
An Access Control Model for Online Social
Networks Using User-to-User Relationships

Yuan Cheng, Jaehong Park, and Ravi Sandhu, Fellow, IEEE

Abstract—Users and resources in online social networks (OSNs) are interconnected via various types of relationships. In particular,

user-to-user relationships form the basis of the OSN structure, and play a significant role in specifying and enforcing access control.

Individual users and the OSN provider should be enabled to specify which access can be granted in terms of existing relationships. In

this paper, we propose a novel user-to-user relationship-based access control (UURAC) model for OSN systems that utilizes regular

expression notation for such policy specification. Access control policies on users and resources are composed in terms of requested

action, multiple relationship types, the starting point of the evaluation, and the number of hops on the path. We present two path

checking algorithms to determine whether the required relationship path between users for a given access request exists. We validate

the feasibility of our approach by implementing a prototype system and evaluating the performance of these two algorithms.

Index Terms—Social network, access control, security model, policy specification

Ç

1 INTRODUCTION

OSNS have become ubiquitous in daily life and have tre-
mendously changed how people connect, interact and

share information with each other. Users share an enormous
amount of content with other users in OSNs for a variety of
purposes. The sharing and communications are based on
social connections among users, namely relationships. Since
most users join OSNs to keep in touch with people they
already know, they often share a large amount of sensitive
or private information about themselves. Given the rising
popularity of OSNs and the explosive growth of informa-
tion shared on them, OSN users are exposed to potential
threats to security and privacy of their data. Security and
privacy incidents in OSNs have increasingly gained atten-
tion from both media and research community [3], [21].
These incidents highlight the need for effective access con-
trol that can protect data from unauthorized access in OSNs.

Access control in OSNs presents several unique charac-
teristics different from traditional access control. In manda-
tory and role-based access control, a system-wide access
control policy is typically specified by the security adminis-
trator. In discretionary access control, the resource owner
defines access control policy. However, in OSN systems,
users expect to regulate access to their resources and activi-
ties related to themselves. Thus access in OSNs is subject to
user-specified policies. Other than the resource owner,
some related users (e.g., user tagged in a photo owned by
another user, parent of a user) may also expect some control
on how the resource or user can be exposed. To prevent
users from accessing unwanted or inappropriate content,

user-specified policies that regulate how a user accesses
information need to be considered in authorization as well.
Thus, the system needs to collect these individualized par-
tial policies, from both the accessing users and the target
users, along with the system-specified policies and fuse
them for the collective control decision.

In OSN, access to resources is typically controlled based
on the relationships between the accessing user and the con-
trolling user of the target found on the social graph. This
type of relationship-based access control (to which we refer
as ReBAC) [22] takes into account the existence of a particu-
lar relationship or a particular sequence of relationships
between users and expresses access control policies in terms
of such user-to-user (U2U) relationships.

Most existing OSN systems enforce a rudimentary and
limited relationship-based access control mechanism, offer-
ing users the ability to choose from a pre-defined policy
vocabulary, such as “public”, “private”, “friend” or “friend
of friend”. Google+ and Facebook introduced customized
relationships, namely “circle” and “friend list”, providing
users richer options to differentiate distinctly privileged
user groups. Meanwhile, researchers have proposed more
advanced relationship-based access control models, such as
[5], [8], [9], [10], [11], [12], [18], [19], [20], [28]. Policies in [5],
[8], [9], [10], [11], [12], [18], [20] can be composed of multiple
types of relationships. Refs. [10], [11], [12] also adopt the
depth and the trust value of relationship to control the
spread of information. Although only having the “friend”
relationship type, Fong et al. [19] provides additional topol-
ogy-based policies, such as known quantity, common
friends and stranger of more than k distance. While these
works have their own advantages, one of the common
drawbacks they share is that they do not allow different
relationship types and multiple possible types on each hop.

In this paper, we propose a novel UURAC model, allow-
ing users the ability to express more sophisticated and fine-
grained access control policies in terms of type pattern and
depth of relationships among users in the network. Type

� Y. Cheng and R. Sandhu are with the University of Texas at San Antonio,
USA. E-mail: {yuan.cheng, ravi.sandhu}@utsa.edu.

� J. Park is with the University of Alabama in Huntsville, USA.
E-mail: jae.park@uah.edu.

Manuscript received 15 Apr. 2014; revised 2 Feb. 2015; accepted 6 Feb. 2015.
Date of publication 24 Feb. 2015; date of current version 13 July 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2015.2406705

424 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

1545-5971� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

pattern captures the pattern of relationship types along the
relationship path from the accessing user to the target user.
We adopt a regular expression-based approach for policy
specification. Sequence of characters and quantification
notations are employed to denote relationship paths, which
express indirect relationships among users, such as f�, fþ,
cf?, etc. The use of regular expression and multiple relation-
ship types gives the policy language the ability to specify
more succinct policies than previous models did. To the
best of our knowledge, this is the first relationship-based
access control model for OSNs with such capability.

The rest of this paper is organized as follows. Section 2
provides motivation and context for our work, discusses
related work, and identifies our contributions. In Section 3,
we present the fundamental structure of our UURAC
model. A policy language for expressing access control poli-
cies is articulated in Section 4. In Section 5, we introduce
path checking algorithms to evaluate a given access control
policy. Section 6 describes prototype implementation and
experimental results. Section 7 concludes the paper and out-
lines some future work.

2 MOTIVATION

This section discusses characteristics of access control
in OSNs, related work, our approach, and outlines our
contributions.

2.1 Characteristics of Access Control for OSNs

OSN is becoming the most prevalent manifestation of user-
generated content platforms. Photos, videos, blogs, web
links and other kinds of information are posted, shared and
commented by OSN users. Various types of user interac-
tions, including chatting, private messaging, poking, social
games, etc., are also embedded into these systems. Below,
we discuss some essential characteristics [31], [32] that need
to be supported in access control solutions for OSN systems.

Policy individualization. OSN users may want to express
their own preferences on how their own or related contents
should be exposed. A system-wide access control policy
such as we find in mandatory and role-based access con-
trol, does not meet this need. Access control in OSNs fur-
ther differs from discretionary access control in that users
other than the resource owner are also allowed to config-
ure the policies of the related resource. In addition, users
who are related to the accessing user, e.g. parent to child,
may want to control the accessing user’s actions. Therefore,
the OSN system needs to collectively utilize these individ-
ualized policies from users related to the accessing user or
the target, along with the system-specified policies for con-
trol decisions.

User and resource as a target. Unlike traditional user access
where the access is against target resource, activities such as
poking and friend recommendations are performed against
other users.

User policies for outgoing and incoming actions. Notification
of a particular friend’s activities could be bothersome and a
user may want to block it. This type of policy is captured as
incoming action policy. Also, a user may want to control her
own or other users’ activities. For example, a usermay restrict
her own access from all violent content or a parent may not

want her child to invite her co-worker as a friend. This type
of policy is captured as an outgoing action policy. In OSN, it
is necessary to support policies for both types of actions.

Necessity for relationship-based access control. Typically, the
number of users in an OSN is very large and the amount of
resources they own is usually even larger. Moreover,
the relationships among users are changing frequently and
dynamically. A user may not be able to know either the
user name space of the entire network or all her possible
direct or indirect contacts. Therefore, it is infeasible for her
to specify access control policies for all of the possible
accessing users. Even if she knows them all, it takes enor-
mous amount of time for her to explicitly specify policies
for all of them one by one as in discretionary access control.
Role-based access control does not fit well in this situation
either, because privileged user groups are different for each
user. Thus different users’ privileged user groups cannot be
assigned to a unified set of roles. Overall using traditional
access control approaches is cumbersome and inadequate
for OSN systems.

Instead, access control in OSNs is mainly based on rela-
tionships among users and resources. For example, only
Alice’s direct friends can access her blogs, or only user who
owns the photo or tagged users can modify the caption of
the photo. Depth is another significant parameter, since peo-
ple tend to share resources with closer users (e.g., “friend”,
or “friend of friend”).

2.2 Prior Access Control Models for OSNs

The large and complex collections of user data in OSNs
require usable and fine-grained access control solutions to
protect them [22], [23]. Gates [22] discusses the access con-
trol requirements for OSN environments, where she argues
that one of the key requirements is relationship-based
access control.

A formal model for access control in Facebook-like sys-
tems was developed by Fong et al. [19], which treats access
control as a two-stage process, namely, reaching the search
listing of the resource owner and accessing the resource,
respectively. Reachability of the search listings is a neces-
sary condition for access. Although lacking support for
directed relationships, multiple relationship types and trust
metric of relationships, this model allows expression of arbi-
trary topology-based properties, such as “k-common
friends” and “k-clique”, which are beyond what Facebook
and other commercial OSNs offer.

In [18], Fong proposed a formal model for social com-
puting applications, in which authorization decisions are
based on user-to-user relationships. This model employs
a modal logic language for policy specification. Fong
et al. extended the policy language and formally charac-
terized its expressive power [20]. In contrast to Ref. [19],
this model allows multiple relationship types and direc-
tional relationships. Relationships and authorizations are
articulated in access contexts and context hierarchy to
support sharing of relationships among contexts. Bruns
et al. [5] later improved [18], [20] by using hybrid logic to
enable better efficiency in policy evaluation and greater
flexibility of atomic formulas. Refs. [5], [20] also support
policies such as “k-common friends” and “k-clique” in
addition to path policies.

CHENG ETAL.: AN ACCESS CONTROL MODEL FOR ONLINE SOCIAL NETWORKS USING USER-TO-USER RELATIONSHIPS 425

Inspired by research in trust and reputation systems,
some early solutions proposed by Kruk et al. [28] and
Carminati et al. [10], [11] identified aggregated trust value,
denoting the level of relationship, along with relationship
type and depth on a path from the resource owner to the
accessing user as parameters for authorization. While Kruk’s
work only considers one relationship type, Carminati’s work
allows multiple relationship types but only supports trust
computation of a relationship path of a single type at a time.
Carminati et al. also proposed a semi-decentralized architec-
ture, where access rules are specified in terms of relationship
type, depth and trust metrics by individual users in a discre-
tionary way [12]. The system features a centralized certifi-
cate authority to assert the validity of relationship paths,
while access control enforcement is running on the decen-
tralized user side.

In Refs. [8], [9], an access control model for OSNs utilizes
semantic web technologies. Unlike other works, this model
exhibits different relationships between users and resour-
ces. It defines three kinds of access policies with the Web
Ontology Language (OWL) and the Semantic Web Rule
Language (SWRL), namely authorization, administration
and filtering policies. Similar to Refs. [8], [9], Masoumzadeh
et al. [29] proposed ontology-based social network access
control. Their model captures delegation of authority and
empowers both users and the system to express finer-
grained access control policies.

It is worth noting that Crampton et al. [17] recently pro-
posed a variant of ReBAC model for applications beyond
OSNs that specifies policies in terms of path conditions,
which are similar to regular expressions.

Several works resort to attribute information to address
access control for OSNs. Persona [2], EASiER [27] and the
DBRA framework [4] are three representatives of attribute-
based encryption (ABE) schemes for protecting shared data
in OSNs. Basically, users define relationships or groups by
assigning attributes to them, and resources are encrypted
with attribute-based policies. Keys are distributed to groups
or relationships so that only users with necessary attributes
will be able to decrypt the data. In addition to attributes, the

DBRA framework [4] also allows constraints on distance
between users on the social graph. These ABE schemes usu-
ally work as a third-party application and require shared
content to be stored in an encrypted form, which conse-
quently limits the functionality of OSNs. Key distribution
and revocation is also an issue in practice, since relation-
ships between users in OSNs are changing dynamically.

2.3 Comparison of Access Control Models for OSNs

The first four columns of Table 1 summarize the salient
characteristics of the models discussed above. The fifth col-
umn gives these characteristics for the new UURAC model
to be defined in this paper.

All the models deal only with U2U relationships, except
Refs. [8], [9] also recognize U2R (user-to-resource) relation-
ships explicitly. U2R relationships can be captured implicitly
via U2U with the last hop being U2R. While we believe that
explicit treatment of U2R and R2R (resource-to-resource)
relationships is important, this is beyond the scope of this
paper. Fong et al. [5], [19], [20] allow users to express policies
such as “k-common friends” and “k-clique”. While the pro-
posed model in this paper only permits specification of
paths, the model can be extended to capture this type of poli-
cies by utilizing attribute information of users and relation-
ships as shown in Ref. [15].

In terms of expressive power, the regular expression path
policy with hopcount proposed in this work is equal to the
above logic based approaches. However, it is relatively eas-
ier and more efficient to use. A single regular expression
path pattern can express multiple paths without enumerat-
ing every possible path. For instance, ðf�; 3Þ can cover three
enumeration paths f; ff; and fff . Details about the policy
specifications are provided later in the paper.

3 UURAC MODEL FOUNDATION

In this section, we develop the foundation of UURAC
including basic notations, access control model components
and social graph model.

TABLE 1
Comparison of Access Control Models for OSNs

Fong [19] Fong [5], [18],
[20]

Carminati [12] Carminati [8],
[9]

UURAC

Relationship Category
Multiple Relationship Types @ @ @ @
Directional Relationship @ @ @
U2U Relationship @ @ @ @ @
U2R Relationship @
Model Characteristics
Policy Individualization @ @ @ @ @
User & Resource as a Target (partial) @
Outgoing/Incoming Action Policy (partial) @
Relationship Composition
Relationship Depth 0 to n 0 to n 1 to n 1 to n 0 to n
Relationship Composition f, f of f; com-

mon friends,
clique

exact type
sequence;
common

friends, clique
(except [18])

path of same
type

exact type
sequence

exact type
sequence, path
pattern of dif-
ferent types

426 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

3.1 Basic Notations

We write S to denote the set of relationship type specifiers,

where S = fs1, s2 ,. . ., sn, s
�1
1 ,s�12 , . . ., s�1n g. Each relation-

ship type specifier s is represented by a character recogniz-
able by the regular expression parser. Given a relationship

type si 2 S, the inverse of the relationship is s�1i 2 S.
We differentiate the active and passive forms of an

action, denoted action and action�1, respectively. If Alice
pokes Bob, the action is poke from Alice’s viewpoint,

whereas it is poke�1 from Bob’s viewpoint.

3.2 Access Control Model Components

The model comprises five categories of components as
shown in Fig. 1.

Accessing User (ua) represents a human being who per-
forms activities. An accessing user carries access control
policies and U2U relationships with other users.

Each Action is an abstract function initiated by accessing
user against target. Given an action, we say it is action

for the accessing user, but action�1 for the recipient user or
resource.

Target is the recipient of an action. It can be either target
user (ut) or target resource (rt). Target user has her own poli-
cies and U2U relationship information, both of which are
used for authorization decisions. Target resource has U2R
relationship (i.e., ownership) with controlling users (uc). An
accessing user must have the required U2U relationships
with the controlling user in order to access the target resource.

Access Request denotes an accessing user’s request of
a certain type of action against a target. It is modeled as

a tuple <ua, action, target>, where ua 2 U is the accessing
user, target is the user or resource that ua tries to access,
whereas action 2 Act specifies from a finite set of supported
functions in the system the type of access the user wants to
have with target. If ua requests to interact with another
user, target = ut, where ut 2 U is the target user. If ua tries to
access a resource owned by another user uc, target is
resource rt 2 Rwhere R is a finite set of resources in OSN.

Policy defines the rules according to which authorization
is regulated. As shown in Fig. 2, policies can be categorized
into user-specified and system-specified policies, with
respect to who defines the policies. System-specified poli-
cies (SP) are system-wide general rules enforced by the
OSN system; while user-specified policies are applied to
specific users and resources. Both user- and system-speci-
fied policies include policies for resources and policies for
users. Policies for resources are used to specify who can
access the resources, while policies for users regulate how
users can behave regarding an action. User-specified poli-
cies for a resource are called target resource policies (TRP),
which are policies for incoming actions. User-specified poli-
cies for users can be further divided into accessing user
policies (AUP) and target user policies (TUP), which corre-
spond to user’s outgoing and incoming access (see exam-
ples in Section 2.1), respectively. Accessing user policies,
also called outgoing action policies, are associated with the
accessing user and regulate this user’s outbound access.
Target user policies, also called incoming action policies,
control how other users can access the target user. Note that
system-specified policies do not have separate policies for
incoming and outgoing actions, since the accessor and tar-
get are explicitly identified.

3.3 Modeling Social Graph

As shown in Fig. 3, an OSN forms a directed labeled simple
graph1 with nodes (or vertices) representing users and
edges representing user-to-user relationships. We assume
every user owns a finite set of resources and specifies access
control policies for the resources and activities related to
her. If an accessing user has the U2U relationship required
in the policy, the accessing user will be granted permission
to perform the requested action against the corresponding
resource or user.

Fig. 1. Model components.

Fig. 2. Access control policy taxonomy.

Fig. 3. A sample social graph.

1. A simple graph has no loops (i.e., edges which start and end on
the same vertex) and no more than one edge of a given type between
any two different vertices.

CHENG ETAL.: AN ACCESS CONTROL MODEL FOR ONLINE SOCIAL NETWORKS USING USER-TO-USER RELATIONSHIPS 427

We model the social graph of an OSN as a triple
G ¼ <U;E;S>:

� U is a finite set of registered users in the system, repre-
sented as nodes (or vertices) on the graph. We use the
terms user and node interchangeably from nowon.

� S ¼ fs1; s2; . . . ; sn; s
�1
1 ; s�12 ; . . . ; s�1n g denotes a finite

set of relationship types, where each type specifier s
denotes a relationship type supported in the system.

� E � U � U � S, denoting social graph edges, is a set
of existing user relationships.

Since not all the U2U relationships in OSNs are mutual,
we define the relationships E in the system as directed. For

every si 2 S, there is s�1i 2 S representing the inverse of
relationship type si. We do not explicitly show the inverse
relationships on the social graph, but assume the original
relationship and its inverse twin always exist simulta-
neously. Given a user u 2 U , a user v 2 U and a relationship
type s 2 S, a relationship ðu; v; sÞ expresses that there
exists a relationship of type s starting from user u and ter-

minating at v. It always has an equivalent form ðv; u; s�1Þ.
G ¼ <U;E;S> is required to be a simple graph.

4 UURAC POLICY SPECIFICATIONS

This section defines a regular-expression based policy speci-
fication language, to represent various patterns of multiple
relationship types.

4.1 Path Expression Based Policy

The user relationship path in access control policies is repre-
sented by regular expressions. The formulas are based on the
set S of relationship type specifiers. Each specification in this
language describes a pattern of required relationship types
between the accessing user and the target/controlling user.
We use three kinds of quantification notations that represent
different occurrences of relationship types: asterisk (*) for 0
or more, plus (+) for 1 or more and question mark (?) for 0
or 1. The asterisk is commonly known as the Kleene star.

4.2 Graph Rule Specification and Grammar

An access control policy consists of a requested action,
optional target resource and a required graph rule. In partic-
ular, graph rule is defined as (start, path rule), where start

denotes the starting node of relationship path evaluation,
whereas path rule denotes a collection of path specs. Each
path spec consists of a pair (path, hopcount), where path is a
sequence of characters, denoting the pattern of relationship
path between two users that must be satisfied, while
hopcount limits the maximum number of edges on the path.

Typically, a user can specify one piece of policy for each
action regarding a user or a resource in the system. Policies
defined by different users for the same action against same
target are considered as separate policies. The path rule in
each policy is composed of one or more path specs, in
which multiple path specs are connected by disjunction or
conjunction. For instance, a path rule (f�, 3) _ (S�, 5) _
(fc, 2), where f is friend and c is co-worker, contains dis-
junction of three different pieces of path specs, of which
one must be satisfied in order to grant access. Note that,
there might be a case where only users who do not have
particular types of relationships with the target are allowed
to access. To allow such negative relationship-based access
control, a boolean negation operator over path specs is
allowed, which implies the non-existence of the specified
pair of relationship type pattern path and hopcount limit
hopcount following :. For example, : (fcþ, 5) means the
involved users should not have relationship of pattern fcþ
within depth of 5 in order to get access.

Each graph rule usually specifies a starting node, the
required types of relationships between the starting node
and the evaluating node, and the hopcount limit of such
relationship path. A grammar describing the syntax of this
policy language is defined in Table 2. Here, GraphRule
stands for the graph rule to be evaluated. StartingNode
can be either the accessing user ua, the target user ut or
the controlling user uc, denoting the given node from which
the required relationship path begins. Path represents a
sequence of type specifiers from the starting node to the
evaluating node. Pathwill typically be non-empty. If path is
empty and hopcount = 0 we assign the special meaning of
“only me”, which is the only allowed case for empty path.
Quantifier captures the three quantification characters,
which facilitate specifying path expressions more efficiently
and effectively. Given a graph rule from the access control
policy, this grammar specifies how to parse the expression
and to extract the containing path pattern and hopcount
from the expression.

TABLE 2
Grammar for Graph Rules

GraphRule ::¼ “ð00< StartingNode > ”;00< PathRule > ”Þ00
PathRule ::¼ <PathSpecExp>j<PathSpecExp><Connective><PathRule>
Connective ::¼ _j^
PathSpecExp ::¼ <PathSpec>j:<PathSpec>
PathSpec ::¼ “ð00<Path>”;00<HopCount>”Þ00j“ð00<EmptySet>”;00<Hopcount>”Þ00
HopCount ::¼ <Number>
Path ::¼ <TypeExp>j<TypeExp><Path>j<TypeExp>‘‘j00<Path>
EmptySet ::¼ ;
TypeExp ::¼ <TypeSpecifier>j<TypeSpecifier><Quantifier>
StartingNode ::¼ uajutjuc

TypeSpecifier ::¼ s1js2j::jsnjs�11 js�12 j::js�1n jSwhere S ¼ fs1; s2; . . . ; sn; s
�1
1 ; s�12 ; . . . ; s�1n g

Quantifier ::¼ “ � ”j“?”j“þ ”
Number ::¼ ½0� 9�þ

428 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

4.3 User- and System-Specified Policy
Specifications

User-specified policies specify how individual users want
their resources or services related to them to be released
to other users in the system. These policies are specific to
actions against a particular resource or user. System-
specified policies allow the system to specify access control
on users and resources. Different from user policies, the
statements in system policies are not specific to particular
accessing user or target, but rather focus on the entire set of
users or resource types (see Table 3).

In accessing user policy, action denotes the requested
action, whereas (start, path rule) expresses the graph rule.

Similarly, action�1 in target user policy and target resource pol-
icy is the passive form of the corresponding action applied to
target user. Target resource policy contains an extra parame-
ter uc, representing the controlling user of the resource.

This paper considers only U2U relationships in policy
specification. In general, there could be one or more control-
ling users who have certain types of U2R relationships with
the resource and specify policies for the corresponding tar-
get resource. To access the resource, the accessing user must
have the required relationships with the controlling users.
The policies associated with the target resources are defined
on the basis of per action per controlling user. For instance,
when querying read access request on rt, all of rt’s target
resource policies need to be considered in evaluation. Each
policy specifies a controlling user, with whom the accessing
user must have the required relationship. Note that in this
paper we are not introducing the policy administration
model, so who can specify the policy is not discussed.

System-specified policies do not differentiate the active
and passive forms of an action. System policy for users has the
same format as accessing user policy. However, when speci-
fying system policy for resources, one system-wide policy for
one type of access to all resources may not be fine-grained
and flexible enough. Sometimeswe need to refine the scope of
the resources that applied to the policies in terms of resource
types (r:typename; r:typevalue).2 Examples of types are
(filetype; photo), (filetype; statusupdate), (location; Texas), etc.
Thus, <read, (filetype, photo), (uc, f�, 4)> is a system policy
applied to all read access to photos in the system. When deal-
ing with system policy for resources, we can determine the
controlling user of the resource through some U2R relation-
ships, such as ownership (as shown in Fig. 1).

4.4 Access Evaluation Procedure

Algorithm 1 specifies how the access evaluation procedure
works. When an accessing user ua requests an action against

a target user ut, the system will look up ua’s action policy,
ut’s action�1 policy and the system-specified policy corre-
sponding to action. When ua requests an action against a
resource rt, the system will retrieve all the corresponding
policies of rt. Although each user can only specify one pol-
icy per action per target, there might be multiple users spec-
ifying policies for the same pair of action and target.
Multiple policies might be collected in each of the three pol-
icy sets: AUP , TUP/TRP and SP .

Algorithm 1. AccessEvaluationðua; action; targetÞ
1: (Policy Collecting Phase)
2: if target ¼ ut then
3: AUP ua’s policy for action, TUP ut’s policy for

action�1, SP system’s policy for action
4: else
5: AUP ua’s policy for action, TRP rt’s policy for

action�1, SP system’s policy for action; ðr:typename;
r:typevalueÞ

6: (Policy Evaluation Phase)
7: for all policy in AUP , TUP/TRP and SP do
8: Extract graph rules (start, path rule) from policy
9: for all graph rule extracted do
10: Determine the starting node, specified by start, where

the path evaluation starts
11: Determine the evaluating node which is the other user

involved in access
12: Extract path rules path rule from graph rule
13: Extract each path spec path, hopcount from path rule
14: Path-check each path spec using Algorithm 2
15: Evaluate the combined result based on conjunctive or

disjunctive connectives between path specs and nega-
tion on individual path specs

16: Compose the final result from the result of each policy

Example. Given the following policies and social graph in
Fig. 3:

� Alice’s policy PAlice: < poke, (ua, (f�, 3))>

< poke�1, (ut, (f , 1))>< read, (ua, (S�, 5))>
� Harry’s policy PHarry: < poke, (ua, (cf�, 5) _ (f�,

5))>< poke�1, (ut, (f�, 2))>
� Policy of file2Pfile2:<read�1,Harry, (uc,:(pþ, 2))>
� System’s policy PSys: < poke, (ua, (S�, 5))>< read,
ðfiletype; photoÞ, (ua, (S�, 5))>

When Alice requests to poke Harry, the system will
look up the following policies: < poke, (ua, (f�, 3))> from

PAlice, < poke�1, (ut, (f�, 2))> from PHarry, and < poke,
(ua, (S�, 5))> from PSys. When Alice requests to read
photo file2 owned by Harry, the policies < read, (ua, (S�,
5))> from PAlice, < read�1, Harry, (uc, :(pþ, 2))> from
Pfile2, and < read, photo, (ua, (S�, 5))> from PSys will be
used for authorization.

TABLE 3
Access Control Policy Representations

Accessing User Policy <action, (start, path rule)>
Target User Policy <action�1, (start, path rule)>
Target Resource Policy <action�1, uc, (start, path rule)>
System Policy for User <action, (start, path rule)>
System Policy for Resource <action, ðr:typename; r:typevalueÞ, (start, path rule)>

2. There could be combinations of multiple resource types in one
policy, but for illustration, we only show one resource type per policy.

CHENG ETAL.: AN ACCESS CONTROL MODEL FOR ONLINE SOCIAL NETWORKS USING USER-TO-USER RELATIONSHIPS 429

For all the policies in the policy sets, the algorithm first
extracts the graph rule (start, path rule) from each policy.
Once the graph rule is extracted, the system can determine
where the path checking evaluation starts (using start), and
then extracts every path spec path, hopcount (from path
rule). Then, it runs a path checking algorithm (see the next
section) for each path spec. The path checking algorithm
returns a boolean result for each path spec. To get the evalu-
ation result of a particular policy, we combine the results of
all path specs in the policy using conjunction, disjunction
and negation. At last, the final evaluation result for the
access request is made by composing all the evaluation
results of the policies in the chosen policy sets.

4.5 Discussion

4.5.1 Policy Conflict Resolution

In OSN systems, if multiple users are allowed to specify
their own policies on a same object or user, policy conflicts
become inevitable. There are substantial prior works on
conflict resolution of access control policies, especially in
distributed systems, database systems and collaborative
environments. Most conflicts discussed in these works are
conflicts between positive and negative authorizations (per-
mission vs. prohibitions) typically arising due to generality
or specificity of the applicable policy in a hierarchy. How-
ever, in OSNs possible policy conflicts arise as policies spec-
ified by distinct users may carry contrasting authorizations.

With regards to multi-user policy conflicts in OSNs, there
are several interesting proposals as well. Squicciarini et al.
[34] leveraged a game theoretic approach to address collec-
tive policy management in OSNs. Hu and Ahn [24] formu-
lated a multi-party access control model for OSNs that
measures the tradeoff between privacy and sharing with a
policy conflict resolution mechanism based on voting
scheme. Ref. [24] has been extended to express other thresh-
old-based and strategy-based conflict resolution in Ref. [26].
Similar idea can be found in another piece of their work [25],
where conflict detection is also addressed in addition to con-
flict resolution. Carminati et al. introduced collaborative secu-
rity policies to express privacy concerns from multiple users,
which explicitly state either of the three strategies, namely
“All, One, andMajority”, to reach a collaborative decision [6].

In the proposed work, we consider three simple and intu-
itive approaches to resolve conflicts: disjunctive, conjunctive
or prioritized. When a disjunctive approach is enabled, the
satisfaction of any corresponding policy is sufficient for
granting the requested access. In a conjunctive approach,
the requirements of every involved policy should be satis-
fied in order that the access request would be granted. In a
prioritized approach, if, for example, parents’ policies get
priority over children’s policies, the parents’ policies over-
rule children’s policies. While policy conflicts are inevitable
in the proposed model, we do not discuss this issue in fur-
ther detail here. For simplicity we assume unambiguous
system level policies are available to resolve conflicts in
user-specified authorization policies and do not consider
user-specified conflict resolution policies.

4.5.2 Syntax

One observation from user-specified policies is that action

policy starts from ua whereas action�1 policy starts from ut.

This is because action is done by ua while action�1 is from
ut’s perspective. When hopcount = 0 and path equals to
empty, it has special meaning of “only me”. For instance,
<poke, (ua, (;, 0))> says that ua can only poke herself, and

<poke�1, (ut, (;, 0))> specifies ut can only be poked by her-
self. The above two policies give a complementary expres-
sive power that the regular policies do not cover, since
regular policies are simply based on existing paths and lim-
ited hopcount.

As mentioned earlier, the social graph is modeled as a
simple graph. Furthermore, we only allow simple path with
no repeating nodes. Avoiding repeating nodes on the rela-
tionship path prevents unnecessary iterations among nodes
that have been visited already and unnecessary hops on
these repeating segments. On the other hand, this “no-
repeating” could be quite useful when a user wants to
expose her resource to farther users without granting access
to nearer users. For example, in a professional OSN system
such as LinkedIn, a user may want to promote her resume
to users outside her current company, but does not want
her co-workers to know about it. Note that the two distinct
paths denoted by fffc and fcmay co-exist between a pair of
users. Simply specifying fffc in the policy does not avoid
someone who also has fc relationship with the owner from
accessing the resume. In contrast, fffc ^ :(fc) allows the co-
workers of the user’s distant friends to see the resume,
while the co-workers of the user’s direct friends fc are not
authorized.

In general, conventional OSNs are susceptible to the mul-
tiple-persona problem, where users can always create a sec-
ond persona to get default permissions. Our approach
follows the default-denial design, which means if there is
no explicit positive authorization policy specified, there is
no access permitted at all. Based on the default-denial
assumption, negative authorizations in our policy specifica-
tions are mainly used to further refine permissions allowed
by the positive authorizations specified (e.g., f � c^:(fc)). A
single negative authorization without any positive authori-
zation has the same effect as there is no policy specified at
all, but it is still useful to restrict future addition of positive
policies. Nonetheless it is possible for the co-worker of a
direct friend to have a second persona that meets the criteria
for co-worker of a distant friend and thereby acquires access
to the resume. Without strong identities we can only pro-
vide persona level control in such policies.

The inclusion of conjunction and negation in grammar
may add extra costs in processing, but it empowers users
to define finer-grained or more strict policies. The above
example path rule fffc ^ :(fc) shows the utility of the two
notations. However, this is largely a design decision and
we will let users decide how to use them efficiently in their
implementation. If only disjunction exists in a path rule,
path specs with the same hopcount can be composed into
a single regular expression prior to evaluation to improve
performance.

5 ALGORITHMS

In this section, we present two algorithms for determining if
there exists a qualified path between two involved users in
an access request, based on depth-first search (DFS) and

430 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

breadth-first search (BFS) strategies. Then, we provide a
complexity analysis for both algorithms.

As mentioned, in order to grant access, relationships
between the accessor and the target/controlling user must
satisfy the graph rules specified in access control policies
regarding the given request. We formulate the problem as
follows: given a social graph G, an access request <ua,
action, target> and an access policy, the system decision
module explores the graph and verifies the existence of a
path between ua and target (or uc of target) matching the
graph rule <start, path rule>.

As shown in Algorithms 2 and 4, the path checking
algorithm takes as input the social graph G, the path pat-
tern path and the hopcount limit hopcount specified by
path spec in the policy, the starting node s specified by
start and the evaluating node t which is the other user
involved, and returns a boolean value as output. Note that
path is non-empty, so the algorithms only cope with cases
where hopcount 6¼ 0. The starting node s and the evaluat-
ing node t can be either the accessing user or the target/
controlling user, depending on the given policy. The algo-
rithm starts by constructing a DFA (deterministic finite
automata) from the regular expression path. The
REtoDFAðÞ function receives path as input, and converts it
to an NFA (non-deterministic finite automata) then to a
DFA, by using the well-known Thompson’s Algorithm [35]
and Subset Construction Algorithm (also known as B€uchi’s
Algorithm) [33], respectively.

Algorithm 2.DFSPathCheckerðG; path; hopcount; s; tÞ
1: DFA REtoDFAðpathÞ; currentPath NIL; d 0
2: stateHistory DFA starts at the initial state
3: if hopcount 6¼ 0 then
4: return DFST(s)

5.1 Depth-First Search

Using DFS to traverse the graph requires only one running
DFA and, correspondingly, one pair of variables keeping the
current status and the history of exploration in a DFS tra-
versal. Whereas, a BFS traversal has to maintain multiple
DFAs and multiple variables simultaneously and switch
between these DFAs back and forth constantly, which makes
the costs of memory space and I/O operations proportional
to the number of nodes visited during exploration. Note that
DFS could take a long traversal to find a target node, even if
the node is close to the starting node. If the hopcount is
unlimited, a DFS traversal may pursue a lengthy useless
exploration. However, as activities in OSNs typically occur
among people with close relationships, DFS with limited
hopcount canminimize such unnecessary traversals.

In Algorithm 2, the variable currentPath, initialized as
NIL, holds the sequence of the traversed edges between the
starting node and the current node. Variable stateHistory,
initialized as the initial DFA state, keeps the history of DFA
states during algorithm execution. The main procedure
starts by setting the current traversal depth d to 0 and
launches the DFS traversal function DFST ðÞ in Algorithm 3
from the starting node s.

In Algorithm 3, given a node u, if d + 1 does not exceed
the hopcount limit, it indicates that traversing one step

further from u is allowed. Otherwise, the algorithm returns
false (line 2) and goes back to the previous node (line 24). If
further traversal is allowed, then the algorithm picks up an
edge ðu; v; sÞ from the list of the incident edges leaving u. If
ðu; v; sÞ is unvisited, we get the node v on the opposite side
of the edge ðu; v; sÞ. Now we have five different cases. If v is
on currentPath, we will never visit v again, because doing
so creates a cycle on the path. Rather, the algorithm breaks
out of the current for loop, and finds the next unchecked
edges of u.

Algorithm 3.DFST ðuÞ
1: if dþ 1 > hopcount then
2: return FALSE
3: else
4: for all ðv; sÞwhere ðu; v; sÞ in G do
5: switch
6: case 1 v 2 currentPath
7: break
8: case 2 v =2 currentPath and transition s is invalid for DFA
9: break
10: case 3 v =2 currentPath and v ¼ t and DFA with transition

s is at accepting state
11: d dþ 1; currentPath currentPath:ðu; v; sÞ
12: currentState DFA takes transition s

13: stateHistory stateHistory:ðcurrentStateÞ
14: return TRUE
15: case 4 v =2 currentPath and v ¼ t and transition s is valid

for DFA but DFA with transition s is not at accepting
state

16: break
17: case 5 v =2 currentPath and v 6¼ t and transition s is valid

for DFA
18: d dþ 1; currentPath currentPath:ðu; v; sÞ
19: currentState DFA takes transition s

20: stateHistory stateHistory:ðcurrentStateÞ
21: if (DFST(v)) then
22: return TRUE
23: else
24: d d� 1; currentPath currentPathnðu; v; sÞ
25: previousState last element in stateHistory
26: DFA backs off the last taken transition s to previousState

27: stateHistory stateHistorynðpreviousStateÞ
28: return FALSE

When v is not on currentPath, we check if the transition s

belongs to the set of valid transitions for DFA. If the transi-
tion is invalid for DFA, we try the next edge (case 2). If the
transition is valid and v is the target node t, there are two
cases depending on whether taking transition s reaches an
accepting state. If it reaches an accepting state, we find
a path between s and t matching the pattern Path (case 3).
We increment d by one, concatenate edge ðu; v; sÞ to
currentPath, and save the current DFA state to history. If it
does not, we break out of the for loop and continue to check
the next unchecked edge of u (case 4). If the transition is
valid but v is not the target node t, the algorithm increments
d by one, concatenates e to currentPath, moves DFA to the
next state via transition type s, updates the DFA state his-
tory, and repeatedly executes DFST ðÞ from node v (case 5).
If the recursive function call discovers a matching path, the

CHENG ETAL.: AN ACCESS CONTROL MODEL FOR ONLINE SOCIAL NETWORKS USING USER-TO-USER RELATIONSHIPS 431

previous call also returns true. Otherwise, the algorithm has
to step back to the previous node of u, reset all variables to
the previous values, and check the next edge of node u.
However, if d ¼ 0, all the outgoing edges of the starting
node are checked, thus the whole execution completes with-
out a matching path.

5.2 Breadth-First Search

Starting from an initial node, a BFS traversal aims to expand
and examine all nodes of a graph from inside out until it finds
the goal. A FIFO (first in, first out) queue is created with the
starting node as the first element. All the nodes of a level
need to be added to the queue, and will be dequeued before
the nodes of their child level. Similar to the DFS traversal, we
need to create a running DFA and set up the corresponding
variables for the search. However, to find a matching path, a
BFS traversal has to maintain the DFA state and other varia-
bles for every possible path it examines, resulting in a multi-
ple number of DFAs and variables simultaneously. Although
BFS may naturally consume more computational resources,
it has advantage over its DFS counterpart as it never wastes
time on a lengthy unsuccessful exploration.

As shown in Algorithm 4, we create a DFA from the reg-
ular expression pattern, enqueue the starting node s, and
initialize the variable currentPath, stateHistory and d of s to
NIL, the initial DFA state and 0, respectively. The algorithm
continues when the queue is not empty, and dequeues the
first node of the queue for further exploration. Given a node
q, if dþ 1 does not exceed the hopcount limit, the algorithm
moves on to examine the incident outgoing edges of q. All
edges can be classified into the same five cases as in the
abovementioned DFS algorithm. For an edge ðu; v; sÞ, only
when v is not on currentPath and v is the target node t and
DFA taking a valid transition s reaches an accepting state,
we find a path between q and t matching the pattern Path
(case 3). We then update the corresponding variables for
node v and exit the algorithm with true. If v is not on
currentPath and is not the target node, we check the valid-
ity of the transition s. If the transition is valid, we will take
it, update the variables of v, and enqueue node v into the
queue for later examination (case 5). In all other cases, a suc-
cessful exploration will not possibly occur, thus the edges
are dropped. After checking all edges within the hopcount
limit, the algorithm terminates with false if no matching
path is found.

5.3 Iterative Deepening Search

With hopcount, the DFS algorithm becomes a depth limited
search. Hence, it avoids drawbacks in classical DFS regard-
ing completeness. Iterative deepening search (IDS) algo-
rithm executes depth limited search multiple times thus
yields a worse result than our hopcount-enabled DFS algo-
rithm. For this reason, we do not consider IDS further in
this paper.

5.4 Proof of Correctness

The two algorithms are based on the classical DFS and BFS
algorithms with a specific goal of finding qualified paths
between nodes within a given hopcount limit. To establish
the correctness, we need to prove from two aspects: (1) the

algorithms will halt with true or false, and (2) if the algo-
rithms return true, currentPath gives a simple path of
length less than or equal to Hopcount and the string
described by currentPath belongs to the language described
by LðPathÞ; if the algorithms return false, there is no simple
path p of length less than or equal to Hopcount such that the
string representing p belongs to LðPathÞ.

Algorithm 4. BFSPathCheckerðG; path; hopcount; s; tÞ
1: DFA REtoDFAðpathÞ
2: if hopcount 6¼ 0 then
3: create queue Q
4: create node s: s:DFA DFA; s:currentPath NIL;

s:d 0; s:stateHistory DFA starts at the initial state
5: enqueue s onto Q
6: while Q is not empty do
7: dequeue a node from Q into q
8: if q:dþ 1 > hopcount then
9: break
10: else
11: for all ðv; sÞwhere ðq; v; sÞ in G do
12: switch
13: case 1 v 2 currentPath
14: break
15: case 2 v =2 currentPath and transition s is invalid

for DFA
16: break
17: case 3 v =2 currentPath and v ¼ t and DFA with

transition s is at accepting state
18: create node v (clone from q)
19: v:previousState v:currentState
20: v:currentState DFA takes transition s

21: v:dþþ
22: v:currentPath adds ðq; v; sÞ
23: v:stateHistory adds currentState
24: return TRUE
25: case 4 v =2 currentPath and v ¼ t and transition s is

valid for DFA but DFA with transition s is not at
accepting state

26: break
27: case 5 v =2 currentPath and v 6¼ t and transition s is

valid for DFA
28: create node v (clone from q)
29: enqueue v onto Q
30: v:previousState v:currentState
31: v:currentState DFA takes transition s

32: v:dþþ
33: v:currentPath adds ðq; v; sÞ
34: v:stateHistory adds currentState
35: return FALSE

All edges are classified into five categories using four
rules: (1) is the current node on current traversed path, (2) is
the transition s valid, (3) is the edge’s destination the target
node, and (4) does taking transition s reach an accepting
state. Only edges that fall into case 3 indicate that a qualified
path is found, and only edges that belong to case 5 require
the algorithm to take one step further. The for loop guaran-
tees edge will be visited once and only once, if a qualified
path has been found yet. Rule (1) avoids cycles in traversal,
and hopcount limit provides a cutoff to halt the algorithm.
Other than that, the two algorithms are identical with the

432 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

classical algorithms. Thus, we can use induction to prove
the above properties easily.

5.5 Complexity Analysis

In the algorithms, every possible path from s to twill be vis-
ited at most once until it fails to reach t, while every outgoing
edge of a node may be checked multiple times during the
search. In the extreme case, where every relationship type is
acceptable and the graph is a complete directed graph, the

overall complexity would be OðjV jHopcountÞ. However, users
in OSNs usually connect with a small group of users directly,
thus the social graph is actually very sparse. We define the
maximum andminimum out-degree of node on the graph as
dmax and dmin, respectively. Then, the time complexity can

be bounded between OðdminHopcountÞ and OðdmaxHopcountÞ.
Given the constraints on the relationship types and hopcount
limit in the policies, the size of graph to be explored can be
dramatically reduced. The BFS algorithm and the recursive
DFST() call terminate as soon as either a matching path is
found or the hopcount limit is reached.

6 IMPLEMENTATION AND EVALUATION

In this section, we present some of the results obtained from
our performance studies on the two path checking algo-
rithms. We implemented the algorithms in Java, and
designed two sets of experiments to test the runtime execu-
tion of an access request evaluation using both algorithms.
We deployed an access control decider with BFS and DFS
path checkers on a virtual machine instance of an Ubuntu
12.04 image with 4 GB memory and a 2.53 GHz quad-core
CPU. The social graphs to be tested are stored in MySQL
databases on the testing machine along with the sample
access control policies. We designed sample policies and
access requests that would require the access control
decider to gather necessary information and crawl on the
graph for access decisions. We then measured the time the
algorithms take to complete a path checking over the graph
and return a result to the decider.

6.1 Datasets

When designing the experiments, we consider two parame-
ters of the graphs: hopcount (depth) and degree (width).
Although the total number of nodes in the system may
influence the performance and scalability of many graph
systems, in our system the algorithms are not to explore the
whole graph but the paths with limited hops stemming
from one node. Therefore, the total number of nodes is not
significant with respect to the performance. In fact, it is the
hopcount limit and the number of edges to be explored at
each hop that contribute most to the size of the problem,
and hence the performance of our system.

A significant issue in this evaluation consists in the selec-
tion of representative datasets. There are some public avail-
able datasets collected from real-world OSN systems with
large amount of real data. However, most of them only con-
sider single relationship type or do not support relationship
type at all. In a related analysis [7], the authors modified the
original datasets to add type information, where relation-
ship types are uniformly distributed. However, manually
adding type information to the real datasets may not reflect

the actual user behaviors, and thus ruins the integrity of the
datasets and diminishes the value of having real data. More-
over, different real datasets possess various properties,
making them incomparable with each other. Hence, syn-
thetic data becomes an alternative for us, where we can con-
figure different social graphs under our control, and
analyze some specific properties of these graphs. To gener-
ate synthetic social graphs, we use neither the G(n, p) nor
the G(n, m) variation of the Erdos-Renyi model, because
both of them create graphs in which each node may have
different number of edges. Instead, since our experiment is
focused on the comparison on density, we set the outgoing
degree of each node to a fixed number in each graph. The
selection of the destination of each edge is random.

In the first set of experiments, we examine the performance
of the BFS and DFS algorithms with respect to policies with
different hopcount limit. In particular, we set the parameters
to 1,000 users and single relationship type for this set of
experiments. Each user has the same number of neighbors,
who are randomly selected among the rest 999 users. Two dif-
ferent kinds of path patterns, including enumeration and
*-pattern, are used in the policies to investigate the impact of
hopcount limit on the performance of the algorithms.

In the second set of experiments, we aim to study the per-
formance of the algorithms against various number of edges
that need to be traversed (i.e., the average degree of nodes in
the graph) to show the scalability of our approach against
dense graph. We keep the same 1,000 users as in the previ-
ous experiments, but enable two types of relationships,
namely “f(riend)” and “c(oworker)”, and randomly assign
each relationship between users with one of these types.
The number of neighbors for each user is set in the quanti-
ties of 100, 200, 500 and 1,000. Consider the fact that there
are only two types of relationship and the social graph in
reality is usually a sparse graph, 1,000 neighbors for each of
1,000 users makes a relatively “dense” social graph for eval-
uation. We then run different policies on these four graphs
to compare their differences.

Given an access control policy, we randomly pick 1,000
different pairs of requester and target nodes from the
graph, and run each algorithm five times on these 1,000
pairs of nodes. Each measurement is the average results of
these 5,000 runs. To make fair comparison between true
and false cases, we design different policies to get 5,000
true cases and 5,000 false cases. To evenly compare
between true cases of different settings, we scale the num-
ber of selected users so that we can get results from the
same amount of true cases.

6.2 Results

Fig. 4 illustrates the results of the first set of experiments.
We compare the BFS and DFS algorithms using policies
with different hopcount limits in both the true-case and
false-case scenarios. For true cases of *-pattern paths, Fig. 4a
shows how the average running time changes with respect
to increase in hopcount limit. To make a more comprehen-
sive comparison, in this particular test, we apply the follow-
ing values 10, 50 and 200 (which is close to 190, the average
number of friends claimed by Facebook [37]) to the number
of neighbors for each user. *-pattern paths are known to be
more flexible than enumeration paths in path checking. In

CHENG ETAL.: AN ACCESS CONTROL MODEL FOR ONLINE SOCIAL NETWORKS USING USER-TO-USER RELATIONSHIPS 433

fact, the results for *-pattern record the time elapse of find-
ing one of the shortest qualified path. As we expected,
when hopcount increments, the average execution time
required for both algorithms increases as well, but the
trends tend to flatten after the hopcount reaches 4. It indi-
cates that a qualified path can be always found between two
users within four hops in this setting. A probability calcula-
tion also verifies this finding. In the case of 10 neighbors per
user, the aggregate probability of finding a qualified path is
1, 10.5, 67.3 percent for the first three hops, respectively,
and eventually 100 percent at the fourth hop. The probabil-
ity reaches 100 percent within three hops in the other two
denser graphs. We also find that the BFS algorithm works
slightly better than the DFS algorithm for large hopcount
limit in sparse graphs, as DFS takes many lengthy probes
before finding a qualified path while BFS does not suffer
from much overhead in sparse graphs.

According to the classic idea of “six degrees of separa-
tion” and the findings of “small world experiment” [30],
[36], any pair of people are distanced by no more than six
intermediate connections on average. A recent study by
Backstrom et al. [1] further indicates that the average dis-
tance on the current social graph of Facebook is smaller
than the commonly cited six degrees, and has shrunk to
4.74 as Facebook grows. Based on these findings, for true
cases of enumeration paths, we restrain the hopcount limit
up to 4, as our dataset is relatively much smaller than
Facebook. As shown in Fig. 4b, when hopcount limit incre-
ments, the time cost by the BFS algorithm increases signifi-
cantly, due to the fact that it will not take the next hop
without finishing search on all edges at the current level;
whereas a greater hopcount does not worsen the perfor-
mance of the DFS algorithm much.

Fig. 4c demonstrates the comparison between the two
algorithms in false-case scenarios. The false-case scenarios
actually represent the worst case scenario for path checking,
where both algorithms need to exhaustively search all pos-
sible paths within the hopcount limit from the starting
node. Therefore, the two algorithms perform similarly in
both enumeration and *-pattern settings. As hopcount
increases, the time costs of the algorithms increase approxi-
mately in the magnitude of node degree, which match our
expectation given in the complexity analysis.

Fig. 5 represents a comparison of the performance of the
two algorithms on graphs with different node degrees. In

true-case scenarios, as shown in Fig. 5a, 5b and 5c, we notice
that incrementing hopcount limit increases the time for both
algorithms to find a qualified path, since the search space
expands accordingly. We also observe that when dealing
with two-hop policies, the time cost declines gradually with
an increase in node degree. This is mainly because it is more
possible to find a qualified path between two nodes at an
earlier time in denser graphs than sparser graphs, although
the worst possible time for denser graphs is way larger. For
three-hop policies, however, the BFS algorithm has to
explore all possible paths at the first two hops until attempt-
ing the third hop, thus spending much more time to find a
match when node degree increases. The DFS algorithm, on
the other hand, does not suffer from the greater search space
brought by the increase of node degree. In general, both
algorithms perform similarly on one and two-hop policies,
but the DFS algorithm outperforms its BFS counterpart
when dealing with three-hop policies and larger. Similar to
the first set of experiments, we obtain similar results for
both algorithms in false-case scenarios (Fig. 5d), as both of
them experienced an exhaustive search. Consistent with our
previous analysis on complexity, the results we observed
from the four different social graphs reveal an increase of
time proportional to the node degrees as expected.

Our results indicate that both node degree and hop-
count limit significantly affect the performance of the two
algorithms. In some extreme cases (e.g., long enumeration
paths, high density graph, etc.), searching a qualified
path of three hops long may take very long time that the
system and users cannot tolerate. However, social graphs
in reality are often big and sparse, not many people will
have thousands of contacts in the social network. More-
over, people tend to interact with other users within a
close distance, so a large hopcount is rather uncommon
in practice. If users specify policies with loose constraints
(e.g., *-patterns) and small hopcount limit, the algorithms
are able to return a result in a reasonably short time. We
also suggest the system adds a time out for any access
query in order to avoid waiting for those extreme scenar-
ios. Another possible way of mitigating lengthy hops is to
allow users to have a customized view of social graph
and create shortcuts for frequently used relationship pat-
terns. Caching might also be an alternative for improving
performance [16]. Another important observation from
our experiments is that although they have almost the

Fig. 4. Experiment 1: BFS vs. DFS on hopcount.

434 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

same performance for one and two-hop policies, DFS
algorithm in general is likely to be more suitable for poli-
cies with intermediate hopcount values (e.g., 3, 4, 5, etc.)
than its BFS counterpart.

7 CONCLUSION

In this paper, we proposed a UURAC model and a regular
expression based policy specification language. We pro-
vided DFS-based and BFS-based path checking algorithms
and analyzed the complexity for the algorithms. We demon-
strated the feasibility of our approach by discussing a proof-
of-concept implementation of both algorithms, followed by
the evaluation results.

We believe the proposed model in this paper provides a
solid foundation for more advanced ReBAC solutions in
the future. We have extended this work to a new model,
namely URRAC, which exploits user-to-resource and
resource-to-resource relationships as well [13]. We have
also proposed an attribute-aware UURAC model that incor-
porates attribute-based policies to ReBAC [15].

ACKNOWLEDGMENTS

This work was partially supported by grants CNS-0831452
and CNS-1111925 from the National Science Foundation.
Jaehong Park is the corresponding author of the article.

REFERENCES

[1] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna, “Four
degrees of separation,” CoRR, vol. abs/1111.4570, 2011.

[2] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin,
“Persona: An online social network with user-defined privacy,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 135–
146, 2009.

[3] D. M. boyd and N. B. Ellison, “Social network sites: Definition,
history, and scholarship,” J. Comput. Mediated Commun., vol. 13,
no. 1, pp. 210–230, 2007.

[4] S. Braghin, V. Iovino, G. Persiano, and A. Trombetta, “Secure and
policy-private resource sharing in an online social network,” in
Proc. IEEE PASSAT, 2011, pp. 872–875.

[5] G. Bruns, P. W. Fong, I. Siahaan, and M. Huth, “Relationship-
based access control: Its expression and enforcement through
hybrid logic,” in Proc. Second CODASPY, 2012, pp. 117–124.

[6] B. Carminati and E. Ferrari, “Collaborative access control in
on-line social networks,” in Proc. IEEE CollaborateCom, 2011,
pp. 231–240.

[7] B. Carminati, E. Ferrari, and J. Girardi, “Performance analysis of
relationship-based access control in osns,” in Proc. IEEE Inf. Reuse
Integration, 2012, pp. 449–456.

[8] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.
Thuraisingham, “A semantic web based framework for social
network access control,” in Proc. 14th ACM SACMAT, 2009,
pp. 177–186.

[9] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.
Thuraisingham, (2011). Semantic web-based social network access
control. Comput. Secur., vol. 30, no. 2C3.

[10] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access control
for social networks,” in Proc. Move Meaningful Internet Syst. 2006:
OTM 2006 Workshops, 2006, pp. 1734–1744.

[11] B. Carminati, E. Ferrari, and A. Perego, A decentralized security
framework for web-based social networks. Int. Journal of Info. Secu-
rity and Privacy, vol. 2, no. 4, 2008.

[12] B. Carminati, E. Ferrari, and A. Perego, Enforcing access control in
web-based social networks. ACM Trans. Inf. Syst. Secur., vol. 13,
no. 1, 2009.

[13] Y. Cheng, J. Park, and R. Sandhu, “Relationship-based access con-
trol for online social networks: Beyond user-to-user relationships,”
in Proc. IEEE PASSAT, 2012, pp. 646–655.

Fig. 5. Experiment 2: BFS vs. DFS on node degree.

CHENG ETAL.: AN ACCESS CONTROL MODEL FOR ONLINE SOCIAL NETWORKS USING USER-TO-USER RELATIONSHIPS 435

[14] Y. Cheng, J. Park, and R. Sandhu, “A user-to-user relationship-
based access control model for online social networks,” in Proc.
26th Data Appl. Secur. Privacy, 2012, pp. 8–24.

[15] Y. Cheng, J. Park, and R. Sandhu, “Attribute-aware relationship-
based access control for online social networks,” in Proc. 27th Data
Appl. Secur. Privacy, 2014, pp. 292–306.

[16] J. Crampton and J. Sellwood, “Caching and auditing in the RPPM
model,” in Proc. Secur. Trust Manag., 2014, pp. 49–64.

[17] J. Crampton and J. Sellwood, “Path conditions and principal
matching: A new approach to access control,” in Proc. 19th ACM
SACMAT, 2014, pp. 187–198.

[18] P. W. Fong, “Relationship-based access control: Protection model
and policy language,” in Proc. First CODASPY, 2011, pp. 191–202.

[19] P. W. Fong, M. Anwar, and Z. Zhao, “A privacy preservation
model for facebook-style social network systems,” in Proc.
Comput. Secur.–ESORICS, 2009, pp. 303–320.

[20] P. W. Fong and I. Siahaan, “Relationship-based access control
policies and their policy languages,” in Proc. 16th SACMAT, 2011,
pp. 51–60.

[21] H. Gao, J. Hu, T. Huang, J. Wang, and Y. Chen, “Security issues in
online social networks,” IEEE Internet Comput., vol. 15, no. 4,
pp. 56–63, Jul./Aug. 2011.

[22] C. Gates, “Access control requirements for Web 2.0 security and
privacy,” IEEE Web 2.0, 2007.

[23] M. Hart, R. Johnson, and A. Stent, “More content-less control:
Access control in the Web 2.0,” IEEE Web 2.0, 2007.

[24] H. Hu and G.-J. Ahn, “Multiparty authorization framework for
data sharing in online social networks,” in Proc. 25th Data Appl.
Secur. Privacy, 2011, pp. 29–43.

[25] H. Hu and G.-J. Ahn, “Detecting and resolving privacy conflicts
for collaborative data sharing in online social networks,” in Proc.
27th ACSAC, 2011, pp. 103–112.

[26] H. Hu, G.-J. Ahn, and J. Jorgensen, “Multiparty access control for
online social networks: Model and mechanisms,” IEEE Trans.
Knowl. Data Eng., vol. 25, no. 7, pp. 1614–1627, May 2013.

[27] S. Jahid, P. Mittal, and N. Borisov, “Easier: Encryption-based
access control in social networks with efficient revocation,” in
Proc. 6th ACM Symp. Inf., Comput. Commun. Secur., 2011, pp. 411–
415.

[28] S. R. Kruk, S. Grzonkowski, A. Gzella, T. Woroniecki, and H.-C.
Choi, “D-FOAF: Distributed identity management with access
rights delegation,” in The Semantic Web–ASWC 2006, Springer,
2006, pp. 140–154.

[29] A. Masoumzadeh and J. Joshi, “OSNAC: An ontology-based
access control model for social networking systems,” in SocialCom
2010, IEEE, 2010, pp. 751–759.

[30] S. Milgram, “The small world problem,” Psychology Today, vol. 2,
no. 1, pp. 60–67, 1967.

[31] J. Park, R. Sandhu, and Y. Cheng, “ACON: Activity-centric access
control for social computing,” in ARES 2011, IEEE, 2011, pp. 242–
247.

[32] J. Park, R. Sandhu, and Y. Cheng, “A user-activity-centric frame-
work for access control in online social networks,” IEEE Internet
Comput., vol. 15, no. 5, pp. 62–65, Sep. 2011.

[33] M. O. Rabin and D. Scott, “Finite automata and their decision
problems,” IBM J. Res. Development, vol. 3, no. 2, pp. 114–125, 1959.

[34] A. C. Squicciarini, M. Shehab, and F. Paci, “Collective privacy
management in social networks,” in Proc. 18th Int. Conf. World
Wide Web, 2009, pp. 521–530.

[35] K. Thompson, “Programming techniques: Regular expression
search algorithm,” Commun. ACM, vol. 11, no. 6, pp. 419–422,
1968.

[36] J. Travers and S. Milgram, “An experimental study of the small
world problem,” Sociometry, vol. 32, no. 4, pp. 425–443, 1969.

[37] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anat-
omy of the facebook social graph,” CoRR, vol. abs/1111.4503,
2011.

Yuan Cheng received the PhD degree in computer science from the
University of Texas at San Antonio, San Antonio, TX, in 2014. He is cur-
rently a postdoctoral researcher in the Institute for Cyber Security at the
University of Texas at San Antonio. His main research interests include
access control, security and privacy in social computing.

Jaehong Park is an associate professor at the University of Alabama in
Huntsville, Huntsville, AL. He received his PhD degree in information
technology from George Mason University, Fairfax, VA. His research
interests include data and application security and privacy, access and
usage control, cloud computing security, secure provenance and social
computing.

Ravi Sandhu is the founding Executive Director of the Institute for
Cyber Security at the University of Texas San Antonio, San Antonio, TX,
and holds an Endowed Chair. He is a fellow of the ACM, IEEE and
AAAS and an inventor on 29 patents. He was the past Editor-in-Chief of
the IEEE Transactions on Dependable and Secure Computing, past
founding Editor-in-Chief of the ACM Transactions on Information and
System Security and a past Chair of ACM SIGSAC. He founded ACM
CCS, SACMAT and CODASPY, and has been a leader in numerous
other security conferences. His research has focused on security mod-
els and architectures, including the seminal role-based access control
model. His papers have accumulated over 26,000 Google Scholar cita-
tions, including over 6,400 citations for the RBAC96 paper.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

436 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 4, JULY/AUGUST 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

