Toward a Usage-Based Security Framework
for Collaborative Computing Systems

XINWEN ZHANG

Samsung Information Systems America

MASAYUKI NAKAE

NEC Corporation

MICHAEL J. COVINGTON

Intel Corporation

and

RAVI SANDHU

University of Texas at San Antonio and TriCipher Inc.

Collaborative systems such as Grids provide efficient and scalable access to distributed computing
capabilities and enable seamless resource sharing between users and platforms. This heteroge-
neous distribution of resources and the various modes of collaborations that exist between users,
virtual organizations, and resource providers require scalable, flexible, and fine-grained access
control to protect both individual and shared computing resources. In this article we propose a
usage control (UCON) based security framework for collaborative applications, by following a lay-
ered approach with policy, enforcement, and implementation models, called the PEI framework.
In the policy model layer, UCON policies are specified with predicates on subject and object at-
tributes, along with system attributes as conditional constraints and user actions as obligations.
General attributes include not only persistent attributes such as role and group memberships
but also mutable usage attributes of subjects and objects. Conditions in UCON can be used to
support context-based authorizations in ad hoc collaborations. In the enforcement model layer,
our novel framework uses a hybrid approach for subject attribute acquisition with both push and

This research was partially supported by the National Science Foundation and Intel Corporation.
An earlier version of this paper appeared under the title “A Usage-based Authorization Frame-
work for Collaborative Computing Systems” in the Proceedings of 11th ACM Symposium on Access
Control Models and Technologies. Lake Tahoe, California, USA, 2006.

Author’s address: X. Zhang, Samsung Information Systems America, 75 West Plumeria Drive,
San Jose, California 95134, USA; email: xinwen.z@samsung.com. M. Nakae, 1751, Shimon-
umabe, Nakahara-Ku, Kawasaki, Kanagawa 211-8666, Japan; email: m-nakae@bp.jp.nec.com.
M. J. Covington, 2111 NE 25th Avenue, JF3-206, Hillsboro, Oregon 97124, USA; email:
Michael.J.Covington@intel.com. R. Sandhu, Institute for Cyber-Security Research, Univ. of Texas
at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; email: ravi.sandhu@utsa.edu.
The work of X. Zhang and M. Nakae was done while at George Mason University, Fairfax, VA,
USA.

Permission to make digital’/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permission
may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.

(© 2008 ACM 1094-9224/2008/02-ART3 $5.00. DOI: 10.1145/1330295.1330298. http:/doi.acm.org/
10.1145/1330295.1330298.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:2 . X. Zhang et al.

pull modes. By leveraging attribute propagations between a centralized attribute repository and
distributed policy decision points, our architecture supports decision continuity and attribute mu-
tability of the UCON policy model, as well as obligation evaluations during policy enforcement.
As a proof-of-concept, we implement a prototype system based on our proposed architecture and
conduct experimental studies to demonstrate the feasibility and performance of our approach.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
Access controls; K.6.5 [Management of Computing and Information Systems]: Security and
Protection—Unauthorized access

General Terms: Security

Additional Key Words and Phrases: Authorization, access control, usage control, UCON, collabo-
rative computing, security architecture

ACM Reference Format:
Zhang, X., Nakae, M., Covington, M. J., and Sandhu, R. 2008. Toward usage-based secu-
rity framework for collaborative computing systems. ACM Trans. Inform. Syst. Secur. 11,
1, Article 3 (February 2008), 36 pages. DOI = 10.1145.1330295.1330298. http:/doi.acm.org/
10.1145.1330295.1330298.

1. INTRODUCTION AND MOTIVATION

Collaborative systems are becoming a popular means of providing efficient and
scalable access to distributed computing capabilities. This is particularly true
for applications with significant processing demands or large storage require-
ments. In collaborative systems, a set of nodes or organizations share their
computing resources, such as compute cycles, storage space, or online services,
to establish virtual organizations (VOs) aimed at achieving a particular task.
These specific tasks often include large-scale distributed computing or scien-
tific research projects [Johnston 2002] and may be serviced by VOs comprised
of heterogeneous computing platforms. In such collaborative systems, autho-
rization management is a fundamental problem as resource owners must (1)
prevent unauthorized access, (2) monitor the legal use of their resources, and
(3) ensure that all users abide by the agreements of the VO to which the re-
source has been allocated.

In collaborative systems such as Grids [Foster et al. 2001], general entities
include resource users, a set of resource providers (RPs), and virtual organi-
zations (VOs), as indicated in Figure 1. A VO is responsible for managing re-
sources and providing some services to end users. RPs provide system-level
resources that are managed by the VO; RPs are responsible for respecting
predefined access control policies (e.g., through service-level agreements) that
specify how resources are to be used within the VO. Finally, resource users are
provided access privileges to resources within a virtual organization. The au-
thorization management of a collaborative system involves security relation-
ships among all of these entities to protect the resources in a VO and ensure
their availability through access control mechanisms [Bertino et al. 2004].

Current authorization solutions for collaborative systems focus on central-
ized policy management with privilege credentials. In many Grid systems,
for example, administrators of a VO issue credentials to users that determine

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:3

Virtual Organization (VO)

4 Resource Users
N J
T 1

Resource Provider Resource Provider Resource Provider
S— — S—
Shared Data Shared Data Shared Data

Resource Providers (HPsy

Fig. 1. An overview of virtual organization.

the resources and permissions a user can hold. That is, the permissions of
a user are preassigned, and the authorization only checks the validity of the
credentials.

With dynamic user participation and resource-consuming requests, these
access control solutions are neither flexible nor fine grained. For example, a
user’s available usage quota on a particular resource could change dynamically
according to his or her status; preassigned permissions specified in credentials
cannot capture the real-time properties of a user submitting a task to an RP.
Also, current approaches do not consider the usage status of a shared object
in authorization (e.g., the usage context or constraints of resource objects).
For example, a scientific instrument can be shared within a research VO, but
critical functions may be used by only a single organization or group at any
time. Attributes can be defined to specify that remote users are allowed to
use the instrument by submitting corresponding attributes, such as role name
(e.g., PI in the research project), while the administrator of the instrument
can determine the permission that a user can have at the moment of access,
thus ensuring in real time that other accesses do not conflict with the request.
Section 3.5 gives additional examples of dynamic access control policies for
collaborative systems. For these purposes, authorizations based on general
and real-time attribute values of subjects and objects are required.

In addition, ad hoc and pervasive collaborations bring new challenges for
authorization management. In ad hoc collaboration, where no preexisting
VO management infrastructure is in place, subject authentication is not
available, and authorization decisions are, instead, dependent on contextual
information [Covington et al. 2001], such as the location and time of the access
request. Existing approaches lack flexibility to support context-based autho-
rizations in collaborative systems.

In this article we propose a generalized security framework for collaborative
systems by following the layered policy-enforcement-implementation (PEI)
framework [Sandhu et al. 2006]. In the policy model layer, in accordance with
dynamic authorization requirements in collaborative systems, we present an
access control model based on the UCON model [Park and Sandhu 2004; Zhang
et al. 2005]. By leveraging the policy specification flexibility and attribute mu-
tability of UCON, our model supports not only VO-level security policies but

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3: 4 . X. Zhang et al.

also usage constraints defined by each RP. In the enforcement layer, we pro-
pose a security architecture for Grids and other general collaborative comput-
ing systems that leverages a centralized attribute repository in each VO and a
usage monitor in each RP for attribute management. Finally, we identify sev-
eral implementation issues and build a prototype system to show the feasibility
and performance of our framework. Effectiveness of usage control is demon-
strated with access control policies based on subject and object attributes,
which are specified with the extensible access control markup language
(XACML) [OASIS XACML]. The performance of the system is also studied.

The remainder of this paper is organized as follows: Section 2 provides an
overview of our proposed framework. Section 3 presents the usage control
model and various policies that can be specified in collaborative systems with
this model. Section 4 describes the proposed architecture. Section 5 presents
a prototype that we have implemented according to our framework and details
some experimental results. Section 6 presents some related work in Grid-like
and other general collaborative computing systems. Finally, section 7 summa-
rizes this paper and discusses ongoing and future work.

2. SYSTEM FRAMEWORK OVERVIEW

We develop our authorization framework by following the PEI methodol-
ogy [Sandhu et al. 2006]. Although PEI was originally applied for the con-
trolled information sharing problem, it provides principles for general security
system design and development. This section briefly introduces the concept of
the PEI framework and discusses the problems encountered at each PEI layer
within the context of collaborative computing systems.!

2.1 PEI Framework

Traditionally, security systems distinguish policy from mechanism. The gen-
eral goal for a security system has been to build flexible and robust mech-
anisms that can conveniently support a wide range of policies. Policy is
concerned with “what” security needs to be enforced while mechanism is con-
cerned with “how” the security is being enforced. Modern systems are distrib-
uted and have multiple trust and service dependencies. Trying to close the
policy-mechanism gap in a single step is hardly viable in such a complex en-
vironment. Also, early literature treats the policy layer as being rigorous and
well defined, whereas in reality the highest level of policy is often informal and
fuzzy. One of the most difficult steps is to take informal policy requirements
and provide sufficient rigor, structure, and detail in the next level of policy re-
quirements so that they can be effectively handed off to security engineers to
enforce.

The PEI framework seeks to bridge the gap between the what (policies) and
the how (enforcement and implementation) by introducing three additional

INote that PEI is an evolution of the earlier OM-AM framework originally applied to role-based
access control (RBAC) [Sandhu 2000]. The model layer of OM-AM maps to the policy model layer
of PEI, whereas the architecture layer of OM-AM is split into the enforcement model and imple-
mentation model layers of PEI.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:5

Security and system goals Necessarily
(objectives/policy) Informal

i Formal/
— | Policy models | quasi-formal
Horizontal t
view
System block
—_— Enforcement models diagrams,
Looks at Protocol flows
Individual 1
layer
. Pseudo-
_— Implementation models code
Vertical
View
IA‘OOkS Implementations Actual
cross (mechanisms & technologies) Code
Layers

Fig. 2. The PEI models framework.

layers of models. As indicated in Figure 2, at the top there is a layer of in-
formal security and system policy requirements. This layer is necessarily in-
formal and is the layer at which business issues dominate. The bottom layer
is actual implementation. Between the top and bottom layers there are three
layers of models: the policy model, the enforcement model, and the implemen-
tation model. These layers focus on different aspects of a security system. The
purpose of a policy model is to take informal high-level objectives and flesh
out rigor and detail using a formal or quasi-formal notation. A well-known
example of a successful policy model is the lattice model for mandatory access
control [Bell and LaPadula 1975; Denning 1976; Sandhu 1993], which cap-
tured the informal concept of enforcing information flow using security labels
that had been in use in military and national security arenas in the paper
world. The enforcement and implementation models address the “how” aspect
of enforcing a desired policy. The enforcement models address the big picture
of the “how” question, at the level of system architectures, block diagrams, and
protocol flows. The protocol flows can be formalized and analyzed to establish
various security properties of the system. At the same time, they leave a cer-
tain level of detail unspecified, which is then elaborated in the implementation
models. The implementation models are focused on specific issues identified in
the enforcement models layer. These issues need to be resolved in sufficient
detail to require description at a pseudocode level of detail and precision.

PEI is absolutely not intended to be a top-down waterfall-style software en-
gineering methodology. Each layer focuses on a particular system design as-
pect, and inevitably all these aspects require compromises, decisions about
trade-offs, and adjustments as the system gets built and deployed. The rela-
tionship between adjacent layers is many-to-many. A single policy model can
be enforced by multiple enforcement models with possibly different trade-offs
between security, trust, performance, cost, convenience, and the like. Like-
wise, a single enforcement model may support multiple policy models. There
is similarly a many-to-many relationship between enforcement models and im-
plementation models.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:6 . X. Zhang et al.

In the rest of this article we follow this framework to investigate the autho-
rization management in collaborative computing systems, beginning with an
overview of each layer in the following subsection.

2.2 Overview of PEIl Models in Collaborative Computing Systems

The basic requirement of an authorization component in collaborative systems
is to control access by users to shared resources. Furthermore, with the het-
erogeneous computing environments in these systems, the control should be
scalable, dynamic, and fine grained. Previous work has emphasized authoriza-
tions based on user identity or group membership, while the usage properties
of the shared resources—such as the status of shared objects and the dynamic
attributes of subjects in a VO—were not considered. Also, context-based au-
thorizations are not well supported in existing approaches, such as in ad hoc
collaborations without well-established authentication infrastructures. Fur-
thermore, in many collaborative computing systems, a user’s permission may
not be determined only by his or her attributes and system conditions but also
by other activities. For example, a user’s write permission to a shared docu-
ment may require the approval of a high-level manager in the organization.

Based on these requirements, usage control (UCON) [Park and Sandhu
2004; Zhang et al. 2005] is used in the policy model layer of our framework,
as it is an attribute-based access control model and comprehensively consid-
ers authorizations, obligations, and conditions in access control decisions. In
UCON, authorizations are predicates defined on subject and object attributes.
Obligations are actions that have to be performed by the requesting subject
or by other subjects before or during an access. Conditions are environmen-
tal restrictions represented by system attributes, such as time, location, load,
and the like. UCON uses the real-time values of subject and object attributes
for authorization decisions in a session-based manner. Usage decisions are en-
forced not only when a subject generates an access request but also during the
ongoing stage of the usage session, which is referred to as decision continu-
ity. As side effects of the usage, subject and object attributes can be updated.
This is referred to as attribute mutability. Previous work has shown that deci-
sion continuity and attribute mutability can provide flexible, fine-grained, and
dynamic access control [Park 2003; Zhang et al. 2005].

From the viewpoint of enforcement architecture, a typical authorization sys-
tem includes a policy decision point (PDP) and a policy enforcement point
(PEP). Some authorities may exist, such as identity and attribute authorities,
either inside a VO or externally. Existing solutions in authorization manage-
ment can be divided into two types of architectures, pull mode and push mode
[Lorch et al. 2003; OASIS XACML]. Figure 3 indicates the conceptual data
flow of these two modes. In push mode, each subject presents his or her re-
lated information (e.g., identity and attribute certificates?) to the PDP, and the
decision is sent to PEP; while in pull mode, a PEP collects the related infor-
mation of a subject and queries the PDP for a policy decision. Considering the

2Here we refer to a certificate as a digitally signed statement of the value of a subject identity or
a subject attribute by a trusted authority.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:7

Identity Identity
Authority Authority
Identity % Identity %
Certificate "~ Certificate <2/
Y Y
(Role) Request User Request (Location) (Role) User (Location)
Attribute " Attribute Attribute " Attribute
N Workstation N N Workstation N
Authority Attribute Attribute Authority Authority Authority
Certificate @ Certificate @
Request Request
Certificate Chain . f@ ttribute
@ — Certificate
"\\ Attribute v
Certificate
Policy Policy
Decision Enforcement
Point Point
Control Query Control
Decision Decision
Policy Policy
Enforcement Decision
Point Point
(i) Push mode (i) Pull mode

Fig. 3. Push and pull modes of authorization architecture.

temporal and dynamic attributes of subjects and objects, pure push- or pull-
based architecture is neither efficient nor scalable for collaborative systems.
For example, if a subject attribute is mutable, then an access request or an on-
going access may result in attribute updates, which may affect other ongoing
accesses. In a pure push-based architecture, this requires the subject to con-
tinuously obtain the latest attribute value and report it to the PDP. In a pure
pull-based architecture, on the other hand, the PEP needs to keep querying
the PDP with up-to-date attribute values, so extra communication overhead
between them is introduced.

In the enforcement model of our framework, both PDP and PEP are located
on the resource provider side. For an access, the PDP collects the subject and
object attributes, as well as system attributes provided by supporting services
in the VO, and makes the control decision, which is enforced by the PEP. For
attribute acquisition, immutable (persistent) subject attributes (e.g., role and
group membership) are pushed to the PDP by the requesting subject. Mutable
subject attributes are pulled by the PDP from the VO’s centralized attribute
repository, and mutable object attributes are pulled by the PDP from the local
RP’s usage monitor, which records the temporal and dynamic properties of the
object. This hybrid approach with push and pull mode for attribute acquisition
and management improves the efficiency and scalability of our framework.

The updates of mutable subject attributes are performed by the PDP and
reported to the centralized repository, and the updates of mutable object at-
tributes are captured by the local usage monitor. As the conditions of UCON
are built on system attributes, which can be changed and reported in a VO,
condition checks are similar to the mutable subject attributes, which are stored
in the centralized attribute repository and pulled by the PDP. Any update of
subject or object attributes and any change of system conditions triggers the

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:8 . X. Zhang et al.

reevaluation of the policy by the PDP according to the ongoing usage session
and may result in revocation of the ongoing usage or update of attributes if nec-
essary. This approach seamlessly supports decision continuity and attribute
mutability of UCON within concurrent usage sessions.

In the implementation model layer, implementation techniques in several
aspects are considered in our framework, such as policy specifications, subject
and attribute authentications, trusted update of attributes, evaluation of oblig-
ations, and secure communications between computing components in the sys-
tem. The mechanisms of a security system need not only to achieve security
objectives but also to meet the performance requirements of different usage
and collaborative scenarios. As a proof-of-concept, we implement a prototype
system based on our proposed framework. Section 5 describes the details of the
techniques that are used in our prototype and provides performance results.

3. USAGE CONTROL MODEL FOR COLLABORATIVE SYSTEMS

In a collaborative system, the resource provider (RP) typically maintains ulti-
mate control of its shared resources. At the same time, as a member of a VO,
an RP should respect the VO’s community policies (e.g., to allow the accesses of
shared resources and services to authorized subjects and provide the expected
quality of services). For ad hoc group collaborations, some policies should be
specified by the group administrator or owner and followed by each participant
for a particular task. For example, in a temporary collaborative application, an
object shared by its owner can be accessed only by devices in the same room as
the owner. An access control model should provide a comprehensive and sys-
tematic view of the security requirements in a collaborative system and should
be configurable to support individual policies.

We use UCON as the policy model in our framework due to its strong expres-
sive power and policy specification flexibility. Starting with a briefintroduction
of the concept of UCON, in this section we present a UCON model for collabo-
rative systems by leveraging the features of decision continuity and attribute
mutability. We then discuss various policies in collaborative systems that can
be specified with this model.

3.1 Overview

As depicted in Figure 4, a usage control system has six components: subjects
and their attributes, objects and their attributes, rights, authorizations, obliga-
tions, and conditions. The authorizations, obligations, and conditions are com-
ponents of usage control decisions. Authorizations are predicates based on the
subject and/or the object attributes; obligations are activities that have to be
performed by subjects before or during an access; and conditions are system
environment restrictions that are imposed either before or during an access.
The most important properties that distinguish UCON from traditional ac-
cess control models and trust management are the continuity of usage deci-
sions and the mutability of attributes. Continuity means that control decisions
can be determined and enforced not only before an access but also during the
period of the access. Figure 5 shows a complete usage process consisting of

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:9

Rights
(R)

Objects
 Usage ©)
Decisions

/ N\

Subject Attributes (SA) Object Attributes (OA)

Fig. 4. Usage control model.

Continuity of

Decisions
predecision ongoing decisions
before usage ongoing usage after usage
preupdates ongoing updates postupdates
Mutability of
Attributes

Fig. 5. Continuity and mutability properties of UCON.

three phases along the time line: before usage, ongoing usage, and after us-
age. The control decision components can be checked and enforced in the first
two phases, named predecisions and ongoing decisions, respectively. UCON
is a session-based access control model because it controls the current access
request and ongoing usage. Therefore, obligations and conditions in the after-
usage phase are not considered in UCON policies. The obligations and con-
ditions after an access are regarded as long term obligations and conditions,
which are not included in the core UCON models but should be included in
related administrative models. In this article we focus only on the core aspects
of UCON, while administrative models will be developed in the future.
Mutability means that subject and/or object attributes can be updated as
the result of an access. Along with the three phases, there are three kinds of
updates: preupdates, ongoing updates, and postupdates. All these updates are
performed and monitored by the system. An update of a subject or an object
attribute in an access may result in a system action to allow or revoke current
access or another access, according to the authorizations of the access. An
update on the current usage may generate cascading updates, while an update
on another access can act as an external event that would cause a change of the

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:10 . X. Zhang et al.

usage status, such as revocation. These are unique features of UCON models
because of attribute mutability and decision continuity.

3.2 UCON Model for Collaborations

In collaborative systems, an object is a sensitive shared resource or a service
in a VO such that particular actions (rights) can be performed by a subject.
A subject is a user that can generate access requests to objects provided by a
VO. Strictly speaking, a subject is associated with a user and generates access
requests on behalf of the user. For simplicity, we adopt the common, but techni-
cally inaccurate, terminology of saying that a subject is a user. Administrators
in the VO and RPs are also subjects who can define or change security policies.
In this paper we focus on the control of general resources where the subjects
are resource consumers, while the administrative aspect of the system is not
considered.

Subject attributes include properties such as role, security clearance in a
VO, or a group membership within a VO. Additionally, specific attributes can
be defined depending on the requirements of a particular application, such as
the quota assigned to a subject for some resources in a VO, membership in
conflict-of-interest groups, and so on. For example, when an application has a
shared resource that can be used only by subjects from nonconflicting groups,
a subject attribute specifying its conflict groups should be defined. Object at-
tributes can include general object properties such as type, ownership, and
the like. In addition, application-specific attributes can be defined by system
administrators or designers and include properties such as usage status, inclu-
sive/exclusive accesses, and the like. Previous work has shown the expressive
power of UCON to specify various access control models and policies with dif-
ferent attributes [Park and Sandhu 2004; Zhang et al. 2005].

As discussed in Park and colleagues [2004], attributes that are updated ac-
cording to UCON policies are mutable or system controlled, while attributes
managed by an administrator are persistent or administrator controlled and
generally do not change as a result of accesses. For example, a subject’s role
name generally is assigned by the security officer of an organization according
to a user’s job functionality and does not change because of an access requested
by the subject. In general, only the security officer can update the role name
of a subject for organizational purposes, for example, because of the change of
the user’s job functionality.

Because UCON conditions impose environmental restrictions, system at-
tributes are introduced. Specifically, a condition is a predicate built on system
attributes to specify the restriction that has to be satisfied before or during a
usage process. Although system attributes are not updated in a UCON pol-
icy, they change due to the changes of the system environment. For example,
the system attribute location changes when an accessing device moves out of a
room, and this change, according to a particular policy, may affect the result of
a subsequent or an ongoing access.

Obligations can be used to specify prerequisite actions required before a
resource can be used in collaborative systems. These can be simple actions,

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 311

such as clicking an agreement button before gaining access to an object, or a
general access action such as that in a task-based security system [Thomas and
Sandhu 1997]. Also, an obligation can be an action performed by subjects other
than the requesting subject. For instance, in a collaborating research group
between institutes, a user’s access to a shared facility may require approval
from his or her advisor or the principal investigator (e.g., represented as a
digital signature for the access request with a short valid period).

3.3 UCON Policies and Scheme

A permission in UCON is a tuple (s, 0, r), where s is the requesting or accessing
subject, o is the target object, and r is the access right. A UCON policy specifies
the authorizations, obligations, and conditions requirements before and during
a usage process.

Definition 3.1. AUCON policy maps a permission of (s, 0, r) to a tuple (P,
P,,, OBy, OB,,, UPye, UP,,, UPp.y), where P, and P,, are sets of at-
tribute predicates that need to be satisfied before and during a usage process,
respectively; OB, and OB,, are sets of obligations that have to be satisfied
before or during the usage process, respectively. UP,.., UP,, and UP,,y are
sets of update actions that are performed on the attributes of s and o before,
during, and after the usage process, respectively.

In this definition, s and o are parameters of the policy, r is a right, Pp.
and P,, are conjunctions of predicates built on s’s and/or o’s attributes or the
system attributes, which are regarded as authorization predicates and condi-
tion predicates, respectively. A predicate takes one or more attribute values
and constants and returns boolean values. P, and OB, are called predeci-
sion components, and P,, and OB,, are ongoing decision components. If any
predicate in P, or action in O B, is not satisfied when the access request is
generated, a usage cannot be granted; after granting, if any predicate in P,,
or action in OB, is not satisfied during a usage process, the ongoing access
is revoked by the system. Note that an obligation action in OB,, can be a
one time action, a continuous action, a periodic action, or an action under par-
ticular conditions [Zhang et al. 2005]. Without loss of generality, we assume
that, in a general UCON policy, an obligation in OB, is a one-time action
while an obligation in O B, is a conditional action that is required when some
attribute predicates are satisfied during an ongoing usage process, because
continuous and periodical obligations can be regarded as special cases of con-
ditional actions.

UP,, UP,,, and UP,,, are pre-, ongoing, and postupdate actions on sub-
ject and/or object attributes, respectively. An update action returns a new
value to a specific attribute, which can be a constant, a function of its old
value, or a function of other attributes’ values. Similar to an ongoing oblig-
ation action, an ongoing update action can be one time, continuous, periodi-
cal, or under specific conditions. For example, an update of total usage time
during access is a continuous action, while an update of idle time is a condi-
tional action only when a subject is “idle” during access. There are two types of

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:12 . X. Zhang et al.

postupdate actions in a policy, one for updates after a subject ends an ongoing
access (with endaccess action) and the other for updates after an ongoing ac-
cess is revoked by the system (with revokeaccess action), for example, because
of a subject/object attribute change or a system condition change that makes
any predicate in P,, invalid. In a single policy, these two types of update ac-
tions may or may not be the same. Formal semantics and policy specification
of UCON are described in Zhang and colleagues [2005].

In a high-level view, a UCON policy evaluates a set of predicates and oblig-
ation actions initially and grants and continuously allows a permission if all of
them are satisfied. All predicates are based on attributes of the requesting sub-
ject or the target object or the system, while obligations may be required from
this subject or others. As the side effect of granting access, some attributes
may be updated. In UCON, a policy specifies the attribute updates only of
the accessing subject and target object but not system attributes (which are
updated automatically by the system).

A set of attributes, predicates, obligations, and policies makes up the autho-
rization scheme of a system.

Definition 3.2. A UCON scheme is a 6-tuple (ATT,, ATT., R, P, OB, C),
where ATT, is a fixed set of subject and object attribute names, ATT. is a
fixed set of system attribute names, R is a fixed set of generic rights, P is a
fixed set of predicates built on ATT, and ATT,, OB is a fixed set of obligation
actions, and C is a set of policies.

In a UCON scheme, if an attribute appears in UP,.., UP,,, or UPp.s of
any policy, it is mutable; otherwise, it is immutable or persistent. As the archi-
tecture proposed in this article supports condition checks during an ongoing
access, system attributes are considered to be mutable in our framework.

Note that all policies in a UCON scheme are defined for positive permissions
(e.g., to enable access). For an access request, if there is no policy to enable the
permission according to the predicates; the access is denied by default.

3.4 Continuity and Mutability

The concepts of decision continuity and attribute mutability are based on a con-
tinuous accessing process. A usage session is defined as an accessing process
initiated by a subject s to an object o with a generic right r, according to a
UCON policy. In general, for a particular permission, it is possible that there
is more than one policy that can be applied for an access request. For exam-
ple, a school facility can be accessed only by faculty or any member from a lab.
Two policies can be defined for these two cases, which require different cre-
dentials.? In a real access request, a user can satisfy both policies: He or she
is faculty and works in the lab. Only one policy is applied during a single us-
age session, and corresponding updates are performed based on this “selected
policy.” UCON does not cover the mechanism to select which policy is used.
That is, a usage session refers to a specific usage process with (s, 0,r) that

3Note that according to Definition 3.1, only conjunctions of predicates are used in a UCON policy.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:13

follows a particular policy, where the attribute predicates are evaluated based
on s, o, and the system conditions, and updates are performed on s and/or o’s
attributes.

Continuous security check in a single session is invoked by two different
types of attribute mutability: the updates of subject or object attributes, which
are specified by the policies in a scheme; and the updates of system attributes,
which are the changes of environmental or contextual information. As defined
in a UCON policy, subject and object attributes can be updated before, during,
and after a usage session. Also, concurrent usage sessions with regard to the
same subject or object can affect each other, as the attributes are shared vari-
ables between usage sessions. That is, an update in one usage session may
enable or revoke another usage session. For system attributes, the details of
how they change is not specified in UCON policies. However, any change that
causes the condition predicates to become invalid should be reflected during
the usage session (e.g., the system should revoke the ongoing access).

3.5 UCON Policies for Collaborative Computing

With the properties of decision continuity and attribute mutability, flexible
policies can be defined, as conceptually and formally studied in previous
work [Park and Sandhu 2004; Park et al. 2004; Zhang et al. 2005], such as
role-based access control (RBAC), dynamic separation of duty, Chinese Wall
policy, and policies with low or high watermark properties. For collaborative
computing systems in particular, we summarize different types of policies that
can be specified with different attribute predicates and obligation actions in
UCON as follows:

—Consumable resource management. Subject attributes can be defined to
specify dynamic resource management policies. For example, consider a pol-
icy that a subject can have only a fixed amount of total storage in a VO.
An attribute can be used to record its currently used or available amount.
Whenever a subject generates an access request to an RP, the RP uses this
attribute value to determine whether the request can be approved. During
the usage session, the RP should update this attribute with the storage that
the subject has used in this session. Also, any change of this attribute by an
RP in concurrent usage sessions (in different RPs) should invoke rechecks
by other RPs. A similar mechanism can be used to control the usage of other
resources such as CPU cycles, network bandwidth, and the like.

—Credit or reputation management. A subject’s access may generate cred-
its or reputation points, which in turn can enable other permissions in a
VO. This can be used in many incentive-based content sharing systems such
as BitTorrent [Cohen 2003] peer-to-peer (P2P) downloading, where a peer’s
downloading priority and speed are determined by its uploading speed to
other peers. Similar to above, subject attributes can be defined to capture
these aspects, such as a peer’s overall contribution in the system.

—Status of shared objects and collaborative tasks. In a cooperative en-
vironment, when a subject is doing write operations on an object, other

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:14 . X. Zhang et al.

collaborative subjects cannot write or modify the object, in order to pre-
serve its integrity. Also, a subject’s particular operation on a collaborative
task may require that some necessary preoperations have been performed
by other subjects. Attributes can be defined to monitor the shared object or
task’s status and used to determine the just-in-time permissions of a subject.

—Prerequisite or concurrent actions for ongoing accesses. In many collabo-
rative systems, a user’s access requires prerequisite actions. For instance,
in task-based systems a user needs to finish a task before getting the per-
mission to do another task. Similar issues exist in workflow systems. Also,
an ongoing access may require a user or his or her collaborators to perform
some other actions concurrently. For example, an ongoing usage of a sensi-
tive object requires that another subject (e.g., system administrator) log all
the operations during the usage. UCON preobligations and ongoing obliga-
tions can be used to specify these requirements.

—Exclusive /inclusive collaborations. Mutable attributes can be used to en-
force exclusive or inclusive rights for shared objects and resources. Exclusive
attributes are used to resolve conflict of interests, while inclusive attributes
can be used to resolve consolidated interests. For example, in a collabora-
tive task, an operation with high privileges requires at least two subjects’
involvement at the same time. Also, for the purpose of avoiding conflict-of-
interest scenarios, some operations may not be performed when two subjects
are present.

—General constraints of collaborations. Constraints can be defined for fine-
grained and flexible collaborations with subject/object attributes or system
attributes. For example, a subject can gain access to an RP’s resource only
during a particular time period. As another example, the access permission
of a subject can be temporarily delegated to another subject by the collabo-
rative relationship between them.

All of these policies can be defined with the conceptual or formal model pro-
posed in previous work [Park and Sandhu 2004; Zhang et al. 2005]. Detailed
policy specifications are outside the scope of this paper.

4. ENFORCEMENT ARCHITECTURE

This section introduces the overall architecture of our framework and describes
the features to support attribute mutability and decision continuity; we also
explain how to support obligations within the enforcement architecture. Be-
cause it serves as the enforcement model in our PEI framework for collabo-
rative computing, the goal of our architecture is to support as many features
of a general UCON model as possible. We use the terms enforcement archi-
tecture and enforcement model interchangeably and often simply refer to it as
architecture.

4.1 Overview

Figure 6 gives an overview of the enforcement architecture in the context of
Grid Security Infrastructure (GSI) [Foster et al. 1998]. Typically, the archi-

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:15

tecture includes three main components within a VO: user platforms, individ-
ual resource providers (RPs), and an attribute repository (AR). AR is a cen-
tralized service to store and push mutable subject and system attributes in a
VO. Object attributes are stored in a usage monitor (UM) on each RP side.
For simplicity, identity and external attribute authorities are not included
here.

A usage session is initialized by a subject (e.g., a resource consumer) and
works as follows:

—First, the subject generates an access request from its platform, and the
request is submitted to an RP with the client-side proxy [Welch et al. 2003]
(step 1).

—Persistent subject attributes are pushed by the requesting subject to the
policy decision point (PDP) on the RP side (step 2).

—After receiving the request, the PDP contacts the AR and retrieves the mu-
table attributes of the requesting subject (steps 3 and 4) and the object at-
tributes from the UM (step 5).

—The access control decision according to VO policies is issued by the PDP af-
ter collecting all related information (subject, object, and system attributes)
and evaluation of policies. The decision is forwarded to the PEP and enforced
in the execution environment of the task (step 6).

As the side effect of making a usage decision, attribute updates are pre-
formed by the PDP according to corresponding policy. New subject attribute
values are sent back to the AR (step 7), and the object attributes are updated
to the UM (step 8). As a result, updated attributes can be shared between
different usage sessions, and the PDP always checks the AR and UM for the
latest attribute values when a new access request is generated. The process
for obtaining the latest attribute values during ongoing access is described in
Section 4.3.

In a collaborative system, a subject can initiate multiple usage sessions
to different RPs or to a single RP with different objects. Also, multi-
ple subjects can gain access to a shared resource. By centralizing muta-
ble subject attributes, our architecture supports concurrent usage sessions
from a single user. At the same time, object attributes are monitored by
the UM and captured by the PDP when new usage requests are generated.
Therefore our architecture can support concurrent usage sessions to a single
object.

Within a single VO, although there is only one AR depicted in Figure 6,
physically there can be multiple ARs for different subjects or different types
of attributes. For an access request, a PDP needs to acquire all necessary
attributes from different ARs. For simplicity, we describe only interactions
with single AR in one VO in this article.

4.2 Attribute Acquisition and Management

As UCON is attribute based, a critical requirement to correctly enforce ac-
cess control policies in a UCON system is to get just-in-time attribute values.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

116 . X. Zhang et al.

9. Subject or System
Attribute Changes

User Platform

I e
Client S Mutable
AP . Attributes
Directory

[Service

Attribute Repository
(AR)

e
Persistent
Proxy Attributes
1. Service 3. Mutable| 4. Mutable | 7, JPdated
_Requests Attribute Attributes :
with Persistent Request (Subject)
Attributes
y Y
Gate 2. Persistent Attributes o| Pop
Keeper 8. Updated
— Attributes 1 —
Service .
: 5. Object i
Requests | (Object) Attrib:ltes VO Policies
Job Usage
Manager Monitor 6. Privileges
‘g (M) ivileg
_Job A v
Dispatch y Process Platform-specific
Execution Information PEP Knc?évledg?l
Environment (ex. grid-mapfile)
f Access Rights Resource Provider
(RP)

Fig. 6. Usage-based authorization architecture.

One of the novelties of our architecture is that it supports different modes
for attribute acquisition and management with regard to different types of

attributes:

—Push mode for persistent attributes. Because there are no policies in a
UCON scheme that update their values, the persistent attributes of a subject
are pushed by the subject to the PDP of the RP to which the subject submits
an access request. As these attribute values do not change during the usage
session, they are pushed and evaluated only once. Typical persistent subject
attributes include those provided by external authorities, such as identity
or attribute certificates issued from other organizations. Also, attribute cer-
tificates issued by internal authorities are persistent attributes, such as a
subject’s role or group in a VO, because they are not updated as a result of
usage. An object also can have persistent attributes that are maintained by
its RP and checked by the PDP when an access is generated to it.

Note that, as aforementioned, persistent attributes can be updated
by system administrators or security officers for organizational purposes.
There should be parallel update and management mechanisms for these at-
tributes. For example, a simple option may require that a subject’s persistent
attributes can be updated only if the subject has no current access to any

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3: 17

object.* In this paper we focus on the core aspects of UCON; the administra-
tive updates of persistent attributes are not considered here.

—Pull mode for mutable attributes. When a subject generates an access, mu-
table subject attribute values are pulled by the PDP from the centralized
AR. Values for mutable object attributes are provided by the UM of the RP.

—Update propagation for mutable attributes. Because of attribute mutability,
an ongoing usage session needs to repeatedly check the attribute values and
evaluate the policy. Because mutable subject attributes are maintained in a
centralized AR, updates (e.g., an update from another usage session) trigger
the new attribute value to be propagated by the AR to the PDP. Similarly,
mutable object attributes can be propagated by the local usage monitor to
the PDP. As update propagation is related to ongoing decision checking, the
details are described in next subsection.

4.3 Supporting Attribute Mutability and Decision Continuity

4.3.1 Updates of Attributes. As described in Section 4.1, in a usage session,
preupdates are results of the approval of the access request performed by the
PDP, according to a particular usage policy. That is, preupdates are triggered
by an access request based on a policy. During a usage session, ongoing and
postupdates are triggered by some specific events, either from the subject or
from the system.

—Ongoing updates. Ongoing attribute updates are invoked by events in a sys-
tem, such as time events and events that change system status. For example,
the update for a subject’s time slice, which is repeatedly adjusted in a usage
session, is invoked by the time event of the system. For another example, a
subject’s attribute update about the usage status (e.g., from busy to idle) is
invoked by a system event that monitors the status. This kind of event can
be monitored by the UM and reported to the PDP. Once the PDP receives an
event, the attribute values of the object and subject are retrieved and evalu-
ated and corresponding policies are rechecked by the PDP if necessary (e.g.,
to allow an ongoing usage to continue or to revoke it). For simplicity, the
event trigger and transmission are not called out in Figure 6.

—Postupdates. Postupdates can be triggered by two types of events, a subject’s
action to end an usage session and the revocation of an ongoing usage session
by the system [Zhang et al. 2005]. For the first type, the UM reports an
endaccess event to the PDP after a subject ends the usage. The PDP performs
the updates according to the policy and reports new attribute values to AR
and UM, respectively. In the second case, the revocation of an ongoing access
is the result of decision continuity enforced by the PDP; the postupdates are
performed by the PDP and reported to the AR and UM, respectively.

4This may lead to a denial of administrative update if the subject has indefinite access to an
object. Mechanisms for “update on the fly” are needed for these attributes. For simplicity, we do
not explore the details of this mechanism in this article.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:18 . X. Zhang et al.

—System attribute changes. Besides the PDP-performed attribute updates
for subjects and objects, system attributes are changed by external events.
For example, to account for the mobility of a portable device accessing an
object, the sensor of the device or connection service provider reports its lo-
cation information to the attribute repository whenever the device is mov-
ing (step 9 in Figure 6). In this paper we assume that event detection
and reporting mechanisms for system attribute changes are provided by the
functional components of a system, which are not explicitly included in our
architecture.

4.3.2 Continuous Enforcement of Policies. During a usage session in
UCON, a policy is checked, and the decision is enforced repeatedly if there
are ongoing decision components in this policy. Because a decision component
is built from attribute predicates, in practice ongoing checks are triggered by
attribute changes during a usage session (e.g., the updates of mutable sub-
ject and object attributes and the changes of system attributes, as discussed
above).

Due to the existence of concurrent usage sessions in a collaborative system,
attribute values have to be synchronized between different RPs and an up-
date event in one RP has to be propagated to other RPs. In our architecture,
the centralized AR acts as a bridge to forward real-time attribute values to
RPs. Specifically, when a PDP of an RP (say RP;) contacts the AR for a usage
request (step 3 in Figure 6), the AR logs this request with related attribute
names. On receiving a newly updated attribute (e.g., from RP5 or a system at-
tribute change event), the AR issues an updated attribute certificate with the
new value to RP1, which can reevaluate the policy of the ongoing usage session
with the new attribute value. If the predicates of the policy remains satisfied,
the ongoing access is allowed to continue; otherwise, a revocation event is gen-
erated by the PDP, and the decision is enforced by the PEP. Whenever the PDP
has no interest in the subject attributes, e.g., when the access is ended or re-
voked, it informs the AR such that no updated attribute values are sent from
AR to RP;. For the change of an object attribute, because it is monitored by
the UM the ongoing decision check can be locally implemented.

4.4 Supporting Obligations

As discussed in Section 3, there are two types of obligations in a general UCON
model, preobligations and ongoing obligations. For simplicity, in this section
we consider only how preobligations can be supported in our architecture, al-
though we conjecture that ongoing obligations can be supported similarly.

To support obligations, we need a mechanism to evaluate whether an oblig-
ation action has been performed before the PDP allows an access. In central-
ized policy enforcement systems, monitoring technologies such as logging can
be used for this purpose. But it is not scalable for decentralized systems such
as distributed collaborations. In this article we propose an attribute-based
obligation evaluation mechanism by leveraging the attribute propagation in
our architecture. Specifically, for each obligation action we define a subject at-
tribute that specifies whether the obligation has been performed by the subject

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:19

Updated
Subject
Attributes

AR | RPs |

Updated
Subject
Attributes

"~._/ Secure channels between ARs
H o,

Updated
Subject
Attributes

Updated
Subject
Attributes

Updated
Subject
Attributes

Updated attributes are forwarded via trusted mesh of ARs
and globally shared by ARs

Fig. 7. Attribute sharing over trusted mesh.

or not. This obligation subject may be the same as the access requesting sub-
ject or different, depending on the corresponding policy. When the obligation
subject has successfully performed the action, the attribute value is updated in
AR. On receiving an access request from a subject, the PDP pulls the attribute
corresponding to the obligation action from AR, similar to retrieving the muta-
ble subject attributes aforementioned. If the attribute value indicates that the
obligation has been satisfied, the access can be allowed. We explain the details
of this process in Section 5 with a preobligation policy example.

4.5 VO Federations

So far we have introduced the enforcement architecture and control flow for a
single VO, in which only a single centralized AR is used. In a realistic usage
setting, however, there are many cases where users and resource providers
in different VOs collaborate, requiring the PDP of a VO to obtain attributes
from another VO to enforce policies, typically including the attributes of an
access requesting subject and the attributes indicating whether obligations
are satisfied by that subject.

To enable such VO federations with scalable attribute sharing between ARs,
a “trusted mesh” is defined as a graph M = (V, E), where the vertics V corre-
spond to a set of ARs in a VO federation and the edges E to a set of secure
communication channels between the ARs. As shown in Figure 7, each AR
has the reference information (referral) of every connected AR. Whenever a
PDP of a VO (say, VO2) needs an attribute value of a subject from another VO
(say, VO1), ARs and RPs cooperatively perform the operation with M. Specif-
ically, the PDP of a local RP in VO2 requests an attribute value from the AR
of VO2, which is actually stored on the AR of VO1. The AR of VO2 looks up
the requested value with the internal directory service and obtains a referral
to the remote AR of VO1. A secure channel is built between two ARs, and the
AR of VO2 forwards the attribute request through the secure channel. Finally,
the AR of VO1 queries the attribute value and sends back to the AR of VO2.

Similar to DNS services, the scheme for VO federations is scalable and can
ensure the freshness of shared attribute values. In addition, this approach

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:20 . X. Zhang et al.

allows the ARs to be completely symmetric in the mesh; this symmetry pro-
vides a new level of robustness that accommodates temporary federation, in
which an AR leaves the VO federation after a limited time served.

4.6 Other Related Issues

4.6.1 Authenticity of Attribute Values. The authenticity of a subject’s at-
tributes depends on three aspects: the authentication of the subject, the bind-
ing between a subject’s identity and its attributes, and the integrity of the
attribute values. In general the identity of a subject is a certificate, such as a
public-key certificate. Also, persistent attributes and their values are certifi-
cates or credentials, signed by some authorities. Because in general an identity
authority is different from attribute authorities, a mechanism is needed to bind
identity certificates and attribute certificates. Existing mechanisms proposed
in Park and Sandhu [2000] can be used.

For mutable subject attributes, the AR of a VO is the authority to ensure
their authenticity and integrity. This implies that the attribute certificates
issued by the AR should be trusted by individual RPs. As they are managed
inside an RP, the authenticity and integrity of mutable object attributes can
be easily achieved, for example with existing trust infrastructure in the same
organization.

4.6.2 Trust of System Attributes. Policy decisions in our framework rely on
the trusted values of system attributes, which specify condition components
in a UCON policy. For example, the location-based access control needs input
from sensors deployed on user platforms (refer to step 9 in Figure 6). As this
paper focuses on architecture and enforcement work flow, the detailed require-
ments of the client platform and other system components for condition check
are not explored. Trusted Computing technologies enabled by Trusted Plat-
form Module (TPM) [TCG TPM 2003] specified by Trusted Computing Group
(TCG) provide mechanisms for this purpose and, generally, can support trusted
attributes and client integrity attestation [Covington et al. 2006; Sailer et al.
2004]. With widely deployed TPM on laptops and emerging Trusted Comput-
ing technology on mobile devices (e.g., TCG’s Mobile Trusted Module [TCG
MTM 2006]), we believe that this requirement can be satisfied.

4.6.3 Concurrency Control for Updates of Mutable Attributes. With concur-
rent usage sessions in a system, mutable attributes can be updated in multiple
sessions simultaneously, therefore concurrency control should be considered to
maintain the integrity of their values. Specifically, when a mutable subject at-
tribute is going to be updated in a session, it cannot be pulled by other sessions
until the update operation be finished. A similar problem exists in the updates
of mutable object attributes between concurrent sessions. As traditional mech-
anisms can be used in our architecture, such as two-phase locking protocol, the
details of concurrency control are not included in this paper.

5. PROTOTYPE IMPLEMENTATION AND EXPERIMENTAL STUDY

To show the feasibility and performance of our framework, we have imple-
mented a Web-based prototype system, which enables a group of software

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing 3:21

9. Updated attributes

User Platform Attribute Repository

A J

_ =
Sutg/l_ers:o Sensor Use_r Location/
n Clien OpenLDAP Object Attrs.
| w/ —
OpenSSL
Proxy |%‘
User Certificate A AR Certificate
L 1. Service request 3. LDAP 4.LDAP | 7. Updated
with a user request response | attributes
certificate
y 2. User identity and y
Apache service request » PDP
=
Service l 8. Updated 4
request attributes ¥ 5. Object
Usage Attributes
mod_dav_svn Monitor 6. Privilege
~Job Process '
Dispatch v Information
mod_authz_ucon
Subversion (PEP)
RP Certificate
Access rights .
+ 9 | Resource Provider

Fig. 8. Prototype system architecture.

developers to share and collaboratively develop application code from differ-
ent user locations. This section first introduces the overview of the prototype
architecture, then demonstrates three implemented UCON policies with our
prototype, and finally presents some performance results.

5.1 Prototype Overview

The RP in our prototype provides a platform for developers from different cor-
porations to develop applications collaboratively. The core building block of
the RP is a concurrent revision control system called Subversion [Subversion],
which is integrated with Apache WebDAV module (mod_dav) [mod_dav]. As
shown in Figure 8, the prototype architecture is similar to the general archi-
tecture proposed in the previous section. Specifically, the AR is a directory
service built with OpenLDAP 2.0.27 [OpenLDAP]. OpenSSL 0.9.6b [OpenSSL]
is used to build mutual authentication and secure communication channels
between AR, user platforms, and RPs. The “sensor” program in the user plat-
form simulates a component to detect the platform’s location information as
the subject’s attribute and update its value to the AR.

Subversion has an ACL-based access control mechanism, which controls
what data a user is able to download and/or upload to a resource provider.
Because the access control is performed without referring to any attribute
changes, it is hard to enforce general usage control policies such as those

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:22 . X. Zhang et al.

discussed in Section 3.5. In our prototype, we implement an Apache authoriza-
tion module (mod_authz ucon) as an interface from Apache to the PDP module.
For every access request to the Subversion, mod_authz ucon forwards it to the
PDP module and approves the request if the PDP module allows it.

The RP is built on a Linux-2.4.18 box that has Pentium IV 1 GHz CPU and
1 GB memory and uses Apache 2.0.54 with mod_ssl and mod_dav and Subver-
sion 1.2.3. The mod_authz .ucon is written in C (with the gcc-4.0.1 optimization
level -02), and the other components (PDP and UM) are in Java 1.4.2. These
modules are connected with a local loopback network interface (1o). The UM
uses DB40Object [DB40Object] as an object-oriented database to store the object
attributes that the UM has captured. The user platform used in the prototype
system is built on a Windows XP machine that has Pentium M 1 GHz CPU
and 768 MB memory. The sensor is written in Java 1.4.2, which simulates to
monitor the user-location information and sends changes to the AR.

The following subsections describe individual implementation issues.

5.1.1 Policy Specification. Our prototype uses the extensible access con-
trol markup language (XACML) [OASIS XACML] to specify UCON policies.
XACML is an open-standard format to specify access control policies and is
expected to be widely used with the properties of interoperability and exten-
sibility. Using Sun’s XACML library [XACML], the PDP module interprets
XACML policies and makes access decisions.

A UCON policy can be described in XACML format as the following shows:

<Policy PolicyId="(policy-name)"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">
<Target>
<Subjects>(predicates over subject attributes)</Subjects>
<Resources>(predicates over pure-object attributes)</Resources>
<Actions>(predicates over access rights such as read and write)</Actions>
</Target>
<Rule effect="permit"/> (Specification that this policy is positive)
<Obligations>(Specification of attribute-update actions)</Obligations>
</Policy>

where the predicates in the UCON policy are described in <Subjects> and
<Resources> elements, the rights are in <Actions> element, and the update
actions are defined in <Obligations> element. Note that the concept of oblig-
ation in XACML does not mean the same as that in UCON model. Later in
this section we show how to extend XACML to specify obligations in a UCON
policy.

As an implementation-oriented policy specification, an XACML policy does
not exactly map to an abstract UCON policy defined in Section 3.3. Specif-
ically, the ongoing check in a UCON policy is achieved by individual checks
according to an XACML policy, triggered by corresponding attribute update
events or system condition changes. For example, to capture the ongoing check
based on a user’s location during a session, the sensor program generates an
event to update the subject attribute corresponding to the movement of the
user platform, which in turn triggers the policy reevaluation by the PDP.

5.1.2 Usage Monitor. In our prototype, the UM captures an object-
attribute change such as the creator’s identity from Subversion. The identity

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:23

(X.509 distinguished name) of a user is presented in the user’s certificate, e.g.,
CN=Alice, 0U=V01. Because the identity includes a VO name (V01) to which
the user belongs, the PDP module can identify V01 as the object’s assignment
and enforce a V01-dependent policy to the object. This means that an RP can
host several VOs without any interference between them.

5.1.3 Attribute Update Propagation. When a user’s platform changes the
value of an attribute such as location, the updated value must be propagated
to other interested platforms, as described in Sections 4.2 and 4.3. To ensure
the attribute value’s authenticity and integrity, the AR, UM, and PDP perform
mutual authentication with SSL v3 to build a secure channel for every commu-
nication. By using VO-based X.509 certificates in the authentication protocol,
the communication is restricted to a particular VO. In this way, we can build
the trusted path for the attributes to be propagated securely.

5.2 Enforcing UCON Policies

To demonstrate the feasibility of usage control with the prototype, we consider
three scenarios with location-based, task-based, and preobligation policies, re-
spectively. As a use case, consider two collaborative software development
projects, one between Alice and Bob from different corporations (Corp. A and
B, respectively) and one between Alice and Chris (from Corp. C). The project
between Alice and Bob is performed in VO1 and the other in VO2. Also, Corp.
B and C are assumed to have a conflict of interest to one another.

5.2.1 Location-Based Access Control. Although Internet-based collabora-
tive systems enable developers to work together remotely, face-to-face meet-
ings are still required to define and confirm application specifications in depth.
This requirement is satisfied with mobile technologies such as laptop and hand
held computers with wireless network capability. Such technologies, however,
pose a security threat regarding confidentiality of the application code. Now
suppose that Alice visits Chris (in Corp. C) for the VO2 project. In this con-
text, Alice should not be able to refer to the VO1-related data in Corp. C, even
though Alice is also a valid member of VO1, because VO1-related data might
include sensitive information of Corp. B.

A UCON policy (see Figure 9) is defined according to this requirement in
XACML format, restricting the user’s location to Corp. A or B to access any
objects in VO1. In our prototype, Alice’s location change is detected by the
sensor equipped on Alice’s platform (Figure 10) and reported to the VO1’s AR.
With this policy, the PDP module accepts a request for the VO1 data when
Alice is in Corp. A (Figure 11[i]), and otherwise rejects it (Figure 11[ii]).

5.2.2 Task-Based Access Control. In collaborative software development,
workflow management is crucial to preserve the integrity of the whole devel-
opment process. For example, when Alice is testing a software module, Bob
has to suspend his modification to it. In our prototype, a task’s progress is
kept as an object attribute InUse. By default, the InUse attribute takes the

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:24 . X. Zhang et al.

<Policy PolicyId="VOl-policy-1"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">
<Target>
<Subjects>
<Subject>
<!-- The subject identity must include "OU=VOl". -->
<SubjectMatch MatchId="function:x500Name-match">
<AttributeValue DataType="string">0U=VOl</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject-id" DataType="x500Name"/>
</SubjectMatch>
<!-- The subject is located in Corp. A or B. -->
<SubjectMatch MatchId="function:regexp-string-match">
<AttributeValue DataType="string">"Corp. [AB]S</AttributeValues>
<SubjectAttributeDesignator AttributeId="subject-location" DataType="string"/>
</SubjectMatch>
</Subject>
</Subjects>
<Resources>
<Resource>
<!-- The object must be created by a VOl member. -->
<ResourceMatch MatchId="x500Name-match">
<AttributeValue DataType="string">0U=VOl</AttributeValues>
<ResourceAttributeDesignator AttributeId="creator-id" DataType="x500Name"/>
</ResourceMatch>
<Resource>
</Resources>
<Actions>
<!-- "GET" represents the read privilege. -->
<Action>GET</Action>
</Actions>
</Target>
<Rule effect="permit"/>
</Policy>

Fig. 9. Location-based access control policy of VO1.

& DavProxy |Z||E|rg| & DavProxy |Z||E|rg|
~Selected Virtual Organization ~Selected Virtual Organization
| Alice@VO1 ~ || | aiceavos ~|

|| Current Location ﬁ || Current Location ﬁ
Corp. A ¥ Corp.C ™

(1) In Corp. A (i1) In Corp. C

Fig. 10. Location change detection by the sensor in Alice’s platform.

value FOR_DEVELOPMENT, which means that any developer can gain access to the
object. The policy is defined in Figure 12.

As shown in Figure 13, when Alice tries to test a module by creating a LOCK
file in the module’s source directory, the InUse value of the relevant objects is
updated to FOR_TEST, which means that any developer except the tester (e.g.,
Alice) cannot have access to the objects. The policy is shown in Figure 14.
Another policy is needed to allow the tester’s access on the object being tested,
as shown in Figure 15. In this policy, the <Condition> element is used to
compare the subject identity with an object attribute last-accessor-id, who

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:25

%) Revision 1: /ucon-proto/eui/edu/emu/list/eui - Mozilla Firefox [E]X) [2 #93 Forbidden - Mozilla Firefox

File Edt View Go Bookmaks Tools Help 3% File Edit View Go Bookmarks Tools Help oy
[«l>) (3] <) (@) (D ntosrizi0011008055vr @) G0 ([(=l2) EICI@ S hesrzioommesmn® 6o (Gl

Getting Started LatestHeadiines v Permeo Agent _FrontPage - TESTWIKI _Misc » Getting Started _ Latest Headiines ¥ Permeo Agent _FrontPage - TESTWIKI _Misc v >
Revision 1: /ucon—proto/gui/edu/gmu/list/gui Forbidden

..
« AttributeTableModel.java
« AttributeTableView.java
+ TreeBrowseView.java

* policy/

« umon/

You don't have permission to access /svniresources-vol/ucon-proto/ on this server

Fowered by Subversion version 1.1.4 (r13538).

(i) In Corp. A (ii) In Corp. C

Fig. 11. Results when Alice tries to gain access to shared data in VO1 from different locations.

<Policy PolicyId="VOl-policy-2"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
. <!-- Same as the location-based policy of VOl. --> ...
<Resources>

. <!-- Same as the VOl-policy-1. --> ...
<ResourceMatch MatchId="string-match">
<AttributeValue DataType="string">FOR DEVELOPMENT</AttributeValue>
<ResourceAttributeDesignator AttributeId="InUse" DataType="string"/>
</ResourceMatch>
</Resource>
. <!-- Same as the location-based policy of VOl. --> ...

</Policy>

Fig. 12. Task-based access control policy of VO1: Allow any access to an object when its InUse =
FOR_DEVELOPMENT .

indicates that only the subject who has locked the object can access it. The
policy to unlock an object can be specified in a similar way.

5.2.3 Preobligation Policy. Consider a software development project under
an extreme programming scheme. All developers are required to have associ-
ated reviewers to review their code before releasing [Beck 1999]. In this case,
a preobligation is used to make sure that a reviewing process for a new code
has been done and, if not, to notify an associated reviewer to review the code.

In the original XACML specification, however, obligations dictate only
“postobligations,” which are performed after decision making by PDP [OASIS
XACML] and used to specify postupdates in our implementation.

To introduce preobligations into XACML, we extend our prototype as
follows:

—Each obligation element in XACML has a T'ype attribute that indicates that
the obligation is a UCON preobligation, or a “postobligation.” For the above
example, the modified XACML describes the prerequisite as follows:

<Obligation ObligationId="EnsureReviewProcess" Type="Pre"/>

—On an access request, a PDP first performs an action to invoke the preoblig-
ation, which may result in updated attribute(s) to an AR as a side effect.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3: 26 . X. Zhang et al.

Mame Walue

D fsun/resources-vol/ucon-proto/pdp/edujamuy | ®

[ssunfresources-vo1jucon-prato/pop/ edufgmu i?cjeesc; IcDount ésvn,’resnurces—vol,fucon—proto,’pdp
[#swn/resources-wo1 fucon-proto/pdp. |Last accessor...|CN=Alice,0U=Y01
[ssunfresources-vol/ucon-prato Laet-TTETTOT.. [129 Il 5 0
D JEvnjresourcess, _ Aln Use FOR TEST
[tswmjresourced [5) D#¥tmp¥ucon-proto¥pdp ’b%\{‘ 3
: e o ——
R S
[[5) SRCEB0_ & S S '5\'0 edu
®) tmp N é/
[= [C5) ucon-pro o
D e & = LOGK]
g client =
f) data v
| LY

Fig. 13. An object attribute change after LOCK file creation.

<Policy PolicyId="LOCK policy"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">
<Target>
<Subjects>
. <!-- Same as the location-based policy of VOl. --> ...
</Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="string-match">
<AttributeValue DataType="string">LOCK</AttributeValuex>
<ResourceAttributeDesignator AttributeId="resource-id" DataType="string"/>
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>PUT</Action> <!-- object creation -->
</Actions>
</Target>
<Rule effect="permit"/>
<Obligations>
<Obligation ObligationId="lock-action" FulfillOn="permit"/>
</Obligationss>
</Policy>

Fig. 14. Task-based access control policy of VO1: Allow to test an object by creating a LOCK file.

—Then, the PDP fetches (possibly updated) attribute values from the AR and
makes a decision for the access request.

—Any postupdates are performed as specified by the original XACML
obligations.

Note that these modifications violate the original XACML specification in
terms of control flow. To support preobligations, we modify a main event
loop, known as a context handler, in the Suns XACML library. Following the
previous section, we discuss the support only of preobligation policies in this
section.

By the extension of preobligations, we specify a policy for the aforemen-
tioned prerequisite of code review, as shown in Figure 16.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3: 27

<Policy PolicyId="test-policy"
PolicyCombinationAlg="rule-combining-algorithm:permit-overrides">

<Target>
. <!l-- Same as the location-based policy VOl. --> ...
<Resource>

. <!-- Same as the location-based policy of VOl. --> ...
<ResourceMatch MatchId="string-match">
<AttributeValue DataType="string">FOR TEST</AttributeValue>
<ResourceAttributeDesignator AttributeId="InUse" DataType="string"/>
</ResourceMatch>
</Resource>
. <!-- Same as the location-based policy of VOl. --> ...
</Target>
<Rule RuleId="AllowAnAccessFromTheTester" effect="permit">
<!-- The subject must be identical to the last accessor of the locked objects.
<Condition FunctionId="any-of">
<Function FunctionId="x500Name-match"/>
<Apply FunctionId="x500Name-one-and-only">
<ResourceAttributeDesignator AttributelId="last-accessor-id" DataType="x500Name"/>
</Apply>
<SubjectAttributeDesignator AttributeId="subject-id" DataType="x500Name"/>
</Condition>
</Rule>
</Policy>

Fig. 15. Task-based access control policy of VO1: Allow the testing subject to access an locked
object.

<Resources>
<Resource>
<!-- Allows registration only for the files that have been reviewed. -->
<ResourceMatch MatchId="string-match">
<AttributeValue DataType="string">True</AttributeValue>
<ResourceAttributeDesignator AttributelId="reviewed" DataType="string"/>
</ResourceMatch>
</Resource>
</Resources>
<Actions>
<Action>PUT</Action>
</Actions>
<Rule effect="permit"/>
<Obligations>
<!-- Ensure the review process for new code. -->
<Obligation ObligationId="EnsureReviewProcess" Type="Pre"/>
</Obligations>
</Policy>

Fig. 16. Preobligation policy: Allow to release an object if review process has been done.

When a developer (say Alice) releases new code, the PDP first invokes
the preobligation function named <EnsureReviewProcess>. Then, the function
confirms the status of the relevant review process with a project management
system that we implement as a simple Perl-CGI application for the evaluation.
If the review process is done by Alice’s reviewer (say Bob), the function up-
dates the value of the new code’s attribute reviewed to True. Otherwise, the
function leaves the attribute value be False and encourages the associated re-
viewer to review the new code by sending a notification email (see Figure 17).
Because the policy specifies a condition that the release is permitted only when
the reviewed attribute is True, the PDP rejects the access request unless the
review process is done (see Figure 18).

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:28 . X. Zhang et al.

& [NOTIGE] Code review request. — Thunderbird

File Edit View Go Message Tools Help

& . R B ¢ W N > !
Gel Mail ~ Write Address Book | Reply Reply All Forward Print Stop
= Subject: [NOTIGE] Gode review request.
From: =
Date: 2006/10/28 1647
To: Bob <bob@somewhere.com>

Dear Bob,

The fol lowing recuest from your associated programmer “Alice’ has been
rejected this time, because the code has not been reviewed vet.

PUT /Zucon-src/pde/edu/enu/ | ist/pdo/newModule. java
INTO https://svn. rel.com/vol - resources/

Please review the code at:
<http: //workbench. rpl . con/cgi/review. pl2dir=/ucon-src/pdo/edu/emu/ | ist/odp/>.

--- Project manager of the UCON Authz developers team.

Fig. 17. Example of an obligation request mail sent to an associated reviewer.

#pdp — TortoiseSYN Gommit... Finished!

Action Path

Adding D:¥alice-home¥ucon-src¥pdp¥edu¥gmu¥listépdp¥newModule. java

Sending content D:¥alice- icon-src¥pdp¥edu i le.java

Error Commit failed (details follow):

Error PUT of '/svn-ucon/resources-vo 1/isvn/wrk/bac54aa6-9da6-764d-acB9-d7797b4e 1d 14/p)|
< >
7 kBytes transferred
Added:1

Fig. 18. Example of an error report showing that a PDP has rejected a release request for a file
not reviewed.

5.3 Implementing Attribute Sharing Between ARs

As discussed in previous section, efficient attribute sharing is necessary for
VO-level collaborations. For scalability and security, in our prototype a trusted
mesh is built using VO-based referrals in conjunction with LDAP over SSL
(LDAPS). A VO referral is a virtual LDAP entry including a URL to the actual
entry on a remote server. When a LDAP client receives a referral from a local
server, the client gains access to the actual entry accordingly to the URL. In
our AR implementation, all attributes in a particular VO are descendants of
the root entry identified as the VO’s name (e.g., ou=VO1).

With the referrals we can establish a trusted mesh M = (V, E) in the follow-
ing steps:

(1) Create a trusted certificate list of V and distribute it to individual ARs in V.

(2) For each AR in V, register individual referrals of other ARs in (V - {AR})
as shown in Figure 19. Note that each URL has the LDAPS prefix.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:29

dn: ou=VO1l

ou: VOl

objectclass: top

objectclass: organizationalunit
objectclass: referral

ref: ldaps://arl.companyA.com/ou=VOl

dn: ou=VO02

ou: VO2

objectclass: top

objectclass: organizationalunit
objectclass: referral

ref: ldaps://ar2.companyB.com/ou=V02

Fig. 19. Example of referral entries in an AR.

AR of VO1 AR of VO2
3. Requests due to the Referrals 1. Attribute Requests
LDARS 5. Attribute Values LDAPS ! | RPs
Gateway Gatewa 6. Attribute Values
4. Attribute Values 2. Referral

Directory Directory

Service Service

Attribute
Referrals

Values

dn: ou=VO1
Refers to ou: VO1
-... objectclass: top
objectclass: organizationalunit
objectclass: referral
ref: Idaps:#arl.companyA. com/ou=v01

dn: cn=anAttributeName, ou=vO1
cn: anAttributeName

objectclass: aClass

objectValue: aValue

[CUECIVaTe: avate

[COTECTV AT avae

Fig. 20. Data flow for attribute sharing between ARs.

Based on this, attribute sharing can be performed cooperatively between
ARs with the following steps (refer to Figure 20):

(1) In the local AR in a VO (e.g., VO2), an RP in the same VO requests an
attribute value that is actually stored on a remote AR in another VO (e.g.,
VO1).

(2) By looking up the requested value with the internal directory service, the
AR obtains a referral to the remote AR.

(3) The AR requests the attribute value with the LDAPS gateway, which es-
tablishes SSL channels with the LDAPS gateway of the remote AR in a
mutual authentication mode and forwards the attribute request through
the secure channel.

(4) The remote LDAPS gateway obtains the attribute value from the coexisting
directory service.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3: 30 . X. Zhang et al.

Table I. PDP Performance Overhead in File Sharing Prototype System

Access operations: update Total PDP Avg. time per | Session running
(# of files, avg. file size) processing (msec) | # of accesses | access (msec) time (sec)
1,10 KB 2304 26 88.62 2.77

1, 100 KB 2307 26 88.73 2.68

1, 1000 KB 2473 26 95.12 3.28
10, 10 KB 3993 44 90.75 4.94
10, 100 KB 4375 44 99.43 5.47
10, 1000 KB 3506 44 79.68 11.96
100, 10 KB 12423 224 55.46 13.78
100, 100 KB 15958 224 71.24 19.97
100, 1000 KB 10147 224 45.30 85.33

(5) The remote LDAPS gateway sends the attribute value back to the local
LDAPS gateway.

(6) The local LDAPS gateway forwards the attribute value to the RP.

5.4 Performance Evaluation

5.4.1 Policy Enforcement Performance in Single VO. As a usage control de-
cision is dynamically determined by subject and object attributes, which are
either pulled or pushed to the PDP of each collaborative arena for evaluation,
the performance of the system should be considered. According to Figure 8,
persistent attributes are pushed by the requesting subject, and this can be a
one-time operation in a single usage session, which does not affect the runtime
performance. The main overhead of the system introduced by usage control
is the overhead of the PDP module, which consists of mutable attribute ac-
quisitions, XACML policy interpretations and evaluations, and the updates of
mutable attributes. Performance study with our implemented prototype sys-
tem was conducted in a closed 100Base-TX network, which consists of a Linux
server hosting an RP and an AR and a Windows client machine as a user
platform. The RP holds the UCON policies specifying the above location and
task-based access control.

As the prototype system is for sharing application codes of collaborative soft-
ware development, object attributes are defined based on the software package
or module, for example the existence of a LOCK file under a module directory
in RP. For simplicity we assume that a subject participates in only a single
software module at the RP. Table I shows the PDP performance for updating
(import command of Subversion) the code (files) of a software module. We ran
the experiment with different average size of files (10KB, 100KB, and 1000KB)
and different number of files (1, 10, 100) in a module and measured the process-
ing time of the PDP. The average time per access varies in the range of 45.30
to 99.43 milliseconds, which does not depend on either the number of files to
transfer or the file size, as the UM keeps the object attributes on a module (or
directory) basis. The last column in Table I shows the total processing time of a
single usage session on the client side, including uploading all files of the mod-
ule. For example, updating a module with ten files with average size 1000 KB
takes about 12 seconds from the user platform to the server. The results show
that the performance is acceptable for general collaboration requirements.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3: 31

50.00%

45.00% -1]

40.00% -

35.00% —

30.00% —

25.00% —

20.00% — —H— —

T T T
Ix 1 x 100k Ix 10 x 10k 10 x 10 x 100 x 100 x 100 x
10k 1000k 100k 1000k 10k 100k 1000k

15.00% —H

10.00%

5.00%

0.00%

etch subject attributes ‘etch object attributes ate object attributes interpretation ommunication to
Fetch subj ib Fetch obj ib N Upd: bj ib XACML interp: i C icati PEP

Fig. 21. Micro benchmark of the PDP module. Each value shows the ratio of the stepwise running
time to the entire PDP processing time.

As aforementioned, the PDP’s operation in a single usage process con-
sists of several steps, including fetching subject and object attributes, object
attributes updates, XACML policy interpretations, and communications to
mod_authz _ucon (the PEP). Note that the policies evaluated in our prototype
do not have the updates of subject attributes.? To investigate possible mech-
anisms for better performance, we measured the processing time of each step
in the PDP module. As shown in Figure 21, fetching subject attributes has the
highest cost, which makes up 30 to 48% of the overall processing time. This
results from the overhead of the SSL hand shaking between the PDP module
and the AR. In real applications, mechanisms such as keep-alive connections
and attribute value cache on the PDP side can be used to reduce this overhead
and thus improve the overall performance of the system.

5.4.2 Performance of VO Federation. Based on the VO federation scheme
in Section 5.3, we conduct a performance evaluation for the attribute sharing
between ARs. The experimental system comprises three Linux servers (Pen-
tium4 1GHz and 1G bytes of memory) in a closed 100-Base TX network. The
two of them service AR that comprises OpenLDAP service as a directory ser-
vice and an LDAPS gateway written in Java. The remaining Linux server is
dedicated as an RP that requests attribute values from the local AR.

To investigate the impact of the cooperation between the local and remote
ARs, we record the RP’s processing times for making 10,000 queries in the
cases of obtaining attributes from the local AR, from the remote AR, and from
both. As shown in Figure 22, the access cost of the remote AR is over twice

5The change of the subject’s location is not the update of the PDP but a user’s discretionary activity
and is not specified in the UCON policy.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:32 . X. Zhang et al.

50000
45000 Remote only/

40000
35000 /

30000 / Random osen
25000 / /

20000 // Local only
15000 //

10000 // /

5000 J///,

0

(in msec)

Performance

1 1001 2001 3001 4001 5001 6001 7001 8001 9001 # of Queries

Fig. 22. Performance of attribute sharing between two ARs. The ratio of the random choice is 1:1
for the local and remote ARs.

as that of gaining access to the local AR. This is because of the extra cost of
processing referrals. In the aforementioned steps for attribute sharing, steps 3
to 5 are performed only when the RP requests an attribute value on a remote
AR. These steps induce another directory search that takes approximately 2
milliseconds, as long as step 2, and the additional communication between the
ARs that takes 0.4 milliseconds in average.

Note that the cooperative processing time does not depend on the number
of AR because the above steps are triggered by a referral to a single AR, no
matter how many ARs are associated. Hence, if the average time through
a directory search and a network communication is the same as the above
results, we can estimate that the cost of attribute sharing with ARs is less
than 4.8 milliseconds. Because the estimated time is 5 to 10% of the RP’s
performance (see Table I), the cost due to attribute sharing between ARs is
acceptable.

6. RELATED WORK

Originally in some Grid systems, each RP used a grid-mapfile to map exter-
nal resource consumers to local identities and defines their permissions. With
dynamic property of user participation and resource sharing, this approach is
not scalable.

The Community Authorization Service (CAS) [Pearlman et al. 2002] is a
centralized approach, in which a CAS server maintains the access control
policies and the PDP is deployed on the CAS side. Although this approach
solves the scalability problem, it lacks flexibility for ad hoc collaborations. For
example, consider a temporary group involving some users collaborating using
their mobile devices, where the authorization policy is based on the location of
the platforms (e.g., only users in the same room can gain access to the shared
resources). Because there is no centralized point, CAS cannot solve this prob-
lem. Also, CAS lacks flexibility to support a new RP that has not established

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:33

a trust relationship with CAS or an existing RP to change its policy regarding
its shared resources.

Instead of centralized authorization, the Virtual Organization Membership
Service (VOMS) [Alfieri et al. 2005] describes an approach in which each RP
has a set of local policies. To gain access to a shared resource, the user provides
an attribute certificate issued from the VO to identify the role, group name,
and capabilities of the user. By moving the PDP from a centralized server to
each RP’s local site, VOMS can solve the scalability problem with the grid-
mapfile and the flexibility of CAS, but it cannot support collaborations without
a well-established infrastructure because it still requires a (globally) central-
ized attribute authority. Further, because an attribute in VOMS includes only
role and group information in a VO, some policies cannot be implemented, such
as user-level and VO-level delegation and context-based authorization. That
is, a user can gain permissions only from a VO administrator.

PRIMA [Lorch et al. 2003] is a privilege management system that supports
ad hoc collaboration and permission delegation. To submit a request to an
RP, a user provides a set of attributes that define the privileges of the user,
such as file access permissions, user quota, network access, and the likes.
The RP assigns permissions to the user with these attributes, according to
the local policies. A shortcoming with this approach is that, in a dynamic col-
laborative environment, the privileges of a user may change according to the
resource consuming status in an RP or some constraints with other concurrent
jobs running in the RP. Therefore the preissued privilege attributes in PRIMA
cannot support this dynamic and in-time permission assignments. A signifi-
cant difference between PRIMA and our approach is that we use general at-
tributes without any preassigned privileges, such as context-aware attributes
[Covington et al. 2006]. The permissions of a subject are granted just when the
subject generates the requests and the corresponding attribute values are pre-
sented, either pushed by the requesting subject or pulled by the PDP. Also, our
approach supports dynamic properties of collaborations, such as continuous
control and attribute mutability during an access.

Akenti [Thompson et al. 2003] is a distributed policy management system,
where a set of stakeholders defines conditions for a resource usage. An RP
makes authorization decisions based on all these conditions in attribute cer-
tificate format. Condition certificates are pulled by the PDP, which is similar
to the mutable attribute acquisition in our approach model, while the muta-
bility of conditions is not supported in Akenti. Also, because it is extensively
dependent on public key infrastructure (PKI), Akenti cannot support ad hoc
collaborations without preestablished infrastructure.

RBAC-based approaches have been proposed for secure interoperation in
multidomain environments [Joshi et al. 2004; Shafiq et al. 2005], where each
domain deploys RBAC policies and a set of global access control policies is
composed to control shared resources accesses. Very recently, a framework
for secure collaboration between domains has been proposed in Shehab and
colleagues [2005], where each domain uses RBAC and policies are locally en-
forced by individual domains in a mediator-free manner. The advantage of our
framework is that we leverage the flexibility and expressive power of UCON

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3:34 . X. Zhang et al.

model for general access control policies, which can be regarded as an abstract
model beyond individual policy models in different domains.

Context-aware authorizations have been studied by several researchers. In
Covington and colleagues [2001], security-relevant contextual information is
captured by environment roles, an extension to RBAC. A context-aware access
control model based on RBAC is presented in Zhang and Parashar [2003] for
pervasive Grid applications, where a context agent collects environmental in-
formation and dynamically enforces user-role and permission-role. In Tolone
and colleagues [2005], access control models are reviewed and compared in the
context of collaborative systems, and a set of assessment criteria is proposed
to consider access control in collaborations.

7. CONCLUSION AND FUTURE WORK

An authorization framework is proposed in this paper for collaborative com-
puting systems following the PEI approach. To meet scalable, dynamic, and
fine-grained authorization requirements in the model layer, the recently de-
veloped UCON model is used to support various authorization policies for col-
laborations. Our proposed architecture can support attribute mutability and
decision continuity by leveraging a hybrid approach of attribute acquisitions
and event-based updates. An implemented prototype for group-based collab-
orative software development demonstrates the feasibility of our framework,
and the performance study shows that our framework can be used for general
collaborations.

The access control architecture in our prototype includes only authoriza-
tions, conditions, and preobligations of UCON; we plan to explore ongoing
obligations as future work.

REFERENCES

ALFIERI, R., CECCHINIB, R., CIASCHINIC, V., DELLUAGNELLOD, L., FROHNERE, A., LORENTEYF,
K., AND SPATAROG, F. 2005. From gridmap-file to voms: Managing authorization in a grid en-
vironment. Future Gener. Comput. Syst. 21.

BECK, K. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley.

BELL, D. E. AND LAPADULA, L. J. 1975. Secure computer systems: Mathematical foundations
and model. Tech. rep., Mitre Corp., Bedford, MA.

BERTINO, E., CRISPO, B., JOSHI, J., DU, W. K., AND SANDHU, R. S. 2004. Panel: Security for
grid-based computing systems issues and challenges. In Proceedings of the 9th ACM Symposium
on Access Control Models and Technologies, 125.

COHEN, B. 2003. Incentives build robustness in bittorrent. In Proceedings of the 1st Workshop on
Economics of Peer-to-Peer Systems. http://www.bittorrent.com/bittorrentecon.pdf.

COVINGTON, M. J., LONG, W., SRINIVASAN, S., DEY, A. K., AHAMAD, M., AND ABOWD, G. D.
2001. Securing context-aware applications using environment roles. In Proceedings of the 9th
ACM Symposium on Access Control Models and Technologies (SACMAT °01). Chantilly, VA.
10-20.

COVINGTON, M. J., SASTRY, M. R., AND MANOHAR, D. J. 2006. Attribute-based authentication
model for dynamic mobile environments. In Proceedings of the 3rd International Conference on
Security in Pervasive Computing (SPC°06). Lecture Notes in Computer Science, Springer.

DB4OBJECT. http:/www.db4o.com/.

DENNING, D. E. 1976. A lattice model of secure information flow. Comm. ACM 19, 5 (May).

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

Toward a Usage-Based Security Framework for Collaborative Computing . 3:35

FOSTER, I., KESSEKAN, C., TSUDIK, G., AND TUECKEL, S. 1998. A security architecture for com-
putational grids. In Proceedings of ACM Conference on Computer and Communications Security.

FOSTER, 1., KESSELMAN, C., AND TUECKE, S. 2001. The anatomy of the grid: Enabling scalable
virtual organization. Int. J. Supercomput. Appl. 15, 3.

JOHNSTON, W. E. 2002. The computing and data grid approach: Infrastructure for distributed
science applications. Computing the Informatics. Special Issue on Grid Computing.

JOSHI, J., BHATTI, R., BERTINO, E., AND GHAFOOR, A. 2004. Access control language for mul-
tidomain environments. IEEE Intern. Comput., 40-50.

LORCH, M., ADAMS, D. B., KAFURA, D., KONENI, M. S. R., RATHI, A., AND SHAH, S. 2003. The
prima system for privildge management, authorization and enforcement in grid environments.
In Proceedings of the 4th International Workshop on Grid Computing.

MOD_DAV. a DAV module for Apache, http://www.webdav.org/mod_dav/.

OASIS XACML. Core Specification: eXtensible Access Control Markup Language (XACML). OASIS
XACML.

OPENLDAP. http://www.openldap.org/.

OPENSSL. http:/www.openssl.org/.

PARK, dJ. 2003. Usage control: A unified framework for next generation access control. Ph.D. thesis,
George Mason University.

PARK, J. AND SANDHU, R. 2004. The UCON,},. usage control model. ACM Trans. Inform. Syst.
Secur. 7, 1 (Feb), 128-174.

PARK, J., ZHANG, X., AND SANDHU, R. 2004. Attribute mutability in usage control. In Proceedings
of the Annual IFIP WG 11.3 Working Conference on Data and Applications Security. Sitges,
Catalonia, Spain, 15-29.

PARK, J. S. AND SANDHU, R. 2000. Binding identities and attributes using digitally signed certifi-
cates. In Proceedings of the Annual Computer Security Applications Conference. New Orleans,
LA. 120-127.

PEARLMAN, L., WELCH, V., FOSTER, 1., AND KESSELMAN, K. 2002. A community authorization
service for group collaboration. In Proceedings of IEEE Workshop on Policies for Distributed
Systems and Networks.

SAILER, R., JAEGER, T., ZHANG, X., AND VAN DOORN, L. 2004. Attestation-based policy enforce-
ment for remote access. In Proceedings of ACM Conference on Computer and Communication
Security. Washington, DC, USA, 308-317.

SANDHU, R. 1993. Lattice-based access control models. IEEE Comput. 26, 11 (Nov.).

SANDHU, R. 2000. Engineering authority and trust in cyberspace: The OM-AM and RBAC way. In
Proceedings of the 5th ACM Workshop on Role-based Access Control. Berlin, Germany, 111-119.

SANDHU, R., RANGANATHAN, K., AND ZHANG, X. 2006. Secure information sharing enabled by
trusted computing and PEI models. In Proceedings of the ACM Symposium on Information,
Computer, and Communication Security. Taipei, Taiwan.

SHAFIQ, B., JOSHI, J., BERTINO, E., AND GHAFOOR, A. 2005. Secure interoperation in a mul-
tidomain environment employing RBAC poilcies. IEEE Trans. Knowl. Data Eng. 17, 11 (Nov),
1557-15717.

SHEHAB, M., BERTINO, E., AND GHAFOOR, A. 2005. Secure collaboration in mediator-free en-
vironments. In Proceedings of the 12th ACM Conference on Computer and Communication
Security.

SUBVERSION. http:/subversion.tigris.org/.

TCG MTM. 2006. Mobile trusted module specification, https:/www.trustedcomputinggroup.
org/specs/mobilephone/tcg-mobile-trusted-module-0.9.pdf.

TCG TPM. 2003. Main part 1 design principles specification version 1.2, https:/www.
trustedcomputinggroup.org.

THOMAS, R. AND SANDHU, R. 1997. Task-based authorization controls (TBAC): Models for active
and enterprise-oriented authorization management. In Proceedings of the 11th IFIP WG 11.3
Working Conference on Database and Application Security. Published as Database Security XI:
Status and Prospects. T. Y. Lin and X. Qian, Eds. North-Holland.

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

3: 36 . X. Zhang et al.

THOMPSON, M., ESSIARI, A., AND MUDUMBALI, S. 2003. Certificate-based authorization policy in
a pki environment. ACM Trans. Inform. Syst. Secur. 6, 4.

TOLONE, W., AHN, G., AND PAI, T. 2005. Access control in collaborative systems. ACM Comput.
Surv. 37, 1 (March).

WELCH, V., SIEBENLIST, F., FOSTER, I., BRESNAHAN, J., CzAJ, K., GAWOR, J., KESSELMAN, C.,
MEDER, S., PEARLMAN, L., AND TUECKE, S. 2003. Security for grid services. In Proceedings of
the 12th IEEE International Symposium on High Performance Distributed Computing. Seattle,
WA, 48-57.

XACML. Sun’s XACML implementation, http:/sunxacml.sourceforge.net/.

ZHANG, G. AND PARASHAR, M. 2003. Dynamic context-aware access control for grid applications.
In Proceedings of the 4th International Workshop on Grid Computing.

ZHANG, X., PARISI-PRESICCE, F., SANDHU, R., AND PARK, J. 2005. Formal model and policy
specification of usage control. ACM Trans. Inform. Syst. Secur. 8, 4 (Nov), 351-387.

Received November 2006; accepted June 2007

ACM Transactions on Information and System Security, Vol. 11, No. 1, Article 3, Pub. date: February 2008.

