
An Effective Role Administration Model
Using Organization Structure

SEJONG OH

Dankook University

and

RAVI SANDHU and XINWEN ZHANG

George Mason University

Role-based access control (RBAC) is a well-accepted model for access control in an enterprise envi-

ronment. When we apply RBAC model to large enterprises, effective role administration is a ma-

jor issue. ARBAC97 is a well-known solution for decentralized RBAC administration. ARBAC97

authorizes administrative roles by means of role ranges and prerequisite conditions, where pre-

requisite conditions effectively work as a restricted pool for administrative roles to pick users or

permissions. Although attractive and elegant in their own right, these mechanisms have significant

shortcomings. In this paper, we propose an improved role administration model named ARBAC02 to

overcome the weaknesses of ARBAC97. ARBAC02 introduces the concept of organization structure

for defining user and permission pools independent of roles and role hierarchies, with a refined pre-

requisite condition specification. In addition, we present a bottom-up approach of permission-role

administration in contrast to the top-down approach in ARBAC97. As a general solution, we illus-

trate the applications of organization structured-based security administration with other access

control models, such as access control list model and lattice-based access control model.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access
controls; K.6.5 [Management of Computing and Information Systems]: Security and Protec-

tion—Unauthorized access

General Terms: Security, Human Factors

Additional Key Words and Phrases: Access control, role-based access control, RBAC, role

administration

This research was partially supported by the National Science Foundation.

An earlier version of this paper appeared under the title “A Model for Role Administration Using

Organization Structure” in the Proceedings of 7th ACM Symposium on Access Control Models and
Technologies, Monterey, CA, 2002.

Authors’ addresses: S. Oh, Department of Computer Science, Dankook University, San 29 Anseo-

dong, Chonan, Chungnam, 330-714, South Korea; email: sejongoh@dankook.ac.kr; R. Sandhu and

X. Zhang, Department of Information and Software Engineering, George Mason University, 4400

University Dr., MSN 4A4, Fairfax, VA 22030; email: {sandhu,xzhang6}@gmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1094-9224/06/0500-0113 $5.00

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006, Pages 113–137.

114 • S. Oh et al.

1. INTRODUCTION

Access control is a central concern for information security in enterprises. Many
access control models have been developed for different security policies, such as
discretionary access control (DAC), mandatory access control (MAC), and role-
based access control (RBAC). RBAC is a well-studied and increasingly common-
place technology for this purpose. In RBAC, access rights are associated with
roles and users are assigned with appropriate roles, thereby acquiring the corre-
sponding permissions. The notion of role is an enterprise or organizational con-
cept. Therefore RBAC allows us to model security from the perspective of an or-
ganization, because we can align security modeling to roles and responsibilities.
RBAC model has been shown to be “policy-neutral” in the sense that using role
hierarchies and various constraints, a wide range of security policies can be ex-
pressed, including discretionary access control (DAC), mandatory access control
(MAC), and user-specific access control [Osborn et al. 2000; Joshi et al. 2001].

In general, the increasing size and diversity of organizations makes for com-
plex security problems. In large enterprise-wide systems, the number of roles
can be in hundreds or thousands and users can be in tens or hundreds or thou-
sands. Managing these roles, users, and their interrelation is a formidable
task, which is often highly centralized in a small team of security adminis-
trators. A significant motivation behind RBAC is to simplify security admin-
istrations. An appealing possibility is to use RBAC itself to manage RBAC to
provide further administrative convenience, especially in decentralizing admin-
istrative authority, responsibility, and tasks [Sandhu and Bhamidipati 1997b].
ARBAC97 (administrative RBAC ’97), which is based on the RBAC96 model
[Sandhu et al. 1996], shown in Figure 1, allows decentralized administration
of user-role assignments (URA97), permission-role assignments (PRA97), and
role-role assignments (RRA97).

In spite of the advantages and elegance of ARBAC97, it has some signifi-
cant shortcomings and undesirable side effects. The main point of decentral-
ized RBAC administration is to control the scope of each administrative role’s
administration domain (or boundary). For this purpose, ARBAC97 uses role
ranges and prerequisite conditions. In particular, prerequisite roles are used
as user and permission pools for administrative roles. This approach has some
weaknesses because of undesirable coupling of roles and role hierarchies with
user and permission pools. As we discuss in Section 2.2, URA97 includes the
problems of multistep user assignments, duplicated information of user-role
assignments, and restricted compositions of user pools, and PRA97 can have
undesirable authorization flows, as well as the same problems as URA97.

This paper analyzes the weaknesses of ARBAC97 model and proposes an
improved administration model named ARBAC02. ARBAC02 retains the main
features of ARBAC97 and adds new components of organization structures as
user and permission pools. We improve URA97, PRA97, and RRA97 models in
ARBAC97 by using the new components. Furthermore, we show the applica-
tions of organization structure-based security administration in other access
control models.

The rest of this paper is organized as follows. Section 2 presents our moti-
vations and briefly reviews ARBAC97 and describes its weaknesses. Section 3

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 115

—sets: U, R, AR, P, AP, S for sets of users, (regular) roles, administrative roles, (regular)
permissions, administrative permissions, and sessions, respectively.

—UA ⊆ U × A: user-role assignments
AU A ⊆ U × AR: user-administrative role assignments

—PA ⊆ P × R: permission-role assignments
AP A ⊆ AP × AR: permission-administrative role assignments

—RH ⊆ R × R: role hierarchy

—ARH ⊆ AR × AR: administrative role hierarchy

—user : S → U, a function mapping a session to a single user

—roles : S → 2R∪AR, a function mapping a session to a set of roles:
roles(s) ⊆ {r : R | (∃r ′ ≥ r) · [(user(s), r ′) ∈ U A ∪ AU A]}

—permissions : R → 2P∪AP , a function mapping a role to a set of permissions:
permissions(r) = {p : P | (∃r ′′ ≤ r) · [(p, r ′′) ∈ PA ∪ APA]}

—collection of constraints

Fig. 1. Summary of RBAC96 model.

introduces concept of organization structure as a candidate for user and per-
mission pools. Section 4 presents URA02 and PRA02 and their advantages over
ARBAC97. In Section 5 we apply organization structure concept to improve
RRA97. Section 6 presents some examples of applying the organization struc-
ture concept to other access control models. Specifically, we describe how our
approach is applied to access control list (ACL) and lattice-based access control
(LBAC). Some related work is presented in Section 7; Section 8 concludes this
paper.

2. MOTIVATION

2.1 Summary of ARBAC97 Model

ARBAC97 has three components: URA97 concerned with user-role adminis-
tration, PRA97 with permission-role administration, and RRA97 with role-role

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

116 • S. Oh et al.

Fig. 2. An example of regular role hierarchy.

Fig. 3. An example of administrative role hierarchy.

administration. Detailed motivations and rationale for URA97 and PRA97 are
given in previous papers [Sandhu et al. 1996, 1999; Sandhu and Bhamidipati
1997a, 1999]. RRA97 is discussed in Sandhu and Munawer [1998]. Here we
briefly explain each of them by an example using the regular role hierarchy
and administrative role hierarchy of Figures 2 and 3, respectively, which have
been frequently used in previous literatures.

2.1.1 URA97 Model. URA97 has two components, one dealing with the
assignments of users to roles (the grant model) and the other with the revoca-
tions of user memberships (the revocation model). User-role assignments are
controlled by a set of can-assign(s, y , z) predicates, where x is an administrative
role, y is a prerequisite condition, and z is a role range. For example,

can-assign(PSO1, ED, {E1})
means that a member of administrative role PSO1 (or a member of an admin-
istrative role senior to PSO1) can assign a user, who has membership of ED,
to be a member of the regular role E1. The prerequisite condition is a boolean
expression of prerequisite roles and/or constraints. For example, in prerequi-
site condition E1 ∧ QE1, E1 is a prerequisite role and QE1 is a constraint. The
prerequisite condition E1 ∧ QE1 denotes users who belong to E1 and do not
belong to QE1.

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 117

Table I. Examples of can-assign in URA97

Admin. Role Prereq. Condition Role Range

PSO1 ED [E1, E1]

PSO1 E1 ∧ QE1 [PE1, PE1]

PSO1 E1 ∧ PE1 [QE1, QE1]

PSO2 ED [E2, E2]

PSO2 E2 ∧ QE2 [PE2, PE2]

PSO2 E2 ∧ PE2 [QE2, QE2]

DSO ED ∧ PL2 [PL1, PL1]

DSO ED ∧ PL1 [PL2, PL2]

DSO ED (ED, DIR)

SSO E [ED, ED]

SSO ED (ED, DIR)

Table II. Examples of

can-revoke in URA97

Admin. Role Role Range

PSO1 [E1, PL1)

PSO2 [E2, PL2)

DSO (ED, DIR)

SSO [ED, DIR]

User revocation in URA97 is controlled by a set of can-revoke(x, z) predicates,
where x is an administrative role and z is a role range. For example,

can-revoke(PSO1, {PE1, QE1})
means that a member of administrative role PSO1 (or a member of an admin-
istrative role senior to PSO1) can revoke a user, who is a member of P E1 or
Q E1. Table I and Table II show some examples of can-assign and can-revoke
predicates in URA97. Here a role range is expressed by identifying the lower
and upper boundary points of a role hierarchy, where a “(” or “)” means that
the range does not include the corresponding boundary value, and “[” or “]”
means that the range includes the corresponding boundary value. For exam-
ple, [E1, PL1) is equivalent to {E1, PE1, QE1} in Table II with role hierarchy
shown in Figure 2.

In URA97, role ranges and prerequisite roles (or conditions) are used to
restrict the controlling scope of administrative roles. A role range is used as
the boundary of target roles to be assigned to users and a condition is used
as a domain to pick users. In other words, a prerequisite role in URA97 is
used as a pool to select eligible users. Therefore we can replace “prerequi-
site role” with “user pool” as indicated in Figure 4 and user-role administra-
tion can be decentralized by assigning proper user pools and role ranges to
administrators.

2.1.2 PRA97 Model. Similar to URA97, PRA97 has two components, one
dealing with the assignments of permissions to roles and the other with the
revocations of permissions. These two components are controlled by a set of can-
assignp(x, y , z) and can-revokep(x, z) predicates, where x is an administrative

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

118 • S. Oh et al.

Fig. 4. Relationship between prerequisite role (or condition) and role range in URA97.

Table III. Example of can-assignp in PRA97

Admin. Role Prereq. Condition Role Range

DSO DIR [PL1, PL1]

DSO DIR [PL2, PL2]

PSO1 PL1 ∧ QE1 [PE1, PE1]

PSO1 PL1 ∧ PE1 [QE1, QE1]

PSO2 PL2 ∧ QE2 [PE2, PE2]

PSO2 PL2 ∧ PE2 [QE2, QE2]

Table IV. Example of can-revokep in PRA97

Admin. Role Role Range

PSO1 (E1, PL1)

PSO2 (E2, PL2)

DSO (ED, DIR)

SSO [ED, DIR]

role, y is a prerequisite condition, and z is a role range. For example,

can-assignp(DSO, DIR, [PL1, PL1])

states that a member of administrative role DSO (or a member of an admin-
istrative role senior to DSO) can take any permission assigned to DIR and
make it available to regular role PL1. Tables III and IV show some examples
of can-assignp and can-revokep in the PRA97 model of our example.

Similar to URA97, a prerequisite role (or condition) in PRA97 is used as a pool
to select eligible permissions. Therefore we can replace the term “prerequisite
role” in PRA97 with “permission pool,” as indicated in Figure 5. Permission-role
administration can be decentralized by assigning proper permission pools and
role ranges to administrators.

2.1.3 RRA97 Model. Besides URA and PRA, RRA is another way to as-
sign access rights to users. Security administrators can modify the role hi-
erarchy in an RBAC system, which leads to the change of the authorization
structure. Therefore, modification of a role hierarchy should be managed very
carefully. RRA97 uses a set of can-modify predicates to restrict modification
of a role hierarchy by administrative roles. Table V shows an example of
can-modify.

Because of the presence of role hierarchy, RRA has an undesirable side ef-
fect. As shown in Figure 6, suppose administrative role PSO1, who has control

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 119

Fig. 5. Relationship between prerequisite role (or condition) and role range in PRA97.

Fig. 6. An example of out of range impact.

Table V. Example of can-modify in RRA97

Admin. Role Update Role Range

DSO (ED, DIR)

PSO1 (E1, PL1)

PSO2 (E2, PL2)

authority over range (E1, PL1), makes PE1 junior to QE1 by adding an edge.
With the permission inheritance, this indirectly introduces a relationship be-
tween X and Y roles, which are out of the administrative range of PSO1.

2.2 Shortcomings of ARBAC97

The ARBAC97 model supports simple and decentralized security administra-
tions. However, from a practical viewpoint, it has some significant shortcomings.
An undesired side effect of RRA97 with regard to illegal permission flow has
been shown in the previous section. In this section, we describe some weak-
nesses of URA97 and PRA97 with respect to prerequisite roles.

2.2.1 Weaknesses of URA97

2.2.1.1 URA1 Multistep User Assignments. Suppose that a newly em-
ployed engineer Tom is to be assigned to role QE1 in the environment of
Figures 2 and 3 and Table I. To do so, Tom should be a member of E1, which is

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

120 • S. Oh et al.

Table VI. User-Role

Assignment Information

No Role Assigned User

1 E Tom

2 ED Tom

3 E1 Tom

4 QE1 Tom

the prerequisite role of QE1. Before Tom can become a member of E1, he must
be a member of the prerequisite role ED. Similarly, before Tom can be a member
of ED, he should be a member of the prerequisite role E. To summarize, Tom’s
role assignment to QE1 must follow the order

assign Tom to E → assign Tom to ED → assign Tom to E1 → assign Tom
to QE1

This example shows that URA97 requires multiple steps for single user-role
assignment and more assignment steps are required with higher destination
roles in a role hierarchy, which may require the involvement of multiple security
officers.

2.2.1.2 URA2 Redundant User-Role Assignment (UA) Information. Sup-
pose Tom is a member of QE1 through the above assignment steps. Tom is,
therefore, an explicit member of E, ED, E1, and QE1, and the corresponding
information exists in the URA shown in Table VI, as the result of the mul-
tistep user assignments. In Table VI, tuples 1, 2, and 3 do not affect Tom’s
access rights because QE1 inherits the access rights of E, ED, and E1. From
this point of view, these three tuples are redundant. They are required only for
administrative purposes.

Table VI implies another problem. If DSO revokes Tom from role ED, there is
no change in access rights of Tom. However, PSO1 may lose authority for Tom
because he does not satisfy prerequisite condition in Table I. Thus, Table VI
needs extra rules to manage it. Redundant user-role assignments also induce
redundant user-role revocations, i.e., if we want to remove Tom from the system,
we need four-step revocations according to Table VI.

2.2.1.3 URA3 Restricted Composition of User Pools. Suppose the organi-
zation in our example wants to maintain human resource pools H1, H2, and H3.
Consider a new policy requiring that a production engineer should be selected
from H1 and a quality engineer should be selected from H2. It is impossible to
implement this new policy without changing the role hierarchy in ARBAC97.
This is because that, in URA97, a user pool is based on some prerequisite roles
and the prerequisite roles belong to a role hierarchy. This shows that a user pool
in URA97 is restricted by the structure of roles and role hierarchies. Frequently
a real-world application requires flexible user pools, which cause a highly com-
plicated role hierarchy. The reason behind this problem is that URA97 has an
unnecessary coupling between user pools and prerequisite roles with a role
hierarchy.

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 121

Fig. 7. Undesirable side effect in PRA97.

2.2.2 Weaknesses of PRA97

2.2.2.1 PRA 1. Multistep Permission Assignments

2.2.2.2 PRA 2. Duplicated Permission-Role Assignment (PA) Information

2.2.2.3 PRA 3. Restricted Composition of Permission Pools. We omit the
explanation of problems PRA1, PRA2, and PRA3, because they are similar to
URA1, URA2, and URA3, respectively.

2.2.2.4 PRA 4. Weak Controlled Permission Assignments. Suppose there
exists a can-assignp(SO1, R2, [R1, R1]) predicate in a PRA97 model. SO1 can
then assign any permission of R2 to R1. That is, there is no restrictions on
assigning particular permissions of R2 to a user. PRA99 model [Sandhu and
Munawer 1999] uses the concept of immobile membership to solve this problem.
An immobile membership grants a user the authority to use the permissions of a
role but does not make that user eligible for further role assignments. However,
this approach requires additional information about permission pools.

2.2.2.5 PRA 5. Undesirable Side Effect of Permission Flows. PRA5 is a
corollary of PRA4. Consider the role hierarchy and role range shown in Figure 7.
If can-assignp(PSO1, PL1, [QE1, QE1]) exists, then PSO1 can assign any per-
missions of PL1 to QE1. Consequently, Q L inherits all permissions of QE1,
since QL is a parent role of QE1. This means that PSO1 can move some per-
missions of PL1 to QL. However, QL is outside the role range of PSO1, so this
permission flow is presumably undesirable.

The origins of these shortcomings aforementioned in ARBAC97 come from
two aspects. First, user pools and permission pools in ARBAC97 are dependent
on roles and the structure of role hierarchies. A prerequisite role is dependent
on its lower or higher prerequisite roles. (As described above, a prerequisite
role functions as a user pool or a permission pool.) As a result, all prerequi-
site roles form a dependency chain along the role hierarchy, as Figure 8 shows.
This dependency is a strong restriction for constructing user pools and permis-
sion pools (URA3/PRA3). In addition, it results duplicate administrative work
(URA1 and PRA1) and redundant data (URA2 and PRA2).

Second, because of the top-down nature of permission-role administration,
security administrators can select any permissions from their prerequisite
roles. This leads to the undesirable side effects of permission managements
(PRA4 and PRA5).

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

122 • S. Oh et al.

Fig. 8. Dependencies in URA97/PRA97.

3. ORGANIZATION STRUCTURE AS USER/PERMISSION POOL

To overcome the weaknesses of ARBAC97 model, we use two strategies. First,
we use an organization structure as a basis for defining user and permission
pools instead of prerequisite roles in an organization. Second, based on the or-
ganization structure concept, we propose a bottom-up approach for permission-
role assignments.

An organization is a group of employees (users) who perform business activ-
ities together in order to achieve a particular aim. For instance, a sales depart-
ment includes a group of employees who perform sales works. For information
systems development, organization is a good concept as a domain for analysis of
business functions and activities. Most information system design methodolo-
gies use organization chart, such that shown in Figure 9 [IDS SHARE]. In spite
of new types of organization structures, such as team-based, many organiza-
tions continue to have tree structures in organization charts. An organization
structure is composed of organization units, each encompassing relevant users
who work to achieve a mission. To achieve the given mission, each organiza-
tion unit has a set of job functions or tasks. Users need to access information
resources to perform the job functions or tasks. That is, job functions or tasks
are related to permissions. From the perspective of access control, an orga-
nization unit works as “a group of users and permissions” to achieve a given

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 123

Fig. 9. An overall view of methodology using organizational chart.

Fig. 10. Role administration concept in ARBAC02.

mission. These properties of an organization are reflected in RBAC model as
roles and related role hierarchies.

We now introduce the feature of organization structure as a basis for
user/permission pools. Figure 10 shows the role administration concept in the
ARBAC02 model. First, users and permissions are assigned to proper organi-
zation units by the human resources (HR) group and information technology
(IT) group, respectively. The security administration group then assigns the
users and permissions in organization units to regular roles. We do not elab-
orate the functions of the HR and IT groups here, since they are outside the
scope of our role-based security administration. We assume the activities of
these groups are somehow accomplished in an organization. For the purpose of
role administration, we can use different organization structures for user pools
and permission pools. Further, we assume that there is no conflict between these

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

124 • S. Oh et al.

Fig. 11. Components of ARBAC02.

organization structures as they are only used for the purpose of user pool and
permission pool administration. Thus, the main difference between ARBAC97
and ARBAC02 model is that ARBAC02 uses additional organizational struc-
tures as user/permission pools rather than ARBAC97 model’s regular roles as
user/permission pools.

4. THE ARBAC02 MODEL

4.1 Description of ARBAC02 Model

In this section, we describe the central notions of ARBAC02 model: to adopt
new user and permission pools independent of roles and role hierarchies and
a bottom-up method of permission-role administration. Figure 11 shows the
components of ARBAC02 model, which is based on ARBAC97 model with two
new components, named user pool (OS-U) and permission pool (OS-P). Both
OS-U and OS-P have hierarchical structures. Unlike a role hierarchy, which
can be an arbitrary partial order, the hierarchy is a rooted tree in OS-U and
an inverted rooted tree in OS-P . We assume that simple and basic versions of
OS-U and OS-P are given and users and permissions are preassigned to the
proper positions of a given organization structure. There can exist various poli-
cies to maintain OS-U and OS-P , by collaborative efforts between the security
administration group, HR group, and IT group in an organization.

4.1.1 URA02 Model. URA02 adopts the same notations of can-assign and
can-revoke as URA97. The difference between URA97 and URA02 is that pre-
requisite roles in URA97 are replaced by a user organization structure (OS-U).

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 125

Fig. 12. An example of OS-U .

Definition 4.1. (OS-U) A user organization structure is an organization
unit (OT) hierarchy represented as a user pool: OS-U ⊆ OT × OT, and

� has a partially ordered tree structure;
� has a maximal organization unit, and ∀ot ∈ OT, ot has only one direct parent;
� UUA ⊆ U × OT is a set of user-organization unit assignments;
� members : OT → 2U is a function mapping an organization unit to a set of

users, and members(ot) = {u : U | (u, ot) ∈ UUA};
� members∗ : OT → 2U is a function mapping an organization unit to a set

of users with inheritance hierarchy in OS-U , and members∗(ot) = {u : U |
(∃ot ′ ≤ ot), (u, ot′) ∈ UUA}.
An OS-U contains the users who are pre-assigned by the HR group in an

organization. Figure 12 shows an example of OS-U . If Tom is a member of PJ1,
it may mean that he has a job position in project 1. If John is a member of ED, it
may mean that he is the director of the engineering department. As OS-U has
a tree structure and the characteristic of inheritance, Tom is also a member of
ED and PRD.

Definition 4.2. A prerequisite condition of URA02 is a boolean-valued ex-
pression using usual ∧ and ∨ operators on terms of form x and x, where x is a
regular role or an organization unit. A prerequisite condition is evaluated for a
user u by interpreting x to be true if

� x ∈ R and ∃x ′ ≥ x, (u, x ′) ∈ URA, or
� x ∈ OT and ∃x ′ ≤ x, (u, x ′) ∈ UUA;

and x to be true if

� x ∈ R and ∀x ′ ≤ x, (u, x ′) /∈ URA, or
� x ∈ OT and ∀′ ≥ x, (u, x ′) /∈ UUA.

To distinguish role and organization unit names, we use an “@” in the head of an
organization unit name. With the extra component, we can use mixture of orga-
nization structure and roles in prerequisite conditions, which brings enhanced
expression power of condition specification. With this, a security administrator
can define policies with more precision and flexibility. Following the enhanced
prerequisite conditions, an example of can-assign in URA97

can-assign(PSO1, E1 ∧ QE1, [PE1, PE1])

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

126 • S. Oh et al.

Table VII. Refined can-assign Examples

Admin. Role Prereq. Condition Role Range

PSO1 @PJ1 ∧ QE1 [PE1, PE1]

PSO1 @PJ1 ∧ PE1 [QE1, QE1]

PSO2 @PJ2 ∧ QE2 [PE2, PE2]

PSO2 @PJ2 ∧ PE2 [QE2, QE2]

DSO @ED ∧ PL2 [PL1, PL1]

DSO @ED ∧ PL1 [PL2, PL2]

DSO @ED (ED, DIR)

SSO @ED [ED, ED]

can be defined in URA02 as

can-assign(PSO1, @PJ1 ∧ QE1, [PE1, PE1])

Table VII shows the refined can-assign information using the OS-U shown
in Figure 12, according to Table I.

The integrity of administration information such as can-assign and can-
revoke in URA02 is maintained by some rules, which may depend upon specific
situations or organizations. In general, we have the following integrity rule in
a URA02 model.

Definition 4.3. (Integrity Rule 1) Let AR1 and AR2 be administrative roles.
If AR1 is senior to AR2 in the administrative role hierarchy, then

� (the user pool of AR1) ⊇ (the user pool of AR2)
� (the role range of AR1) ⊇ (the role range of AR2)

This rule is trivial, since if AR1 is senior to AR2, AR2’s authority range belongs
to AR1. For all can-assign and can-revoke predicates defined in an organization,
this rule must be preserved by the system administration.

4.1.2 PRA02 Model. PRA02 follows the same notations of can-assignp and
can-revokep as PRA97. Further, PRA02 uses permission pools, where the pre-
requisite roles are replaced by a permission organization structure.

Definition 4.4. (OS-P) A permission organization structure is an organi-
zation unit hierarchy represented as a permission pool: OS-P ⊆ OT × OT,
and

� has a partially ordered inverted tree structure;
� has a maximal organization unit, and ∀ot ∈ OT, ot has only one direct child;
� PPA ⊆ P × OT is a set of permission-organization unit assignments;
� permissions : OT → 2P is a function mapping an organization unit to a set

of permissions, and permissions(ot) = {p : P | (p, ot) ∈ PPA};
� permission∗(ot) : OT → 2P is a function mapping an organization unit

to a set of permissions with inheritance hierarchy in OS-P hierarchy, and
permissions∗(ot) = {p : P | (∃ot′ ≤ ot), (p, ot′) ∈ PPA}.
An OS-P contains permissions that are preassigned by the IT group in an

organization with an inverted tree structure, as shown in Figure 13. In OS-P ,

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 127

Fig. 13. An example of OS-P .

Table VIII. Refined can-assignp Examples

Admin. Role Prereq. Condition Role Range

SSO @ED [E, DIR]

DSO @ED [ED, DIR)

PSO1 @PJ1 [E1, PL1)

P SO2 @PJ2 [E2, PL2)

PSO1 @PJ1 ∧ QE1 [PE1, PE1]

PSO1 @PJ1 ∧ PE1 [QE1, QE1]

P SO2 @PJ2 ∧ QE2 [PE2, PE2]

P SO2 @PJ2 ∧ PE2 [QE2, QE2]

common permissions are assigned to lower units and special permissions are
assigned to higher units. For example, access permissions for all the members
of the production division are assigned to PRD and special permissions for the
members of project 1 are assigned to PJ1.

From Figure 13, we might expect that users belonging to PJ1 inherit the
permissions of ED and PRD. However, it is important that the permission in-
heritance is downward in OS-P . For example, the set of permissions of ED is
{permissions assigned to ED} ∪ {permissions assigned to PJ1} ∪ {permissions
assigned to PJ2}.

Definition 4.5. A prerequisite condition of PRA02 is a boolean-valued ex-
pression using usual ∧ and ∨ operators on terms of form x and x, where x is
a regular role or organization unit. A prerequisite condition is evaluated for a
permission p by interpreting x to be true if

� x ∈ R and ∃x ′ ≤ x, (p, x ′) ∈ PRA, or
� x ∈ OT and ∃x ′ ≥ x, (p, x ′) ∈ PPA;

and x to be true if

� x ∈ R and ∀x ′ ≥ x, (p, x ′) /∈ PRA or
� x ∈ OT and ∀x ′ ≤ x, (p, x ′) /∈ PPA.

Table VIII shows the refined can-assign predicates in PRA02 using the OS-P
shown in Figure 13 according to Table III. One of the weaknesses of PRA97 is
the top-down approach for permission-role administration. PRAC02 adopts a
bottom-up approach. Specifically, common permissions are assigned to lower
roles in the role hierarchy and higher roles inherit common permissions; while
special permissions are assigned to higher roles. For example, common per-
missions for all users are assigned to role E, common permissions for the

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

128 • S. Oh et al.

Fig. 14. Comparison of user-role assignment in URA97 and URA02.

engineering department members are assigned to ED, and common permissions
for project 1 members are assigned to E1. The remaining special permissions
are assigned to appropriate higher roles of E1. One advantage of this approach
is that we avoid duplicate assignments of the same permission through the
inheritance line of a role hierarchy. For example, a permission that is assigned
to E is not required by ED, E1, and so on, therefore redundancy is eliminated.

Like URA02 model, PRA02 needs an integrity rule for defining can-assignp
and can-revokep.

Definition 4.6. (Integrity Rule 2) Let AR1 and AR2 be administrative roles.
If AR1 is senior to AR2 in the administrative role hierarchy, then

� (the permission pool of AR1) ⊇ (the permission pool of AR2), and
� (role range of AR1) ⊇ (role range of AR2)

4.2 Advantages of the ARBAC02 Model

4.2.1 The Effects Role and Role Hierarchy Independent User/Permission
Pools. As described above, a user pool in ARBAC97 is implemented by a pre-
requisite role, which, in turn, depends on its prerequisite role. As a result,
ARBAC97 induces multistep user assignments (URA1) and redundant user-
role assignment information (URA2). Furthermore, the composition of a user
pool is strongly restricted by a role hierarchy (URA3). In ARBAC02, a user pool
is implemented by an organization unit, which is independent from any role or
role hierarchy. A new user can be admitted into proper user pool in one step
and then be assigned to a proper role from the user pool in one step. Note that
assigning a user to a user pool is separated from assigning a user to a regular
role in ARBAC02. As a result, a user-role assignment becomes simple and no
redundant user-role assignment information exists, i.e., URA1 and URA2 are
resolved. Figure 14 shows the comparison of the user-role administration in
URA97 and URA02 with our aforementioned example.

Consider the example in URA3 of Section 2.2.1. A company maintains human
resource pools H1, H2, and H3. A new policy requires that a production engineer
should be selected from H1. In ARBAC02, new organization units H1, H2, and
H3 can be added at proper positions in the organization structure. To enable the
user-role assignment, predicate can-assign(PSO1, @H1, [PE1, PE1]) is defined

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 129

Fig. 15. Prohibition of downward permission flow.

in the URA02 model of the system. This requires no change of the role hierarchy,
since the user pool is independent of the role hierarchy. Therefore, URA3 is
solved. Similarly, PRA1, PRA2, and PRA3 can be solved in PRA02.

4.2.2 The Effects of Bottom-Up Permission-Role Administrations. In
ARBAC02, common permissions are assigned to lower positions, while non-
common permissions are assigned higher positions in an OS-P . As a result,
common permissions are inherited by senior roles through the role hierarchy
in the model, and permissions do not propagate downward in the role hierarchy
(as that happens in ARBAC97). As a result, PL1 is not a prerequisite role for
PSO1 in Figure 15, and a member of PSO1 cannot assign PL1’s permissions to
his/her role range. Therefore, the undesirable side effect of PRA97 (PRA5) does
not occur in PRA02. PRA4 is solved naturally, since we do not adopt top-down
permission-role administration and a prerequisite role is not restricted as a
permission pool.

As a summary, ARBAC02 overcomes the identified shortcomings of URA97
and PRA97. It supports flexible composition of user and permission pools. As a
cost, additional components, namely organization structures, should be main-
tained in an organization, although they are out of the scope of RBAC admin-
istration. As organization structure is a natural notion for most organizations,
we expect that this is not an extensive overhead.

5. OS-U/OS-P WITH ROLE-ROLE ASSIGNMENT

In this section we show how to improve role-role assignments (RRA) with
OSU /OS-P . We claim that OS-U /OS-P is a useful approach to develop im-
proved RRA model.

The purpose of an ARBAC model is to support safe and decentralized role ad-
ministration. A basic requirement is to allow legal authorizations and prevent
illegal authorizations for an administrative role. In particular, for user-role as-
signments, a member of an administrative role only can take users from the
role’s user pool and assign to roles in the corresponding role range. Figure 16
shows an example. For administrator A1, only UA1 and P A1 are legal. UA2 is il-
legal for A1 because he/she cannot assign users out of the role range. UA3 is also
illegal for A1 because he/she cannot pick users outside of A1’s user pool. URA02
and PRA02 models prevent these illegal authorizations by can-assign and can-
assignp relations, respectively. However, for RRA, as we have mentioned in
Section 2.1.3, there may exist indirect illegal authorizations. To make one role

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

130 • S. Oh et al.

Fig. 16. Example of legal and illegal authorizations.

senior to another, illegal assignment may take place as shown in Figure 6.
RRA97 model [Sandhu and Munawer 1998] and administrative scope model
[Crampton and Loizou 2002] choose a topological approach to solve the problem.

We now show that OS-U /OS-P can used to improve RRA. Consider an RBAC
model shown in Figure 17. Suppose PSO1 introduces an edge (PL1 → Y) in
the role hierarchy (17a). It is a legal action because both PL1 and Y belong
to PSO1’s role range of can-modify (Figure 17g enhanced to include [E1, PL1]
in range of PSO1). As a result, all the permissions of Y are inherited by DIR
through PL1, which is a legal flow of permissions. This case is represented by
OS-U /OS-P in Figure 18, where adding (P L1 → Y) makes an inheritance flow
from U4 → U5 → U9. This means that the authority flows from the user-pool
of PSO1 to the user-pool of DSO or from the permission-pool of PSO1 to the
permission-pool of DSO. It is a legal flow because DSO is senior to PSO1, and
the user and permission pools of DSO include the user and the permission pool
of PSO1, respectively.

Let’s consider another case. Suppose PSO1 introduces an edge (QE1 → PE1)
in the role hierarchy. This is a illegal action because the authority of Z is
inherited by X through PE1 and QE1, while role Z and X do not belong to
PSO1’s role range of can-modify (Figure 17g). Figure19 shows the permission
flow with this insertion. As it shows, the authority of U8 is inherited by U7
through U1 and U2. As we can see, U8 and U7 do not belong to the user pool
of PSO1. Thus, the action is illegal.

With the above analysis, to prevent illegal edge insertions in a role hierarchy,
some rules must be preserved in RRA with OS-U /OS-P .

Definition 5.1. (Integrity Rule 3) Let UP1 and UP2 be user pools, PP1 and
PP2 be permission pools, and UP1 ⊃ UP2 and PP1 ⊃ PP2. If security adminis-
trator AR2, who has UP2 and PP2, adds a new edge in a role hierarchy, then

� [UP2 → (UP2 or UP1)] ∨ [PP2 → (PP2 or PP1)] ⇒ legal action
� [UP1 → UP2 → UP1] ∨ [PP1 → PP2 → PP1] ⇒ illegal action

where rightarrow indicates a permission flow because of inheritance relation.
This rule indicates that if an insertion causes authority flow of UP2 → (UP2
or UP1) or PP2 → (PP2 or PP1), then it is legal insertion. While a flow of
UP1 → UP2 → UP1 or PP1 → PP2 → PP1 implies illegal insertion.

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 131

Fig. 17. An example of RRA with OS-U /OS-P .

Definition 5.2. (Integrity Rule 4) Let UP1 and UP2 be user pools, PP1 and
PP2 be permission pools, and UP1 ⊃ UP2 and PP1 ⊃ PP2. If security adminis-
trator AR1 who has UP1 and PP1 adds a new edge in a role hierarchy, then

� [UP1 → UP2] ∨ [PP1 → PP2] ⇒ legal action but implies potential risk

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

132 • S. Oh et al.

Fig. 18. Interpretation of adding (P L1 → Y) by OS-U /OS-P .

Fig. 19. Interpretation of adding (Q E1 → P E1) by OS-U /OS-P .

Fig. 20. An example of potential risk.

Figure 20 shows a situation of Integrity Rule 4. Suppose there is an insertion
causing the authority flow A shown in the figure. Conceptually this is a legal
flow. However, if there is another insertion causing flow B and B and A are
linkable by these two insertions, then an illegal flow is generated, as like that
in Figure 19. With this integrity rule we can find that the role hierarchy in
Figure 17a is legal, but has potential risk to introduce illegal inheritance of
authority.

6. APPLYING OS-U/OS-P TO OTHER AREAS

ARBAC02 is suitable for any areas requiring RBAC model. However, the con-
cept of organization structured-based user pools and permission pools is not
limited to RBAC systems. As shown in Figure 21, OS-U and OS-P can be
supporting components in an organization and used with other access control
models. In this section, we describe the applications with access control list
model and lattice-based access control model.

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 133

Fig. 21. Applying user/permission pool to other models.

6.1 OS-U/OS-P with Access Control List

As Figure 22 shows, an object’s access control list (ACL) indicates the subjects
with respective rights to it. Logically an ACL model can be represented as a
list of triples with the form < subject, object, rights >.

Suppose a large organization, which adopts ACL for access control, has thou-
sands of subjects (users) and objects. In this case, it is impossible for a single
security officer to manage the ACLs, which generally needs cooperative efforts
of many security officers. A problem for this purpose does arise on how to as-
sign a security officer with proper management area of the ACLs. OS-U /OS-P
provides a good solution for this environment.

To build a framework of ACL with OS-U /OS-P , we assume OS-U /OS-P is
prebuilt in an organization. At first, we need to define the authority boundary
of each security officer. We adopt an administration table (Table IX), which is
based on Figures 12 and 13. For example, the first row indicates that secu-
rity officer SO1 can assign permissions in @PJ1 (in permission pool) to users
belonging to @PJ1 (in user pool). With this approach, we can control the au-
thority of each security officer very efficiently.

6.2 OS-U/OS-P with Lattice-Based Access Control

In lattice-based access control (LBAC) [Bell-Lapadula 1975; Sandhu 1993], an
access control decisions are made beyond the control of an individual (e.g.,
the owner of an object). A central authority determines what information can
be accessed by whom and individual users cannot change the access rights of
objects. In LBAC, each subject (user) or information object is labeled with a
security level and a subject’s access right is restricted according to its security
level. LBAC model can be used in multilevel security systems for no-read-up
and no-write-down properties, also known as Bell–Lapadula restrictions. As an

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

134 • S. Oh et al.

Fig. 22. Example of access control list.

Table IX. Administration for ACL

Security Officer User Pool (subject pool) Permission Pool (object pool)

SO1 @PJ1 @PJ1
SO2 @PJ2 @PJ2
SO3 @ED @ED ∨ @PD
SO4 @PRD @PRD
SO5 @MD @QC ∨ @SC

example, shown in Figure 23, these rules are designed to ensure that informa-
tion does not flow from a higher sensitivity level to a lower sensitivity level. For
information integrity purposes, other access rules can be formulated, such as
no read-down and no write-up [Biba 1977].

For a large organization using LBAC, the security administration is also
a problem, since the number of subjects and objects is large, and the
administration requires cooperation between many security officers. In LBAC,
a security officer assigns security levels to subjects or objects. It is reasonable
that a security officer itself has a security level. Again, organization structure
can be used in LBAC administration, as Table X shows. This table has the same
structure as Table IX. But here a security officer may only have user pool or
permission pool. For example, a member of SO1 has the authority of assign-
ing security levels to users in @PJ1, but has no authority of assigning security
levels to objects.

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 135

Fig. 23. Example of LBAC.

Table X. Administration for LBAC

Security Officer User Pool (subject pool) Permission Pool (object pool)

SO1 @PJ1

SO2 @PJ2 @PJ1

SO3 @ED
SO4 @PRD @PRD
SO5 @PJ2

7. RELATED WORK

Moffett [1998] and [Moffett and Lupu 1999] discuss the meaning of organiza-
tion and role hierarchy. Perwaiz and Sommerville [2001] show how to manage
permission-role relationship using organization units. Oh and Park [2001] pro-
pose a method to derive access control information from an enterprise model.
All these work present similar concepts and notation of organization units and
structures, but not in the context and purpose of role administration for RBAC,
as this paper does.

Osborn and Guo [2000a] introduce groups and group graph in the admin-
istration of RBAC. Users belong to some groups and roles can be assigned to
groups. The key difference between OS-U and user group graph is that there
is no role assigned to users in OS-U , while group has role assignments. This
is because OS-U is generated and managed by departments (for example, the
human resource department in an organization) other than security adminis-
trators. For group graph, it is managed by security administrators. Therefore,
we can consider OS-U as an external user-pool for security administrators to
pick users for user-role assignments.

8. CONCLUSIONS

In this paper, we described ARBAC02, an improved administrative RBAC
model. Our motivation is based on shortcomings of ARBAC97 caused by unnec-
essary coupling between user/permission pools with roles and role hierarchies.
To overcome the shortcomings, we introduce organization structure-based user
and permission pools independent from the roles and role hierarchy in an orga-
nization. Figure 24 shows the main difference between ARBC97 and ARBAC02.
In addition, we use a bottom-up inheritance for permission-role administration,
instead of the top-down manner in ARBAC97. Independent user and permission
pools give strong flexibility for URA and PRA administrations and overcome the
identified weaknesses in RRA. At the same time, we illustrate the applications

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

136 • S. Oh et al.

Fig. 24. Main difference between ARBAC97 and ARBAC02.

of OS-U /OS-P in other access control models, such as ACL and LBAC. This
shows that OS-U /OS-P is a comprehensive solution of security administration
for different access control models.

REFERENCES

BIBA, K. J. 1977. Integrity Considerations for Secure Computer Systems. Mitre Corp. Report

No.TR3153, Bedford, MA. (Also available through Nat’l Technical Information Service, Spring-

field, Va., Report No. NTIS AD–A039324.)

BELL, D. E. AND LAPADULA, L.J. 1975. Secure Computer Systems: Mathematical Foundations and

Model. Mitre Corp. Report No. M74-244, Bedford, MA. (Also available through Nat’l Technical

Information Service, Springfield, VA, Report No. NTIS AD-771543.)

CRAMTON, J. AND LOIZOU, G. 2002. Administrative scope and role hierarchy operations. In Pro-
ceedings of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT2002).
Monterey, CA.

IDS SHARE. Aris house. http://www.ids-scheer.com
JOSHI, J. B. D., AREF, W. G., GHAFOOR, A., AND SPAFFORD, E. H. 2001. Security models for web-based

applications. Communications of the ACM, 44, 2.

MOFFETT, J. D. 1998. Control principles and role hierarchies. In Proceedings of the 3rd ACM
Workshop on Role-Based Access Control. Fairfax, VA.

MOFFETT, J. D. AND LUPU, E. C. 1999. The use of role hierarchies in access control. In Proceedings
of the 4th ACM Workshop on Role-Based Access Control. Fairfax, VA.

NYANCHAMA, M. AND OSBORN, S. 1999. The role graph model and conflict of interest. ACM Trans-
actions on Information and System Security, 2, 1, 3–33.

OH, S. AND PARK, S. 2001. An improved administration method on role-based access control in

the enterprise environment. Journal of Information Science and Engineering 17, 921–944.

OSBORN, S. AND GUO, Y. 2000. Modeling users in role-based access control. In Proceedings of Fifth
ACM Workshop on Role-Based Access Control, 2000.

OSBORN, S., SANDHU, R., AND MUNAWER, Q. 2000. Configuring role-based access control to enforce

mandatory and discretionary access control policies. ACM Transactions on Information and Sys-
tem Security, 3, 2, 85–106.

PERWAIZ, N. AND SOMMERVILLE, I. 2001. Structured management of role-permission relationships.

In Proceedings of 6th ACM Symposium on Access Control Models and Technologies. Chantilly,

VA.

SANDHU, R. 1993. Lattice-Based Access Control Models. IEEE Computer, 26, 11.

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

An Effective Role Administration Model Using Organization Structure • 137

SANDHU, R. AND BHAMIDIPATI, V. 1997a. The URA97 model for role-based user-role assignment. In

Proceedings of IFIP WG 11.3 Workshop on Database Security. Lake Tahoe, CA.

SANDHU, R. AND BHAMIDIPATI, V. 1997b. The ARBAC97 model for role-based administration of

Roles: Preliminary description and outline. In Proceedings of second ACM Workshop on Role-
Based Access Control. Fairfax, VA.

SANDHU, R. AND MUNAWER, Q. 1998. The RRA97 model for role-based administration of role hier-

archy. In Proceedings of the Annual Computer Security Applications Conference. Phoenix, AZ.

SANDHU, R., COYNE, E., FEINSTEIN H., AND YOUMAN, C. 1996. Role-based access control models. IEEE
Computer, 29, 2, 38–47.

SANDHU, R. AND BHAMIDIPATI, V. 1999. Role-based administration of user-role assignment: The

URA97 model and its Oracle implementation. Journal of Computer Security, 7.

SANDHU, R. AND MUNAWER, Q. 1999. The ARBAC99 model for administration of roles. In Proceed-
ings of the Annual Computer Security Applications Conference. Phoenix, AZ.

SANDHU, R., BHAMIDIPATI V., AND MUNAWER, Q. 1999. The ARBAC97 model for role-based adminis-

tration of roles. ACM Transactions on Information and System Security, 2, 1, 105–135.

Received January 2003; revised July 2005; accepted February 2006

ACM Transactions on Information and System Security, Vol. 9, No. 2, May 2006.

