a policy specifi-
cation language that could specify policies for autho-
rizing a permission as well as constraints on attribute
assignment. The constraints of ABAC|, are shown in
the top row of figure 1(horizontal solid lines with a
single arrow-head). These constraints apply to val-
ues a subject attribute may take when the subject is
created, based on its owning user’s attributes, or an
object attribute may get when the object is created or
operated-on by a subject. ABAC,, constraints apply
only when specific events such as a user modifying a
subject’s attributes occur. In other words they are
event specific. They relate the user attributes to the
subject or the subject to the object depending on the
event in question. ABCL constraints, on the other
hand, are event independent and are to be uniformly
enforced no matter what event is causing an attribute
value to change. They are specified as restrictions on
a single set-valued attribute or restrictions on values
of different attributes of the same entity. ABCL con-
straints are depicted in the top row of figure 1 as arcs
with a single arrow-head.

The central concept in ABCL is conflicting relations
on attribute values which can be used to express no-
tions such as mutual exclusion, preconditions, and
obligations, amongst attribute values. For instance,
suppose a banking organization utilizes a set-valued
user (customer) attribute called benefit whose allowed
values are {‘bfy’, ‘bfy’| ..., ‘bfg’}. Say that the bank
wants to specify the following constraints: (a) a client
cannot get both benefits ‘bf;’ and ‘bfy’, (b) a client
cannot get more than 2 benefits from the subset
{‘bfy’, ‘bfs’, ‘bfs’}, and (c) in order to get ‘bfg’ the
client first needs to get ‘bfs’. Here, the first policy
represents a mutual exclusion conflict between ‘bf;’
and ‘bfy’, the second one is a cardinality constraint on
mutual exclusion and the last one is an example of a
precondition constraint. A number of other conflicts
among attributes may also exist.



Conflict-Relationship Level 3
(Multiple Entities (same type), Muttiple Attributes)
- represents conflcts among values
across aftibutes
- constraints applies across attributes
of muttple entity members, e.g. multple
users

—

Conflct-Relationship Level
(Single Entity, Multiple Attributes)
- represents conflcts among values
across afributes
~a constraint apples across aftributes
of each entity member, e.q. user,
separately

Conflict-Relationship Level 2
(Multiple Entities (same type), Single Attribute)
- represents conflicts among values
of each attibute individually
Confit-Relationship Level 0| | consrains apples on singl afrbute

(Singe Enty Single Attrbute) || of mutipe ity members, .. multle
- represents confcts among values || ysers

‘¥ of each attribute individually
- consfraint applies on single atirbute{
of each entity member, e.9. user,
separately

Figure 2: Attributes Relationship Hierarchy

Figure 2 gives a hierarchical classification of the at-
tribute conflict-relationships based on two parame-
ters: the number of entities and the number of at-
tributes of concern in a conflict relation. For example,
each constraint in level 0 is concerned with conflicts
among values of a single user attribute and it ap-
plies to each user independently. Level 1 allows con-
straints across different attributes of a single user. In
level 2, constraints evaluate conflicting values of each
attribute individually but across multiple users and
in level 3 it can be across different attributes across
multiple users. For instance, in the previous banking
example, if a constraint restricts both benefits ‘bf;’
and ‘bfy’ from offering to a client simultaneously, the
constraint falls in level 0. Section V- [2] shows exam-
ples of several other constraints those fall in different
levels of the relationship hierarchy. Again, further
discussion of this hierarchical model and correspond-
ing ABCL based functional requirements is given in
section I'V-

In the following sections, we present ABCL formal-
ization and discuss them for user attributes in an
ABAC model. However, ABCL is capable of express-
ing attribute assignment constraints of other entities
as well, e.g. subject and objects. Without the loss of
generality, we focus exclusively on user attributes in
this paper.

IV ATTRIBUTE BASED CONSTRAINT
LANGUAGE (ABCIL)

We now formally present the elements of ABCL.
ABCL consists of three basic components: the at-
tributes of different entities in an ABAC model, a
few basic sets and functions to capture different re-
lationships amongst attributes, and a language for
specifying constraints using basic sets and functions.

1 BASIC COMPONENTS OF THE ABCL
MODEL

For the purpose of this paper, we use the basic frame-
work of the ABAC,, model |15] as a representative
ABAC model for ABCL. However, note that ABCL
is not tailored for ABAC, and can be similarly ap-
plied to other ABAC models.

Table 1: Basic sets and functions of ABAC

U, S and O represent finite sets of existing users, subjects

and objects.

UA, SA and OA represent finite sets of user, subject and

object attribute functions.

P represents a finite set of permissions.

For each att in UA U SA U OA, Range(att) represents the

attribute’s range, a finite set of atomic values.

SubCreator: S— U. For each subject it gives the creator.

attType: UAUSAUOA—{set, atomic}. Given an attribute

name, this function will return its type as either set

or atomic.

Each attribute function maps elements in U, S and O to

atomic or set values.

Range(ua) if attType(ua)=atomic

oRange(ua) if attType(ua)=set
Range(sa) if attType(sa) = atomic

oRange(sa) if attType(sa)=set
Range(oa) if attType(oa)=atomic
oRange(oa) if attType(oa)=set

Yua€ UA. ua: U — {
Vsac€ SA. sa: S—

Yoac OA. oa: O— {

A brief overview of ABAC,, is provided in table 1.
Like most access control models, ABAC|, consists of
familiar basic entities: users (U), subjects (S) and
objects (O). Each of these entities is associated with
a respective set of attribute functions or simply at-
tributes (UA, SA and OA respectively). Two types of
attributes are considered in ABAC,: set-valued and
atomic-valued. For example, role is a set-valued at-
tribute since a user may take multiple roles in an or-
ganization. However, security-clearance is an atomic-
valued attribute since a user takes only a single value
for security clearance such as ‘top-secret’ or ‘secret’.
As shown in table 1, an attribute is a function from
the respective entity to a set of values that it can take
(the Range of the attribute). The Range could be set
or atomic-valued depending on the type of the at-
tribute. A special attribute called SubCreator is used
to keep track of the user that created a particular
subject. Note that a user can create any number of
subjects. The permissions that a subject can exercise
on an object depends on the attribute values of the
subject and object and the attribute-based authori-



Table 2: Derived Functions from Basic ABAC Sets
For each att € UA
assignedEntities;, ,;: Range (att)— 2V where
assignedEntities ; .+ (attval)={u| attvale Range(att)
A uw€ U A (att(u)=attval if attType(att)=atomic or
attvale att(u) if attType(att)=set)}

Table 3: Declared ABCL Conflict Sets
1. Expression for declaring sets that represent

conflicts among the values of a single attribute

For each atte UA and attType(att)=set there are

Zero or more

Attribute_Sety . = {avset1, avseta, ...
avset;=(attval, limit) in which attvale 2Range(att) 5nq
1<limit<|attval|.

2. Expression for declaring sets that represent

, avsett }, where

value conflicts across multiple attributes

For each AattsetC UA and RattsetC UA there is

ZEero or more

Cross_Attribute_Set ;7 Aqiiser, Rattser={attfuny, ..., attfun,},
where attfun; (att)=(attval, limit) in which atte Aattset

U Rattset and (attvale 2Range(att) if attType(att)=set or
attvale Range(att) if attType(att)=atomic) and 0<limit
<|attval|.

zation rule expressed for that permission in the sys-
tem. Since ABCL only concerns about constraints on
what values the attributes can take and not on au-
thorization rules for subject operations on objects or
subject creation and other operations, the overview of
ABAC |, provided in table 1 suffices for our purpose.

For specifying ABCL constraints, we specify addi-
tional derived functions for convenience. For each at-
tribute, we define assignedEntitiesyy o4 (table 2) that
identifies the set of users that are assigned a particu-
lar value of that attribute. Similar functions can also
be declared for subjects and objects.

2 BASIC SETS AND FUNCTIONS OF
ABCL

Attribute conflict can occur in several ways. ABCL
recognizes two types of conflict: values that have
conflict with other values of the same attribute (re-
ferred to as single-attribute conflict) and values hav-
ing conflict with the values of other attributes (cross-
attribute conflict). Note that single-attribute con-
flict is applicable only for set-valued attributes (e.g.
mutual-exclusive roles) while cross-attribute conflict
applies to both atomic and set-valued attributes.

In order to specify these two types of conflict, ABCL

facilitates the specification of two type of sets that
may contain conflicting values for single and cross-
attribute conflicts respectively and a formal language
for precisely specifying constraints based on these
conflicts. We discuss these sets in this subsection and
the language in the following.

Item 1 and 2 in table 3 provide the mechanism for
declaring sets for single-attribute and cross-attribute
conflicts respectively. As shown in item 1, each
Attribute_Set contains a set of values of an at-
tribute that may have a particular type of conflict
(mutual exclusion, precondition, inclusion, obliga-
tion, etc.). A separate Attribute_Set for each such
conflict could be specified. As previously mentioned,
the semantics of the constraints stated with respect
to an Attribute_Set will be discussed in the next
subsection. Each element of an Attribute_Set is an
ordered pair (attval, limit) where attval contains the
values that have some form of conflict and limit spec-
ifies the cardinality, that is the number of values in
attval for which the conflict applies. The interpre-
tation of limit could also be different, e.g. at least,
exactly, at most, etc. The Attribute_Set declara-
tion and initialization for the banking example of
section are as follows (the syntax for these ex-
pressions is shown in table 4).

Attribute_Sety peneir UMEDBenefit

UMEBenefit={avsety, avsets} where
avset;=({'bf1’,'bia’}, 1)
avseta=({‘bf1’,‘bf3’,'bfy’}, 2)

Attribute_Set y penesir PreconditionBenefit
PreconditionBenefit={ avset, } where
avset1=({‘bfs’, ‘bls’}, 1)

Here, avset; in UMEBenefit could indicate that the
values ‘bf;” and ‘bfs’ of the benefit attribute conflict
with each other. Similarly, avsets could indicate that
the benefit cannot take 2 or more of the values in
the set {‘bfy’, ‘bfy’, ‘bfy’}. Note that the limit of
UMEBenefit indicates that the number of elements
from attval should be less than or equal to the value
of limit. While, in PreconditionBenefit the number of
elements from attval should be at least equal to limit.

As mentioned earlier, there could also be conflicts
amongst values across different attributes of a user.
Let us say in the banking example of section[[TI} there
is another user attribute called felony and its range
is {fly’, ‘fly’, ‘fl3’}. The bank seeks to restrict a user
to benefit ‘bf;’ if she has ever committed felony ‘fl;’
or ‘fly’. This is a mutual exclusive conflict relation



Table 4: Syntax of Language

Declaration of the Attribute_Set and Cross_Attribute_Set:
<attribute_set_declaration> ::= <atribute_set_type> <set_identifier>
<attribute_set_type> ::= Attribute_Sety <attname> | Attribute_Sets <attname> | Attribute_Seto <attname>

<cross_attribute_set_type> ::= Cross_Attribute_Set y < Aqttset>,< Rattset> | Cross_Attribute_Sets < aattset>, < Rattset>

‘ Cross_Attribute_Set O,<Aattset>,< Rattset>

<Aattset> ::= {<attname>, <attname>*}
< Rattset> ::= {<attname>, <attname>*}

<set_identifier> ::= <letter> | <set_identifier><letter> | <set_identifier><digit>

<digit> = 01|2|34]5|6|78|9
<letter> ::= alb|c|....|z|y|2|A|B|C|...|X| Y|Z

Constraint Expressions:

<statement> ::= <statement> <connective> <statement> | <expression>

<expression> ::= <token> <atomiccompare> <token> | <token> <atomiccompare> <size>
| <token> <atomiccompare>|<set>| | <token> <atomiccompare> <set> | <token>
<token> ::= <token> <setoperator> <term> | <term> | |<term>>|
<term> ::= <function> (<term>) | <attributefun> (<term>) | OE (<relationsets>).<item>
| OE (<term>) | OE (<set>) | AO (<term>) | AO (<set>) | <attval>

<connective> = A | =

<setoperator> =€ |U | N| ¢
<atomicoperator> =+ | < | > | < | > | # | =
<set> = U| S| O

<relationsets> ::= <set_identifier>

<attname> ::= uay | uaz | ... | uag | sa1 | saz | ... | say | oa1 | ... | oax

7|&

<attval> ::= ‘uajvaly’ | ‘uaivaly’ | ... | ‘uagval,
<size> u=¢|1|..|N

sajvaly’ | ‘saivalp’ | ... | ‘sayvals’ | ‘oaivali’ | ... | ‘oazvaly’

<item> ::= limit| attval| attfun(<attname>).limit| attfun(<attname>).attval

<attributefun> ::= wai | vag | ... | uag | sa1 | saz | ... | say | oay | ... | oaz

<function> ::= SubCreator | assignedEntities ; <attname> | assignedEntitiess <attname> | assignedEntities o, <attname>

among the values of benefit and felony. These rela-
tions are represented as another type of relation-set
called Cross_Attribute_Set which is formally de-
fined in table 3 item 2. Each Cross_Attribute_Set
is declared for two arbitrary sets of user attributes
which are determined at declaration time. These
two sets of attributes are represented as Aattset and
Rattset and combination of certain values of the at-
tributes in Aattset as a group has specific type of con-
flicts with certain values of each attribute in Rattset.
In other words, values of the attributes of Aattset to-
gether restrict the values of each attribute in Rattset.
Each element of a Cross_Attribute_Set is a func-
tion called attfun that returns the values of the at-
tributes of Aattset and Rattset as an ordered pair
(attval, limit) where attval represents the values and
limit is the cardinality. Cross_Attribute_Set decla-
ration and initialization for the banking example are
as follows (the syntax is shown in table 4).

Cross_Attribute_Set y, aattset Rattset UMECFEFB
Here, Aattset= {felony} and Rattset= {benefit}

UMECFB={ attfun; } where
attfuny (felony)=(attval, limit)
where attval={‘fl;’, ‘fla’} and limit=1
attfun (benefit)=( attval, limit)
where attval={‘bf;’} and limit=0

Using the set above, one can state if at least one value
from {‘fl;’,‘fls’} is assigned to felony of a user, ‘bfy’
should not be assigned to benefit of that user.

ABCL also has two nondeterministic functions,
oneelement and allother. The oneelement(X) returns
one element x; from set X and in a constraint expres-
sion it is written as OE(X ). Multiple occurrences of
OE(X) in a single ABCL expression selects the same
element x; from X. The allother(X) returns a subset
of elements from X by taking out one element with
OE(X). We usually write allother as AO. These two
functions are related by context, because for any set
S, { OE(S)}U AO(S)=3S, and at the same time, neither
is a deterministic function. An example use of OE is
as follows.



Requirement: No user can get more than three ben-
efits.
Expression: |benefit( OE(U))| < 3

OE(U) means a single user from U and benefit(
OE(U)) returns all benefits that are assigned to that
user. This expression ensures that a single user can-
not have more than three benefits. Later, we will see
how AO is used in an ABCL expression.

3 SYNTAX OF ABCL

The syntax of ABCL is defined by the grammar in ta-
ble 4 in Backus Normal Form (BNF). The grammar
contains declaration syntax for both type of relation-
sets Attribute_Set and Cross_Attribute_Set and
syntax for constraint expressions.

4 ABCL ENFORCEMENT

Algorithm 1 User Attribute Assignment

1: procedure AssignAttributetoUser(u, att, attval)
2: if u€U and atte UA and attvalcRange(att) then
4 att(u) < att(u) U attval

5 for all cnst € ConsExprSet do

6 if Evaluate(cnst)=false then

7 att(u) < att(uw)\ attval

8 Return false

9 end if

10: end for

11: Return true

12: end procedure

ABCL constraints are enforced during each attribute
assignment to a user as shown in algorithm 1. Here,
inputs of the assignment procedure are a user (u), at-
tribute name (att) and the value (attval) that needs
to be assigned to u. The output is true/false with
true indicating the requested attribute value can be
assigned. The algorithm temporarily assigns attval to
u and calls the Fvaluate function for each constraint
expression in ConsExprSet to check whether or not
the assignment would satisfy the constraint. The
Evaluate function evaluates each constraint which is
simply a logical formula. If any of the constraints is
not satisfied, the attval assignment is not allowed and
the function returns false. Otherwise, the function re-
turns true and attval is assigned to u. ConsExprSet
contains all ABCL constraints for the user attributes.
Similar to RCL-2000 [1], ABCL constraints are rep-
resented in the form of restricted first order predicate
logic (RFOPL) expressions for enforcement. RFOPL
is a restricted version of FOPL that contains only

universal quantifiers (V) where in each expression V
comes first followed by the predicates. The following
is an example of an A BCL constraint and correspond-
ing RFOPL expression:

ABCL Expression: id( OE(U)) # id( OE( AO(U))
RFOPL Expression: Yule€U, Yu2eU-ul: id(ul)
# id(u2)

Here, OE(U) and OE( AO(U)) is converted to
VuleUand Yu2€U-ul in RFOPL expression. The
general structure of a converted RFOPL expression
from ABCL is as follows:

1) The expression has a (possibly empty) sequence
of universal quantifiers as a left prefix, and these are
the only quantifiers.

2) The quantifier part will be followed by a predicate
separated by a colon (:) (i.e., universal quantifier part
: predicate).

3) The predicate has no free variables or constant
symbols. All variables are declared in the quanti-
fier part (e.g., Vue U, Vcben€ Mutual Exlcusive Benefit,
Vrerole(u)).

4) Predicate follows all rules in the syntax of ABCL
except the term syntax in table 4. The syntax for
term in RFOPL is as follows in which an element is
a variable in quantifier part:

<term> ::= <function> (element) | <attributefun> (element)
| element.<item> | element | (<set>-{element}) | <attval>
A loop is created for each quantifier to traverse re-
spective elements and the parser parses predicates of
the expression. The following section discusses the
ABCL enforcement complexity.

5 CONSTRAINTS HIERARCHY AND EN-
FORCEMENT COMPLEXITY

We discuss the enforcement complexity of the
ABCL constraints of each level in attribute conflict-
relationship hierarchy.

Level 0 (Single User, Single Attribute): In this level,
the system neither contains cross attribute relations
nor constraints evaluating those relations. The sys-
tem needs a set of users (U), Attribute_Set and
functionality to evaluate properties of each user sep-
arately ( OE). Here, a constraint enforcement com-
plexity is O(NxMxP) where N is the number of
users, M is the number of elements in respective
Attribute_Set and P is number of predicates in the
expression and their retrieval cost which depends on
what data structure has been used.

Level 1 (Single User, Multiple Attributes): Conflict-
relations among values across attributes are identified



Conflict-Relationship Level 3
(Multple Users, Multiple Attributes)
Requirements:
K‘ 11BasicSets 2Confct Atrute et '\
3 Cross Confict Atibute Sets 4.0E Funcion 1
5.A0 Fncion 6 Derved Funcis oona)| | Confict-Relaonsp Level2
Conflct-Relationship Level 1 (Multple Users, Single Attribute)
(Single User, Multiple Attributes)

Requirements:
1,Basic Sets 2.Confict Atirbute Sets
3.0E function 4 Cross Conflct Attribute Sets

Conflict-Relationship Level
‘\ (Single User, Single Attribute)
Requirements:
1Basic Sets 2.Conflct Atrbute Sets
3.0 function

Requirements:
1. Basic Sets 2. Conflict Atirbute Set§
3. OE functon 4.AO function
5.Derived Functons (optional)

-

Figure 3: Relationship Hierarchy with Required ABCL Functionality

and maintained and constraints are applied to
each user separately. Besides the functionalities
of relationship level 0, Cross_Attribute_Sets are
needed in this level. The enforcement complex-
ity is O(Nx(M+0O)xP) where N is the number
of users, M and O size of Attribute_Set and
Cross_Attribute_Set respectively, and P is number
of predicates and their retrieval cost.

Level 2 (Multiple Users, Single Attribute): Con-
straints are developed based on conflict-relations
among values of an attribute and should apply to a
set of users combinely. The function AO is required in
a constraint expression besides OE for enforcing con-
straints across different users. The complexity here
is O(N?xMxP). Note that, constraints in this level
enable dynamic separation of attribute values across
subjects of a single user. For instance, a constraint
might say that two subjects of a user cannot get ‘pres-
ident’ role simultaneously.

Level 3 (Multiple Users, Multiple Attributes): In
this level, all type of constraints can be generated.
The complexity is O(N?x (M+0)xP) and it can spec-
ify both single attribute and cross attribute conflicts
and enforce within or across users.

V ABCL USE CASES

We first show an ABCL instantiation for represent-
ing constraints in RBAC system. Then, we present an
extensive case study in which a large set of ABCL ex-
pressions is generated to capture various access con-
trol requirements of a banking organization. Finally,
we discuss several security requirements that cloud
consumers should consider while running their vir-
tual machines in an Infrastructure-as-a-Service (IaaS)
public cloud and also provide A BCL specifications for
these requirements.

1 RBAC CONSTRAINTS (RCL-2000 AND
NIST-RBAC SOD)

Table 5: Attributes of User, Subject and Object in RBAC

Attribute Name attType Range
UA role set {r1’, ‘r2’, ..., ‘tn’}
SA activerole set {‘r1’, ‘r2’, ..., ‘tn’}
OA permittedrole set {‘r1’, ‘r2’, ..., ‘tn’}

Table 6: Constraint Specification for RBAC SSOD and DSOD

1. Attribute_Sets Declaration:
Attribute_Set s .o ConflictRoles
ConflictRoles={ avset1, avseta, ...} where avset; =
(attval, limit) where attvalc2Range(role) and
limit=1 (for RCL-2000) or 1<limit<|attval| (for NIST-RBAC)
Attribute_Setg ,ctierole ConflictActiveRoles
ConflictActiveRoles={ avset1, avseta, avsets, ..
avset; = (attval, limit) where attvalc2Range(activerole) 5y
limit=1 (for RCL-2000) or 1<limit<|attval| (for NIST-RBAC)
2.ABCL Expression for SSOD of RCL-2000
and NIST-RBAC

Requirement: No user should be assigned to two roles which

.} where

are in conflict with each other.
Expression: |OE(ConflictRoles).attval N role(OE(U))| <
OE(ConflictRoles).limit
3.ABCL Expression for DSOD of RCL-2000
and NIST-RBAC
Requirement 1: A Subject of a user cannot activate roles
having conflict with each other.
Expression:|OE(ConflictActiveRoles).attval N
activerole(OE(S))| < OE(ConflictActiveRoles).limit
Requirement 2: Subjects of a user cannot activate roles
having conflict with each other.
Expression: SubCreator(OE(S))=SubCreator(OE(AO(S)))
= |(activerole(OE(S)) N OE(ConflictActiveRoles).attval) U
(activerole(OE(AO(S))) N OE(ConflictActiveRoles).attval)|
< OE(ConflictActiveRoles).limit

In RBAC, users create sessions in which they acti-
vate certain roles to perform particular tasks. The
main constraints in RBAC concerns static and dy-
namic separation of duty (termed SSOD and DSOD
respectively). SSOD is applied on role assignment
to users and DSOD is for role activations within or
across sessions of a user. An ABAC model could be
configured to enforce RBAC by defining only one at-
tribute called role for users, subjects and objects as
shown in Table 5. Here, a subject is synonymous to
a session in RBAC. Hence, SSOD is applied during
a user’s role attribute assignment and DSOD for ac-
tiverole assignment to subjects by their owners.



Table 6 shows the ABCL expressions for SSOD
and DSOD constraints proposed in two well-known
RBAC constraint specifications: role based con-
straint language (RCL-2000) [1] and constraints of
NIST-RBAC [9]. RCL-2000 has a set called conflicted
role (CR) in which each element of CR is a set of roles
having conflict with each other. Here, SSOD and
DSOD are maintained by allowing no more than one
role assigned to users or activated in any user session
respectively from each set element of CR. RCL-2000
also provides a constraint specification language for
generating various constraints.

NIST-RBAC includes a cardinality metric with each
set element that allows variable number of roles from
each conflicted set instead of always allowing only
one. In table 6, two instantiations of Attribute_Set,
ConflictRoles and ConflictActiveRoles are declared in
order to represent conflicted values of role and active-
role attributes. Each set element of these sets is an
ordered pair (attset, limit) where attset is the con-
flicted values and limit is the cardinality.

Items 2 and 3 of table 6 shows ABCL constraint
expressions for SSOD and DSOD respectively that
capture both RCL-2000 and NIST-RBAC require-
ments. Similar to conflict role-set, RCL-2000 also
has a set C'U representing different set of conflicting
users. ABCL can generalize the concept of conflict-
ing users by introducing a user attribute ucType that
represents different types of user conflict. Therefore,
instead of identifying each conflicted user and creat-
ing a conflict set like CU, the values of ucType deter-
mine the conflict group a user belongs to and restrict
user-role assignment accordingly.

2 SECURITY POLICY SPECIFICATIONS
FOR BANKING ORGANIZATIONS

We present ABCL constraints for several high-level
security requirements in a banking organization. Due
to the space limitation, we only show constraints for
user attribute management in this context. In a
banking organization, let us consider a finite set of
existing users (U) in which a user is a human being
and could be of different types, e.g. client, junior em-
ployee. Table 7 shows different user attributes, their
types and ranges in this system. Each user is assigned
an attribute ¢d which is a unique identifier. Attribute
uType represents the type of a user and orgType rep-
resents the organization a user belongs to. There is
a role attribute representing various job descriptions
of a user such as ‘customer’, ‘cashier’; etc. The bank

Table 7: User Attributes (UA)

Attribute attType Range
id atomic {4d1’,4ide’, ..., ‘ida’}
uType atomic {‘client’, ‘junior’, ‘senior’, ‘leader’}
org Type set {‘org1’, ‘orga’, ..., ‘orgao’}
role set {‘customer’, ‘cashier’, ‘manager’,
‘president’, ‘vice-president’}
benefit set {bfy’, ‘bfa’, ‘bfs’, ..., ‘bf1o’}
felony set {fly’, ‘fl’, ‘Az, ..., flg’}
loan set {car’, ‘house’, ‘education’}
cCard set {‘card;’, ‘carda’, ..., ‘cardi2’}

might provide a number of benefits i.e. bonus, cash
back rate, etc, to the customers which is represented
by the benefit attribute. Attribute felony represents
if the user has any felony record and loan and c¢Card
represent granted loans and credit cards to a user
respectively. Suppose that the banking authority
wishes to specify the following security policy require-
ments for user attribute management. The ABCL
formalism for these requirements are given in Ap-
pendix 1. We also show the conflict-relationship level
of each of these constraints.

Req# 1: A user can get at most 5 benefits. (Rela-
tionship lev.0)

Req# 2: A user cannot hold the ‘president’ and
‘“vice-president’ roles simultaneously. (Lev.0)

Req# 3: A user cannot get both benefits ‘bf;” and
‘bfy’. (Lev.0)

Req# 4: A user can get at-most 5 loans and cCards.
(Lev.1)

Req# 5: If a user has felony records ‘fl;” and ‘fly’,
she cannot get more than one benefit from {bfl, bf2,
bf3}. (Lev.1)

Req# 6: If a user is a ‘client’, she cannot get certain
roles, e.g. ‘cashier’, ‘manager’. (Lev.1)

Req# 7: No more than 12 users can get a ‘car’ loan.

(Lev.2)

Req# 8: ids of two users cannot get the same
value.(Lev.2)

Req# 9: If a user has felony ‘fl;’ and belongs

to ‘orgy’, no users from ‘org;’ can get benefit ‘bf;’.
(Lev.3)

3 SECURITY POLICY SPECIFICATION
FOR IAAS PUBLIC CLOUD

In an TaaS public cloud, virtual machines (VMs) are
provided by a service provider to its clients where the
physical servers are shared by multiple clients. Hence,
a client VM could be compromised by at least four
different types of personnel: (1) malicious adminis-



trative users (admin) of the cloud provider, (2) mali-
cious VMs of a competing client (tenant), (3) client’s
own admins, and (4) outsiders from the cloud system.
Threats relevant to 3 and 4 are conventional security
issues for which well-known protection mechanisms
already exists, e.g. firewall, conventional access con-
trol policies. Since, threats 1 and 2 are more specific
to TaaS public cloud environments, we aim to specify
ABCL constraints for mitigating these threats.

In an TaaS public cloud, a provider’s admins mali-
ciously or unintentionally may abuse their privileges
to compromise consumer’s confidential data. Cloud
service providers claim that they are aware of this
issue and they have the mitigation mechanisms [12]
such as zero tolerance policy and isolating physical
access to servers. However, zero tolerance policy
is useful only after an attack has occurred. Also,
several attacks including stealing of cleartext pass-
words, private keys, etc. by a malicious admin do
not require any physical access [20]. Bleikertz et
al |4] proposed a privilege management process for
cloud admins by proposing three different admin-
istrative roles, i.e. hardware-maintenance, remote-
maintenance, and security-team, for requiring sepa-
ration of duties. An admin with remote-maintenance
role only has access and responsibility to maintain the
servers that run client VMs . However, this mech-
anism cannot restrict certain administrative actions
including restricting same admin from accessing VMs
from competing tenants in multi-tenant public cloud.
Competing tenants are organizations with conflict of
interests, e.g. business competitors, conflicting de-
partments of an organization. Thus, access to the
VMs of the competing tenants by same admin might
cause (un)intentional critical information flows from
one VM to another. Again, a malicious VM of a
competing tenant might also launch attack. Risten-
part et al [19] showed a side-channel attack is pos-
sible when VMs are co-located in the same server.
Berger et al [2] mentioned other attacks, e.g. denial-
of-service, could also be initiated by a malicious VM
towards other VMs sharing same cloud resources, e.g.
hosts, network. Hence, a cloud consumer should de-
mand several security policies from the IaaS cloud
providers, e.g. isolate physical location of their VMs
from competing tenants VMs, restrict administrative
privileges, etc. Below we enumerate several such is-
sues, including those addressed by [2]. We categorize
them as admin privilege management and VM re-
sources management in IaaS cloud.

A. Security issues related to the VMM resources
management

1) A consumer tenant wants its high sensitive VMs
not be co-located on the same physical server where

10

VMs of its competing tenants reside.

2) A tenant does not want its VMs to connect to a
network (VLAN) to which VMs from competing ten-
ants are connected.

3) A group of tenants collaborate together, thus, they
want their collaboration-purposed VMs to reside in
same server for utilizing several issues, e.g. perfor-
mance, security, etc.

4) Collaborating tenants wants their VMs to connect
to the same network so that they can securely share
information.

5) Some VMs of a tenant might require to exchange
highly critical data for some reasons. Thus, they need
to reside on same physical sever to utilize internal
process communication.

6) A tenant wants highly sensitive VMs to reside in
different servers so that any kind of service interrup-
tion or security issues on that server may only cause
partial disruptions.

7) A tenant allows its less sensitive VMs to reside on
the same server where V»Ms of a competing tenant re-
side. However, during maintenance, these VMs need
to be migrated to a server that does not contain any
VMs from the competing tenants.

B. Security issues on the admins’ privileges
management

1) A tenant does not allow the same admin to access
their sensitive VMs if she has access to the competing
tenant V»Ms.

2) In general, an admin cannot maintain more than
n tenants.

3) A tenant cannot be managed by more than one
sessions (subjects) of an admin simultaneously.

4) An admin cannot access more than n VMs of a
tenant simultaneously (e.g. in the same session) for
protecting possible aggregation of the critical infor-
mation.

Appendix 2 shows a set of ABCL constraints for con-
figuring these security issues, eventually, which is a
mitigation strategy for the threats a tenant might
face from the malicious tenants or provider’s ad-
mins. Presently, trust relationship between the cloud
providers and clients play a central role on a service
level agrement which is nothing but a written con-
tract without proper mechanisms for enforcing these
security requirements. ABCL can reduce this trust
dependence in which clients can explicitly mention
and enforce their security requirements. At the same
time, the providers could provide these guarantees as
a value-added service by implementing A BCL in their
system.



VI PERFORMANCE EVALUATION

In this section, we present experiments aimed at eval-
uating the performance of our A BCL enforcement al-
gorithm during user attribute assignment (discussed
in section IV- . The experiments were conducted
on a machine having the following configuration:
2.40GHz with 2GB RAM running a Windows 7 en-
terprize OS and JDK 1.7. As shown in section IV-
ABCL constraints are represented as RFOPL expres-
sions for enforcement during attribute assignments to
a user and each universal quantifier of an expression
generates a loop for traversing respective elements
and checks if the constraint holds for those elements.
Here, an element could be a member of the user set
(U) or a declared relation-set and the required time
for a constraint enforcement during a user attribute
assignment depends on the size of these sets.
Simulation scenario: We define three user at-
tributes: attl, att2, and att3 where att! and att2 are
atomic and att3 set valued. We enforce the following
two constraints during an attribute assignment to a
user (shown in RFOPL format):

1) Yul € U, Vu2 € U-ul, Vele € MUattl: attl(ul)
€ ele.attval A attl(u2) € ele.attval = att2(ul) #
att2(u2).

2)Vu e U,V ele € MUatt3: | att3(u) N ele.attval |
< ele.limit.

Here, MUatt1 and MUatt3 contains mutual exclu-
sive (ME) values of att! and att3. Expression 1 says
if attl of two users contains ME values then they
can get the same att2 values and expression 2 says
a user cannot get ME att3 values. In experiment
1, we compare the required time of our enforcement
algorithm when the number of users increase. We
vary the number from 50 to 500 users with an in-
crease of 50 at each step and check the required time
for an attribute assignment to a user. We separately
enforce these two constraints and check the timing.
Note that, the size of both MUatt] and MUatt3 are
fixed to 5 elements, hence, execution time varies for
the first two quantifiers in constraint 1 and the first
quantifier of constraint 2. Figure 4(A) shows the re-
sults where constraint 1 takes more time as it ap-
plies to multiple users (falls in level 1 of the conflict-
relationship hierarchy) while constraint 2 applies to
every user separately (falls in level 0). Enforcement
time for constraint 1 is 0.3s for 50 users with compar-
ison to 1.27s for 500 users. And, for constraint 2 it is
0.109s to 0.3937s. Therefore, this process is scalable
for a large set of users. In experiment 2, we verify
the timing when the number of constraints increase
while the total number of users are fixed to 500. Here,
all constraints are similar to the constraint 1 which

11

W
Constraint Enforcement ime
1ith nereasing No.of Users

B
ConstraintEnforcamen Time
With ncrsing No. o Constrants

(o
Constrant Enforcemen Time
1ith nereasing No. of et-Elements

5010 150 20 250 N0 %0 40 &
No. of Users

- Constraint 1 +Constraint 2

oo Comtoil Mo ofemens nReonse L)

Figure 4: Evaluation Graphs of ABCL Constraints

belongs to the hierarchical level 1, thus, applies across
users. Figure 4(B) shows the required enforcement
time when number of constraints increases from 5 to
30 which is only a 1.84s increase. In experiment
3, we analyze when the elements of a relation-set in-
creases. Here, we enforce constraint 1 with number of
users fixed to 500. Therefore, the required time varies
only for the 3rd quantifier which depends on the size
of MUatt1. Figure 4(C) shows the enforcement time
where number of elements in MUatt! increases from
5 to 30. This causes an increase of 0.91s which is neg-
ligible, hence, it proves that the ABCL enforcement
algorithm is scalable.

VII CONCLUSION

Relationship constraints among attributes is an im-
portant factor for attribute assignment in ABAC.
We have developed ABCL for specifying these con-
straints on attribute assignments. We identified
conflict-relationship hierarchy of an attribute based
on the functional requirements and complexities to
represent these constraint relations. We have shown
ABCL configurations for several RBAC constraints
that show its relevance in traditional contexts. ABCL
configurations for a banking organization provides its
expressiveness for generating various constraints for
fulfilling an organization’s security requirements. Fi-
nally, we have shown ABCL can formally specify con-
straints in cloud IaaS. In the future, we plan to im-
plement and test ABCL in the OpenStack cloud.

Acknowledgement. This work is partially sup-
ported by the NSF (CNS-1111925) and AFOSR
MURI grants (FA9550-08-1-0265).



References

[1]

[12]

[13]

[14]

G. J. Ahn and R. Sandhu. Role-based authoriza-
tion constraints specification. ACM Trans. Inf.
Syst. Secur., 3(4):207-226, Nov. 2000.

S. Berger et al. Security for the cloud infras-
tructure: Trusted virtual data center implemen-
tation. IBM Journal of R&D, 53(4):6-1, 2009.

K. Bijon, R. Krishnan, and R. Sandhu. Towards
an attribute based constraints specification lan-
guage. In Proc. of the PASSAT, 2013.

S. Bleikertz, A. Kurmus, Z. Nagy, and
M. Schunter. Secure cloud maintenance - pro-

tecting workloads against insider attacks.
Proc. of the ASIACCS, 2012.

In

V. C. Hu et al. Guide to attribute based ac-
cess control (ABAC) definition and considera-
tions (draft). NIST Special Publication, 2013.

D. D. Clark and D. R. Wilson. A Comparison
of Commercial and Military Computer Security
Policies. In Proc. of the IEEE SEP, 1987.

E. Damiani, S. D. C. Di Vimercati, and P. Sama-
rati. New paradigms for access control in open
environments. In Proc. of the ISSPIT, 2005.

D. Ferraiolo, J. Cugini, and R. Kuhn. Role-
based access control (RBAC): Features and mo-
tivations. In Proc. of the 11th ACSAC, 1995.

D. F. Ferraiolo et al. Proposed NIST standard
for role-based access control. ACM Tran. Inf.
Sys. Sec., 2001.

V. D. Gligor et al. On the formal definition
of separation-of-duty policies and their composi-
tion. In Proc. of the IEEE S6P, 1998.

V. Goyal et al. Attribute-based encryption for
fine-grained access control of encrypted data. In
Proc. of the ACM CCS, 2006.

E. Grosse, J. Howie, J. Ransome, J. Reavis, and
S. Schmidt. Cloud computing roundtable. In
Proc. of the IEEE S&P, 2010.

T. Jaeger. On the increasing importance of con-
straints. In Proc. of the ACM RBAC, 1999.

S. Jajodia et al. Flexible support for multiple
access control policies. ACM TODS, 26(2):214—
260, 2001.

12

[15]

[16]

[17]

[26]

[27]

[28]

X. Jin, R. Krishnan, and R. Sandhu. A Unified
Attribute-Based Access Control Model Covering
DAC, MAC and RBAC. In DBSec, 2012.

B. Lang, I. Foster, F. Siebenlist, R. Ananthakr-
ishnan, and T. Freeman. A flexible attribute
based access control method for grid computing.
Journal of Grid Computing, 7(2):169-180, 20009.

R. Ostrovsky, A. Sahai, and B. Waters.
Attribute-based encryption with non-monotonic
access structures. In Proc. of the ACM CCS,
2007.

J. Park and R. Sandhu. The UCON 4p¢c usage
control model. ACM Transactions on Informa-
tion and System Security (TISSEC), 7(1), 2004.

T. Ristenpart, E. Tromer, H. Shacham, and
S. Savage. Hey, you, get off of my cloud: explor-

ing information leakage in third-party compute
clouds. In Proc. of the ACM CCS, 2009.

F. Rocha and M. Correia. Lucy in the sky with-
out diamonds: Stealing confidential data in the
cloud. In Proc. of the IEEE DSN-W, 2011.

A. Sahai and B. Waters. Fuzzy identity-based
encryption. In Proc. of the FEUROCRYPT. 2005.

R. Sandhu. Transaction control expressions for
separation of duties. In Proc. of the jth ACSAC,
1988.

R. S. Sandhu. Lattice-based access control mod-
els. IEEE Computer, 26(11), 1993.

R. S. Sandhu and P. Samarati. Access control:
Principle and practice. Communications Maga-
zine, IEEE, 32(9):40-48, 1994.

C. Schlager, M. Sojer, B. Muschall, and G. Per-
nul. Attribute-based authentication and authori-
sation infrastructures for e-commerce providers.
In Proc. of the EC-Web. 2006.

R. T. Simon and M. E. Zurko. Separation of
duty in role-based environments. In Proc. of the
IEEE CSFW, 1997.

L. Wang, D. Wijesekera, and S. Jajodia. A logic-
based framework for attribute based access con-
trol. In Proc. of the ACM FMSE, 2004.

E. Yuan and J. Tong. Attributed based access
control (ABAC) for web services. In Proc. of the
IEEE ICWS, 2005.



Req# 6: | OE(UMECTR)(uType).attset N uType(OE(U))| >
OE(UMECTR)(uType).limit = | OE(UMECTR)(role).attset
N benefit(OE(U))| < OE(UMECTR)(role).limit

[29] X. Zhang, R. Sandhu, and F. Parisi-Presicce.
Safety analysis of usage control authorization
models. In Proc. of the ASIACCS, 2006.

Req# 7: |assignedEntities 7, 1., (‘car’)| < 12

Appendix 1. Formal ABCL Specification

for Banking Organization

Table 8: Attributes
1. Attribute_Set Declaration and Initialization:
Attribute_Set y penesit UMEBenefit
UMEBenefit={avsety, avseta}

Req# 8: id(OE(U)) # id(OE(AO(OE(U)))))

Req# 9: |OE(UMECFOB)(felony).attset N felony(OE(U))|

> OE(UMECFOB)(felony).limit A |OE(UMECFOB)(orgType).attset
N orgType(OE(U))| > OE(UMECFOB)(orgType).limit =
|OE(UMECFOB)(benefit).attset N (benefit(OE(U)) U
benefit(OE(AO(U))))| < OE(UMECFOB)(benefit).limit

avset1=({‘bf1’, ‘bf2’}, 1),
avsetg:({‘bfg’, ‘bf3’, ‘bfy’, ‘bf5’}, 2)
Attribute_Set o UMERole
UMERole={avset; }
avset1=({‘president’, ‘vice-president’}, 1)
2. Cross_Attribute_Set Declaration and
Initialization:
Cross_Attribute_Sety (urype}, {roley UMECTR
UMECTR={attfun; }
attfun; (uType)=({‘client’},1)
attfun; (role)=({‘cashier’,‘manager’,‘president’,
‘vice-precident’}, 0)
Cross_Attribute_Sety . (jeiony}, {benefity UMECFB
UMECFB={attfun, attfuns}
attfun; (felony)=({‘l1’,‘12°},2)
attfun, (benefit)=({‘bf1’,‘bfy’,‘bfs’},1)
attfuny (felony)=({‘fl1’},1), attfuny (benefit)=({‘bf2’}, 0)
Cross_Attribute_Sety . (jeiony, orgType}, {benefity UMECFOB
UMECFOB={attfun, }
attfun; (felony)=({‘l1’},1), attfun (orgType)=({‘org:’}, 1),
attfun; (benefit)=({‘bf1’}, 0)
Table 8 shows declaration and initialization of the
ABCL sets for representing necessary relations among
attributes for specifying security policies given in sec-
tion V-[2l UMEBenefit contains mutual exclusive val-
ues of the benefit attribute and UMFERole represents
mutual exclusive roles. Similarly, mutual exclusive
conflicts of uType with role, felony with benefit, and
felony and orgType with benefit attributes are rep-
resented by the Cross_Attribute_Sets UMECTR,
UMECFB, and UMECFOB respectively. The follow-
ing are the ABCL expressions for the requirements of
section V-

Req# 1: |benefit(OE(U))| < 5.

Req# 2: |OE(UMERole).attset N role(OE(U))|
< OE(UMERole).limit

Req# 3: |OE(UMEBenefit).attset N benefit(OE(U))| <
OE(UMEBencefit).limit

Req# 4: |cCard(OE(U)) + loan(OE(U))| < 5
Req# 5: |OE(UMECFB)(felony).attset N felony(OE(U))| >

OE(UMECFB)(felony).limit = |OE(UMECFB)(benefit).attset
N benefit(OE(U))| < OE(UMECFB)(benefit).limit

13

Appendix 2.
IaaS Cloud

ABCL Specification for Public

In this section, we presents ABCL constraints spec-
ification for the security requirements of a public
TaaS cloud system which is given in section V-
There are sets of administrative users (U) and sub-

jects (S) where each subject belongs to a particular

administrative user. In this system, objects are vir-
tual machines (VM) which are represented as a set
(0). Table 9 shows user, subject, and object at-
tributes, their types and ranges and the descriptions
of their purpose. The declaration and initialization
of the required ABCL sets are shown in table 10.
UMETnt, UMEGrp, and UMFERole represents the
mutual exclusive conflicts of the user attributes tnt,
adminGrp, and role respectively. Mutual exclusive
values of the subject attribute acctnt are represented
in SMETnt. OConsTnt and OMETnt contain values
of otnt having mutual exclusive and consistency con-
flicts respectively. ABCL constraints for the policies
of section V-[3l are as follows:

A. VM resource management Constraints
Req# 1: High sensitive VMs of a tenant cannot reside on
same server that contains VMs from competing tenants
Expr: sensitivity(OE(O))=high A otnt(0E(O)) €
OE(OMETnt).attvalA otnt(OE(AO(O))) €
OE(OMETnt).attval = server(OE(O))

# server(OE(AO(O)))

Req# 2: VMs of cooperative tenants reside on same server.
Expr: otnt(0OE(O)) € OE(OConsTnt).attval A
otnt(OE(AO(O))) € OE(OConsTnt).attval

= server(OE(O))=server(OE(AO(O)))

Req# 3: Similar purpose VMs reside in same server.
Expr: otnt(0OE(O))=o0tnt(OE(AO(O))) A
purporsetype(OE(O)) =purporsetype(OE(AO(O)))

= server(OE(O))=server(OE(AO(O)))

Req# 4: High sensitive VMs of tenants are located to
different servers.

Expr:sensitivity(OE(O))=‘high’ A sensitivity(OE(AO(O)))
=‘high’ A otnt(OE(O))=o0tnt(OE(AO(O)))=>server(OE(O))
#server(OE(AO(O)))

Req# 5: Less sensitive VM of a tenant cannot reside in
same server of a competing tenant during maintenance.
Expr: status(OE(O))=‘maintenance’ A sensitivity(OE(O))
=‘low’ A otnt(OE(O)) € OE(OMETnt).attval A
otnt(OE(AO(O)) € OE(OMETnt).attval =

server(OE(O)) # server(OE(AO(O)))



Table 9: Attributes

attType Range Description
UA
tnt set ‘417, ‘b2, ..., ‘tg’ Tenants an admin can access
server set ‘node1’, ‘nodez’, ...., ‘node20’ Servers an admin has access
adminGrp set ‘hardware_maintenance’, ‘security’, Different groups of an

‘remote_maintenance’ administrative users

role set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’,‘billAdmin’ Admin Roles
SA
acctnt set ‘617, ‘t2’, ..., ‘tg’ Tenants a subject can access
accserver set ‘node1’, ‘nodez’, ...., ‘nodex0’ Servers a subject has access
activerole set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’,'billAdmin’,  Admin roles to subjects
OA
otnt atomic ‘617, ‘t2’, ..., ‘tg’ Tenant that owns the VM
server atomic ‘node;’, ‘nodesz’, ...., ‘nodex0’ Server where the VM resides
purporsetype atomic ‘p1’, ‘p2’, ‘p3’, ‘pa’, ‘P5’ Job of a VM
sensitivity atomic ‘high’, ‘low’ Sensitivity level of the VM
status atomic ‘Active’, ‘Stop’, ‘Maintenance’, ‘Transferring’ Current status of the VM
network atomic ‘vlani’, ‘vlang’, ..., ‘vlans0’ network connection a VM can get
permittedRole  set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’, ‘billAdmin’  Roles that can access the VM

Table 10: ABCL Sets Declaration and Initialization:

1. Attribute_Set Declaration and Initialization:
Attribute_Sety 1y UMETnt
UMETnt={avset1, avseta, avsets}
avset1=({‘t1",t3°},1),
avseto=({‘t2’,t4’,'t5’},2), avsetz=({‘t7’,‘ts’},1)
Attribute_Set U,adminGrp UMEG'I’p
UMEGrp={avsety }
avset; =({‘hardware_maintenance’,
‘remote_maintenance’},1)
Attribute_Seto oiny OMETnNt
OMETnt= {avset1, avseta, avsets}
avset1=({*t1",'t3’},1), avseta=({‘t7’,‘ts’},1),
avsetgz({‘tg’,‘t4’,‘t5’},2)
Attribute_Set ;1o UMERole
UMERole={avset}
avset1=({‘vmMonitor’, ‘vmAdmin’, ‘billAdmin’},1)
Attribute_Sets qccint SMETnt
SMETnt={avset1, avseta}
avset1=({‘t1",t3},1), avseta=({‘t2’,'ta’,'t5’},1),
Attribute_Set o oiny OConsTnt
OConsTnt={avset1, avseta},avset1=({‘t1",t4’},2),
avseto=({‘t7’,t9’},2)

2. Cross_Attribute_Set Declaration and Initialization:
Cross_Attribute_Sety (adminGrp}, {roley UMECGR
UMECGR= {attfuny, attfun,, attfuns}
attfun; (adminGrp)=({‘hardware_maintenance’},1)
attfun; (role)=({‘billAdmin’,‘pCreator’,vmAdmin’},0)
attfuns (adminGrp)=({‘security’}, 1),
attfuna (role)=({‘billAdmin’, ‘vmMonitor’,'vmAdmin’},0))
attfuns(
attfuns (role)=( {‘pCreator’,vimMonitor’},0))

adminGrp)=({‘remote_maintenance’},1)

14

Req# 6: VMs of tenant cannot connect to same network
that is connected to VMs of competing tenants.

Expr: otnt(OE(O)) € OE(OMETnt).attval A
otnt(OE(AO(O))) € OE(OMETnt).attval =
network(OE(O)) # network(OE(AO(O)))

B. Constraints for the admins’ privileges
management

Req# 1: An admin can access VMs of a tenant, if he is
not an admin of the competing tenants.

Expr: |tnt(OE(U)) N OE(UMETnt).attval| <
OE(UMETnt).limit

Req# 2: An administrative user cannot maintain more
than 3 tenants.

Expr: |tnt(OE(U))| < 3

Req# 3: A subject cannot access VMs from two

ME tenants.

Expr: |acctnt(OE(S)) N OE(SMETnt).attval| <
OE(SMETnt).limit

Req# 4: A tenant cannot be accessed by more than one
subject of an admin.

Expr: SubCreator(OE(S))=SubCreator(OE(AO(S))) =
acctnt(OE(S)) N acctnt(OE(AO(S)))=¢

Req# 5: An admin cannot join both hardware and
remote maintenance.

Expr: |OE(UMEGTp).attval N adminGrp(OE(U))| <
OE(UMEGTp).limit

Reqg# 6: An admin of hardware-maintenance group
cannot get roles ‘billAdmin’ and ‘pCreator’.

Expr: |adminGrp(OE(U)) N
OE(UMECGR).attfun(adminGrp).attval|

> OE(UMECGR).attfun(adminGrp).limit =

|OE( UMECGR).attfun(role).attval

N role(OE(U))| < OE(UMECGR).attfun(role).limit


iLab
Cross-Out


	Introduction
	Related Work
	Motivation and Scope
	Attribute Based Constraint Language (ABCL)
	Basic Components of the ABCL Model
	Basic Sets and Functions of ABCL
	Syntax of ABCL
	ABCL Enforcement
	Constraints Hierarchy and Enforcement Complexity

	ABCL Use Cases
	RBAC Constraints (RCL-2000 and NIST-RBAC SOD)
	Security policy specifications for Banking Organizations
	Security policy specification for IaaS Public Cloud

	Performance Evaluation
	Conclusion

