
Role-Based Authorization Constraints
Specification

GAIL-JOON AHN
University of North Carolina at Charlotte
and
RAVI SANDHU
George Mason University

Constraints are an important aspect of role-based access control (RBAC) and are often
regarded as one of the principal motivations behind RBAC. Although the importance of
constraints in RBAC has been recognized for a long time, they have not received much
attention. In this article, we introduce an intuitive formal language for specifying role-based
authorization constraints named RCL 2000 including its basic elements, syntax, and seman-
tics. We give soundness and completeness proofs for RCL 2000 relative to a restricted form of
first-order predicate logic. Also, we show how previously identified role-based authorization
constraints such as separation of duty (SOD) can be expressed in our language. Moreover, we
show there are other significant SOD properties that have not been previously identified in
the literature. Our work shows that there are many alternate formulations of even the
simplest SOD properties, with varying degree of flexibility and assurance. Our language
provides us a rigorous foundation for systematic study of role-based authorization constraints.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages; H.2.7 [Database Management]: Database Adminis-
tration—Security, integrity, and protection

General Terms: Languages, Security

Additional Key Words and Phrases: Access control models, authorization constraints, con-
straints specification, role-based access control

This work is partially supported by the National Science Foundation and the National
Security Agency.
Authors’ addresses: G.-J. Ahn, College of Information Technology, University of North
Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001; email:
gahn@uncc.edu; http://www.coit.uncc.edu/˜gahn; R. Sandhu, Information and Software Engi-
neering Department, George Mason University, Mail Stop 4A4, Fairfax, VA 22030; email:
sandhu@gmu.edu; http://www.list.gmu.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1094-9224/00/1100–0207 $5.00

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000, Pages 207–226.

1. INTRODUCTION

Role-based access control (RBAC) has emerged as a widely accepted alter-
native to classical discretionary and mandatory access controls [Sandhu et
al. 1996]. Several models of RBAC have been published and several
commercial implementations are available. RBAC regulates the access of
users to information and system resources on the basis of activities that
users need to execute in the system, and requires the identification of roles
in the system. A role can be defined as a set of actions and responsibilities
associated with a particular working activity. Then, instead of specifying
all the accesses each individual user is allowed, access authorizations on
objects are specified for roles. Since roles in an organization are relatively
persistent with respect to user turnover and task reassignment, RBAC
provides a powerful mechanism for reducing the complexity, cost, and
potential for error in assigning permissions to users within the organiza-
tion. Because roles within an organization typically have overlapping
permissions, RBAC models include features to establish role hierarchies,
where a given role can include all of the permissions of another role.
Another fundamental aspect of RBAC is authorization constraints (also
simply called constraints). Although the importance of constraints in RBAC
has been recognized for a long time, they have not received much attention
in the research literature, while role hierarchies have been practiced and
discussed at considerable length.

In this article, our focus is on constraint specifications, that is, on how
constraints can be expressed, whether in natural languages, such as
English, or in more formal languages. Natural language specification has
the advantage of ease of comprehension by human beings, but may be
prone to ambiguities, and the specifications do not lend themselves to the
analysis of properties of the set of constraints. For example, one may want
to check if there are conflicting constraints in the set of access constraints
for an organization. We opted for a formal language approach to specify
constraints. The advantages of such an approach include a formal way of
reasoning about constraints, a framework for identifying new types of
constraints, a classification scheme for types of constraints (e.g., prohibi-
tion constraints and obligation constraints), and a basis for supporting
optimization and specification techniques on sets of constraints.

To specify these constraints we introduce the specification language RCL
2000 (for Role-Based Constraints Language 2000, pronounced Ríckle 2000)
which is the specification language for role-based authorization con-
straints. In this article, we describe its basic elements, syntax, and the
formal foundation of RCL 2000 including rigorous soundness and complete-
ness proofs. RCL 2000 is a substantial generalization of RSL99 [Ahn and
Sandhu 1999], which is the earlier version of RCL 2000. It encompasses
obligation constraints in addition to the usual separation of duty and
prohibition constraints.1

1A common example of prohibition constraints is separation of duty. We can consider the
following statement as an example of this type of constraint: If a user is assigned to

208 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Who would be the user of RCL 2000? The first reaction might be to say
the security officer or the security administrator. However, we feel there is
room for a security policy designer distinct from security administrator.
The policy designer has to understand organizational objectives and artic-
ulate major policy decisions to support these objectives. The security officer
or security administrator is more concerned with day-to-day operations.
Policy in the large is specified by the security policy designer and the
actions of the security administrator should be subject to this policy. Thus
policy in the large might stipulate the meaning of conflicting roles and
what roles are in conflict. For example, the meaning of conflicting roles for
a given organization might be that no users other than senior executives
can belong to two conflicting roles. For another organization the meaning
might be that no one, however senior, may belong to two conflicting roles.
In another context we may want both these interpretations to coexist. So
we have a notion of weak conflict (former case) and strong conflict (latter
case), applied to different role sets. RCL 2000 is also useful for security
researchers to think and reason about role-based authorization constraints.

The rest of this article is organized as follows. In Section 2, we describe
the formal language RCL 2000 including basic elements and syntax. In
Section 3, we describe its formal semantics including soundness and
completeness proofs. Section 4 shows the expressive power of RCL 2000.
Section 5 concludes the article.

2. ROLE-BASED CONSTRAINTS LANGUAGE (RCL 2000)

RCL 2000 is defined in context of RBAC96 which is a well-known family of
models for RBAC [Sandhu et al. 1996]. This model has become a widely
cited authoritative reference and is the basis of a standard currently under
development by the National Institute of Standards and Technology
[Sandhu et al. 2000]. Here we use a slightly augmented form of RBAC96
illustrated in Figure 1. We decompose permissions into operations and
objects to enable formulation of certain forms of constraints. Also in Figure
1 we drop the administrative roles of RBAC96 since they are not germane
to RCL 2000.

Intuitively, a user is a human being or an autonomous agent, a role is a
job function or title within an organization with some associated semantics
regarding the authority and responsibility conferred on a member of the
role, and a permission is an approval of a particular mode of access
(operation) to one or more objects in the system. Roles are organized in a
partial order or hierarchy, so that a senior role inherits permissions from

purchasing manager, he cannot be assigned to accounts payable manager and vice versa. This
statement requires that the same individual cannot be assigned to both roles which are
declared mutually exclusive. We identify another class of constraints called obligation con-
straints. In Sandhu [1996], there is a constraint that requires that certain roles should be
simultaneously active in the same session. There is another constraint that requires a user to
have certain combinations of roles in user-role assignment. We classify such constraints as
obligation constraints.

Role-Based Authorization Constraints Specification • 209

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

junior roles, but not vice versa. A user can be a member of many roles and
a role can have many users. Similarly, a role can have many permissions
and the same permission can be assigned to many roles. Each session
relates one user to possibly many roles. Intuitively, a user establishes a
session (e.g., by signing on to the system) during which the user activates
some subset of roles of which he or she is a member. The permissions
available to the users are the union of permissions from all roles activated
in that session. Each session is associated with a single user. This associa-
tion remains constant for the life of a session. A user may have multiple
sessions open at the same time, each in a different window on the
workstation screen, for instance. Each session may have a different combi-
nation of active roles. The concept of a session equates with the traditional
notion of a subject in access control. A subject is a unit of access control,
and a user may have multiple subjects (or sessions) with different permis-
sions (or roles) active at the same time. RBAC96 does not define constraints
formally.

Constraints are an important aspect of role-based access control and are
a powerful mechanism for laying out higher-level organizational policy. The
constructions of Sandhu [1996] and Sandhu and Munawer [1998] clearly
demonstrate the strong connection between constraints and policy in RBAC
systems. The importance of flexible constraints to support emerging appli-
cations has been recently discussed by Jaeger [1999]. Consequently, the
specification of constraints needs to be considered. To date, this topic has
not received much formal attention in the context of role-based access
control. A notable exception is the work of Giuri and Iglio [1996] who
defined a formal model for constraints on role-activation. RCL 2000 consid-
ers all aspects of role-based constraints, not just those applying to role
activation. Another notable exception is the work of Gligor et al. [1998] who
formalize separation of duty constraints enumerated informally by Simon
and Zurko [1997]. RCL 2000 goes beyond separation of duty to include
obligation constraints [Ahn 2000] such as those used in the constructions of
Sandhu [1996] and Osborn et al. [2000] for simulating mandatory and
discretionary access controls in RBAC.2

One of our central claims is that it is futile to try to enumerate all
interesting and practically useful constraints because there are too many
possibilities and variations. Instead, we should pursue an intuitively
simple yet rigorous language for specifying constraints such as RCL 2000.
The expressive power of RCL 2000 is demonstrated in Section 4, where it is
shown that many constraints previously identified in the RBAC literature
and many new ones can be conveniently formulated in RCL 2000.

2Intuitively, prohibition constraints are constraints that forbid the RBAC component from
doing (or being) something which it is not allowed to do (or be). Most of SOD constraints are
included in this class. Obligation constraints are constraints that force the RBAC component
to do (or be) something.

210 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

2.1 Basic Components

The basic elements and system functions on which RCL 2000 is based are
defined in Figure 2. Figure 1 shows the RBAC96 model which is the context
for these definitions. RCL 2000 has six entity sets called users (U), roles (R),
objects (OBJ), operations (OP), permissions (P), and sessions (S). These are
interpreted as in RBAC96 as discussed above. OBJ and OP are not in
RBAC96. OBJ is the passive entities that contain or receive information. OP
is an executable image of a program, which upon execution causes informa-
tion flow between objects. P is an approval of a particular mode of operation
to one or more objects in the system.

The function user gives us the user associated with a session and roles
gives us the roles activated in a session. Neither function changes during
the life of a session. This is a slight simplification from RBAC96, which
does allow roles in a session to change. RCL 2000 thus builds in the
constraint that roles in a session cannot change.

Hierarchies are a natural means for structuring roles to reflect an
organization’s lines of authority and responsibility (see Figure 3). By
convention, senior roles are shown toward the top of this diagram and
junior roles toward the bottom. Mathematically, these hierarchies are
partial orders. A partial order is a reflexive, transitive, and antisymmetric
relation, so that if x s y then role x inherits the permissions of role y, but
not vice versa. In Figure 3, the juniormost role is that of Employee. The
Engineering Department role is senior to Employee and thereby inherits all
permissions from Employee. The Engineering Department role can have
permissions in addition to those it inherited. Permission inheritance is
transitive, for example, the Engineer1 role inherits permissions from both
the Engineering Department and Employee roles. Engineer1 and Engi-
neer2 both inherit permissions from the Engineering Department role, but
each will have different permissions directly assigned to it.

The user assignment relation UA is a many-to-many relation between
users and roles. Similarly the permission-assignment relation PA is a
many-to-many relation between permissions and roles. Users are authorized

U

USERS

USER

ASSIGNMENT

UA

ROLES

R

user roles

SESSIONS

S

.

.

.

PERMISSION

ASSIGNMENT

PA

PERMISS-

IONS

P

OPERA-

TIONS

OP OBJ

OBJECTS

HIERARCHY

ROLE
RH

Fig. 1. Basic elements and system functions: from RBAC96 model.

Role-Based Authorization Constraints Specification • 211

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

to use the permissions of roles to which they are assigned. This is the
essence of RBAC.

The remaining functions defined in Figure 2 are built from the sets,
relations, and functions discussed above. In particular, note that the roles
and user functions can have different types of arguments so we are
overloading these symbols. Also the definition of roles * is carefully formu-
lated to reflect the role inheritance with respect to users and sessions going
downward and with respect to permissions going upward. In other words, a
permission in a junior role is available to senior roles, and activation of a
senior role makes available permissions of junior roles. This is a well-
accepted concept in the RBAC literature and is a feature of RBAC96. Using
a single symbol roles * simplifies our notation as long as we keep this
duality of inheritance in mind.

Fig. 2. Basic elements and system functions: from the RBAC96 model.

212 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Additional elements and system functions used in RCL 2000 are defined
in Figure 4. The precise meaning of conflicting roles, permissions, and
users will be specified as per organizational policy in RCL 2000. For
mutually disjoint organizational roles such as those of purchasing manager
and accounts payable manager, the same individual is generally not
permitted to belong to both roles. We defined these mutually disjoint roles
as conflicting roles. We assume that there is a collection CRof sets of roles
that have been defined as conflicting.

The concept of conflicting permissions defines conflict in terms of permis-
sions rather than roles. Thus the permission to issue purchase orders and
the permission to issue payments are conflicting, irrespective of the roles to
which they are assigned. We denote sets of conflicting permissions as CP.
As we show, defining conflict in terms of permissions offers greater assur-
ance than defining it in terms of roles. Conflict defined in terms of roles
allows conflicting permissions to be assigned to the same role by error (or
malice). Conflict defined in terms of permissions eliminates this possibility.
In the real world, conflicting users also should be considered. For example,
for the process of preparing and approving purchase orders, it might be
company policy that members of the same family should not prepare the
purchase order, and also be a user who approves that order.

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Fig. 3. Example of role hierarchies.

Fig. 4. Basic elements and nondeterministic functions: beyond the RBAC96 model.

Role-Based Authorization Constraints Specification • 213

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

RCL 2000 has two nondeterministic functions, oneelement and allother .
The oneelement (X) function allows us to get one element xi from set X. We
usually write oneelement as OE. Multiple occurrences of OE(X) in a single
RCL 2000 statement all select the same element xi from X. With allother (X)
we can get a set by taking out one element. We usually write allother as
AO. These two nondeterministic functions are related by context, because
for any set S, $OE~S!% ø AO~S! 5 S, and at the same time, neither is a
deterministic function.

In order to illustrate how to use these two functions to specify role-based
constraints, we take the requirement of the static separation of duty (SOD)
property which is the simplest variation of SOD. For simplicity assume
there is no role hierarchy (otherwise replace roles by roles *).

Requirement : No user can be assigned to two conflicting roles. In other
words, conflicting roles cannot have common users. We can express this
requirement as below.
Expression : ?roles ~OE~U!! ù OE~CR!? # 1

OE~CR! means a conflicting role set and the function roles ~OE~U!!
returns all roles that are assigned to a single user OE~U!. Therefore this
statement ensures that a single user cannot have more than one conflicting
role from the specific role set OE~CR!. We can interpret the above expression
as saying that if a user has been assigned to one conflicting role, that user
cannot be assigned to any other conflicting role. We can also specify this
property in many different ways using RCL 2000, such as OE~OE~CR!! [

roles ~OE~U!! f AO~OE~CR!! ù roles ~OE~U!! 5 f or user ~OE~OE~CR!!! ù

user ~AO~OE~CR!!! 5 f.
The expression ?roles ~OE~sessions ~OE~U!!!! ù OE~CR!? # 1 specifies

dynamic separation of duties (DSOD) applied to active roles in a single
session as opposed to static separation applied to user-role assignment.
Dynamic separation applied to all sessions of a user is expressed by
?roles ~sessions ~OE~U!!! ù OE~CR!? # 1.

A permission-centric formulation of separation of duty is specified as
roles ~OE~OE~CP!!! ù roles ~AO~OE~CP!!! 5 f. The expression roles ~OE~OE~CP!!!
means all roles that have a conflicting permission from, say cpi, and
roles ~AO~OE~CP!!! stands for all roles that have other conflicting permis-
sions from the same conflicting permission set cpi. This formulation leaves
open the particular roles to which conflicting permissions are assigned but
requires that they be distinct. This is just a sampling of the expressive
power of RCL 2000 discussed in Section 4.

RCL 2000 system functions do not include a time or state variable in
their structure. So we assume that each function considers the current time
or state. For example, the sessions function maps a user ui to a set of
current sessions that are established by user ui. Elimination of time or
state from the language simplifies its formal semantics. RCL 2000 thereby
cannot express history or time-based constraints. It will need to be ex-
tended to incorporate time or state for this purpose.

214 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

As a general notational device we have the following convention.

—For any set valued function f defined on set X,
We understand f(X) 5 f~x1! ø f~x2! ø · · · ø f~xn!, where X 5 $ x1, x2,
x3, . . . , xn%.

For example, suppose we want to get all users who are assigned to a set
of roles R 5 $Employee, Engineer1, Engineer2%. We can express this
using the function user ~R! as equivalent to user ~Employee! ø

user ~Engineer1! ø user ~Engineer2!.

2.2 Syntax of RCL 2000

The syntax of RCL 2000 is defined by the syntax diagram and grammar
given in Figure 5. The rules take the form of flow diagrams. The possible
paths represent the possible sequence of symbols. Starting at the beginning
of a diagram, a path is followed either by transferring to another diagram if
a rectangle is reached or by reading a basic symbol contained in a circle.
Backus Normal Form (BNF) is also used to describe the grammar of RCL
2000 as shown in the bottom of Figure 5. The symbols of this form are “::5”
meaning “is defined as” and “|” meaning “or.” Figure 5 shows that RCL
2000 statements consist of an expression possibly followed by implication
~f! and another expression. Also RCL 2000 statements can be recursively
combined with a logical AND operator ~`!. Each expression consists of a
token followed by a comparison operator and token, size, set, or set with
cardinality. Also a token itself can be an expression. Each token can be just
a term or a term with cardinality. Each term consists of functions and sets
including set operators. The sets and system functions described earlier in
Section 2.1 are allowed in this syntax. Also, we denote oneelement and
allother as OEand AO, respectively.

3. FORMAL SEMANTICS OF RCL 2000

In this section, we discuss the formal semantics for RCL 2000. We do so by
identifying a restricted form of first-order predicate logic called RFOPL
which is exactly equivalent to RCL 2000. Any property written in RCL
2000, called a RCL 2000 expression, can be translated to an equivalent
expression in RFOPL and vice versa. The syntax of RFOPL is described
later in this section. The translation algorithm, namely, Reduction, con-
verts a RCL 2000 expression to an equivalent RFOPL expression. This
algorithm is outlined in Figure 6. The Reduction algorithm eliminates AO
function(s) from a RCL 2000 expression in the first step. Then we translate
OE terms iteratively introducing universal quantifiers from left to right. If
we have nested OE functions in the RCL 2000 expression, translation will
start from the innermost OEterms. This algorithm translates the RCL 2000
expression to an RFOPL expression in time O(n), supposing that the
number of OEterms is n.

Role-Based Authorization Constraints Specification • 215

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

For example, the following expression can be converted to an RFOPL
expression according to the sequences below.

Example 1. OE~OE~CR!! [roles ~OE~U!! f AO~OE~CR!! ù roles ~OE~U!! 5 f

(1) OE~OE~CR!! [roles ~OE~U!! f ~OE~CR!2 $OE~OE~CR!!%! ù roles ~OE~U!! 5 f

(2) @cr [CR: OE~cr! [roles ~OE~U!! f ~cr 2 $OE~cr!%! ù roles ~OE~U!! 5 f

(3) @cr [CR, @r [cr: r [roles ~OE~U!! f ~cr 2 $r%! ù roles ~OE~U!! 5 f

(4) @cr [CR, @r [cr, @u [U: r [roles ~u! f ~cr 2 $r%! ù roles ~u! 5 f

token

expression

statement

token

token

size

set

|

expression

statement

expression

>

< > =< >= ==

| set

function (set

op

)

term

term|

term

(OE

(AO

|

Fig. 5. Syntax of language.

216 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Example 2. ?roles ~OE~U!! ù OE~CR!? # 1

(1) @u [U : ?roles ~u! ù OE~CR!? # 1

(2) @u [U, @cr [CR : ?roles ~u! ù cr? # 1

The resulting RFOPL expression will have the following general struc-
ture.

(1) The RFOPL expression has a (possibly empty) sequence of universal
quantifiers as a left prefix, and these are the only quantifiers it can
have. We call this sequence the quantifier part.

(2) The quantifier part will be followed by a predicate separated by a colon
(:) (i.e., universal quantifier part : predicate).

Fig. 6. Reduction.

Fig. 7. Construction.

Role-Based Authorization Constraints Specification • 217

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

(3) The predicate has no free variables or constant symbols. All variables
are declared in the quantifier part (e.g., @r [R, @u [U : r [roles ~u!).

(4) The order of quantifiers is determined by the sequence of OE elimina-
tion. In some cases this order is important so as to reflect the nesting of
OE terms in the RCL 2000 expression. For example, in @cr [CR, @r
[cr, @u [U : predicate; the set cr, which is used in the second
quantifier, must be declared in a previous quantifier as an element,
such as cr in the first quantifier.

(5) Predicate follows most rules in the syntax of RCL 2000 except the term
syntax in Figure 5. Figure 8 shows the syntax that predicate should
follow to express term.

Because the reduction algorithm has a nondeterministic choice for reduc-
tion of the OE term, we may have several RFOPL expressions that are
translated from a RCL 2000 expression. As we show in Lemma 4, these
expressions are logically equivalent, so it does not matter semantically
which one is obtained.

Next, we discuss the algorithm Construction that constructs a RCL 2000
expression from an RFOPL expression. The algorithm is described in
Figure 7. This algorithm repeatedly chooses the rightmost quantifier in an
RFOPL expression and constructs the corresponding OE term by eliminat-
ing the variable of that quantifier. After all quantifiers are eliminated, the
algorithm constructs AO terms according to the formal definition of an AO
function. The running time of the algorithm obviously depends on the
number of quantifiers in the RFOPL expression.

For example, the following RFOPL expression can be converted to a RCL
2000 expression according to the sequence described below.

RFOPL expression:
@cr [CR, @r [cr, @u [U: r [roles ~u!f ~cr 2 $r%! ù roles ~u!5 f.
RCL 2000 expression:

(1) @cr [CR, @r [cr: r [roles ~OE~U!! f ~cr 2 $r%! ù roles ~OE~U!!5 f.

(2) @cr [CR: OE~cr! [roles ~OE~U!! f ~cr 2 $OE~cr!%! ù roles ~OE~U!!5 f .

(3) OE~OE~CR!! [roles ~OE~U!! f ~OE~CR! 2 $OE~OE~CR!!%! ù roles ~OE~U!!5 f.

(4) OE~OE~CR!! [roles ~OE~U!! f AO~OE~CR!! ù roles ~OE~U!!5 f.

op
term

))function element

,

set element) - { })

element

Fig. 8. Syntax of restricted FOPL expression.

218 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Unlike the Reduction algorithm we can observe the following lemma,
where C(expr) denotes the RCL 2000 expression constructed by the Con-
struction algorithm.

LEMMA 1. Given RFOPL expression b, C~b! always gives us the same
RCL 2000 expression a.

PROOF. The Construction algorithm always chooses the rightmost quan-
tifiers to construct a RCL 2000 expression from an RFOPL expression. This
procedure is deterministic. Therefore, given RFOPL expression b, we will
always get the same RCL 2000 expression a. e

We introduced two algorithms, namely, Reduction and Construction, that
can reduce and construct a RCL 2000 expression. Next we show the
soundness and completeness of this relationship between RCL 2000 and
RFOPL expressions.

3.1 Soundness Theorem

Let us define the expressions generated during reduction and construction
as intermediate expressions. These expressions have a mixed form of RCL
2000 and RFOPL expressions; that is, they contain quantifiers as well as
OEterms. Note that RCL 2000 and RFOPL expressions are also intermedi-
ate expressions.

In order to show the soundness of RCL 2000, we introduce the following
lemma.

LEMMA 2. If the intermediate expression g is derived from RCL 2000
expression a by the Reduction algorithm in k iterations, then the Construc-
tion algorithm applied to g will terminate in exactly k iterations.

PROOF. It is obvious that g has k quantifiers because the Reduction
algorithm generates exactly one quantifier for each iteration. Now the
Construction algorithm eliminates exactly one quantifier per iteration, and
will therefore terminate in k iterations. e

This leads to the following theorem, where R(expr) denotes the RFOPL
expression translated by the Reduction algorithm. We define all occur-
rences of same OEterm in an intermediate expression as a distinct OEterm.

THEOREM 1. Given RCL 2000 expression a, a can be translated into
RFOPL expression b. Also a can be reconstructed from b. That is, C~R~a!! 5 a.

PROOF. Let us define Cn as n iterations of the Construction algorithm,
and Rn as n iterations of Reduction algorithm. We prove the stronger result
that Cn ~Rn~a!! 5 a by induction on the number of iterations in reduction R

(or, C under the result of Lemma 2).
Basis: If the number of iterations n is 0, the theorem follows trivially.
Inductive Hypothesis: We assume that if n5 k, this theorem is true.

Role-Based Authorization Constraints Specification • 219

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Inductive Step: Consider the intermediate expression g translated by the
Reduction algorithm in k 1 1 iterations. Let g9 be the intermediate
expression translated by the Reduction algorithm in the kth iteration. g

differs from g9 in having an additional rightmost quantifier and one less
distinct OEterm. Applying the Construction algorithm to g eliminates this
rightmost quantifier and brings back the same OE term in all its occur-
rences. Thus, the Construction algorithm applied to g gives us g9. From
this intermediate expression g9, we can construct a due to the inductive
hypothesis. This completes the inductive proof. e

3.2 Completeness Theorem

In order to show the completeness of RCL 2000 relative to RFOPL, we
introduce the following lemma analogous to Lemma 2.

LEMMA 3. If the intermediate expression g is derived from the RFOPL
expression b by the Construction algorithm in k iterations, then the Reduc-
tion algorithm applied to g will terminate in exactly k iterations.

PROOF. It is obvious that g has k distinct OE terms because the Con-
struction algorithm generates exactly one distinct OE term for each itera-
tion. Now the Reduction algorithm eliminates exactly one distinct OEterm
per iteration, and will therefore terminate in k iterations. e

Next we prove our earlier claim that even though the Reduction algo-
rithm is nondeterministic, all RFOPL expressions translated from the same
RCL 2000 expression will be logically equivalent. More precisely, we prove
the following result.

LEMMA 4. Let g be an intermediate expression. If R~g! gives us b1 and
b2, b1 Þ b2 then b1 [b2.

PROOF. The proof is by induction on the number n of OEterms in g.
Basis: If n is 0 the lemma follows trivially.
Inductive Hypothesis: We assume that if n5 k, this lemma is true.
Inductive Step: Let n 5 k 1 1. By definition, R reduces a simple OE

term. Clearly the choice of variable symbol used for this term is not
significant. The choice of term does not matter as long as it is a simple
term. Thus, all choices for reducing a simple OE term are equivalent. The
lemma follows by the induction hypothesis. e

The final step to our desired completeness result is obtained below.

LEMMA 5. There exists an execution of R such that R~C~b!! 5 b

PROOF. We prove the stronger result that there is an execution of R such
that Rn~Cn~b!! 5 b by induction on the number of iterations in construction
C (or, R under the result of Lemma 3).

Basis: If the number of iterations n is 0, the theorem follows trivially.
Inductive Hypothesis: We assume that if n5 k, this theorem is true.

220 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Inductive Step: Consider the intermediate expression g constructed by
the Construction algorithm in k 1 1 iterations. Let g9 be the intermediate
expression after the kth iteration. g differs from g9 in having one less
quantifier and one more distinct OE term. Applying one iteration of the
Reduction algorithm to g, we can choose to eliminate this particular OE
term and introduce the same variable in the new rightmost quantifier. This
gives us g9. By inductive hypothesis from g9, there is an execution of k that
will give us b. e

Putting these facts together, we obtain the theorem that shows the
completeness of RCL 2000, relative to RFOPL.

THEOREM 2. Given RFOPL expression b, b can be translated into RCL
2000 expression a. Also any b9 retranslated from a is logically equivalent to
b. That is, R~C~b!! [b9.

PROOF. Lemma 1 states that C~b! gives us a unique result. Let us call it
a. Lemma 5 states there is an execution of R that will go back exactly to b

from a. Lemma 4 states that all executions of R for a will give an
equivalent RFOPL expression. The theorem follows. e

In this section, we have given a formal semantics for RCL 2000 and have
demonstrated its soundness and completeness. Any property written in
RCL 2000 could be translated to an expression written in a restricted form of
first-order predicate logic, which we call RFOPL. During the analysis of this
translation, we proved two theorems that support the soundness and com-
pleteness of the specification language RCL 2000 and RFOPL, respectively.

4. EXPRESSIVE POWER OF RCL 2000

In this section, we demonstrate the expressive power of RCL 2000 by
showing how it can be used to express a variety of separation of duty
properties. In Ahn [2000], it is further shown how the construction of
Sandhu [1996] and Osborn et al. [2000] to respectively simulate mandatory
and discretionary access controls in RBAC can be expressed in RCL 2000.
As a security principle, SOD is a fundamental technique for prevention of
fraud and errors, known and practiced long before the existence of comput-
ers. It is used to formulate multiuser control policies, requiring that two or
more different users be responsible for the completion of a transaction or
set of related transactions. The purpose of this principle is to minimize
fraud by spreading the responsibility and authority for an action or task
over multiple users, thereby raising the risk involved in committing a
fraudulent act by requiring the involvement of more than one individual. A
frequently used example is the process of preparing and approving pur-
chase orders. If a single individual prepares and approves purchase orders,
it is easy and tempting to prepare and approve a false order and pocket the
money. If different users must prepare and approve orders, then commit-
ting fraud requires a conspiracy of at least two, which significantly raises
the risk of disclosure and capture.

Role-Based Authorization Constraints Specification • 221

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Although separation of duty is easy to motivate and understand intu-
itively, so far there is no formal basis for expressing this principle in
computer security systems. Several definitions of SOD have been given in
the literature. For the purpose of this article, we use the following defini-
tion.

Separation of duty reduces the possibility for fraud or significant errors
(which can cause damage to an organization) by partitioning of tasks and
associated privileges so cooperation of multiple users is required to
complete sensitive tasks.

We have the following definition for interpreting SOD in role-based
environments.

Role-based separation of duty ensures SOD requirements in role-
based systems by controlling membership in, activation of, and use of
roles as well as permission assignment.

There are several papers in the literature over the past decade that deal
with separation of duty. During this period various forms of SOD have been
identified. Attempts have been made to systematically categorize these
definitions. Notably, Simon and Zurko [1997] provide an informal charac-
terization, and Gligor et al. [1998] provide a formalism of this characteriza-
tion. However, this work has significant limitations. It omits important
forms of SOD including session-based dynamic SOD needed for simulating
lattice-based access control and Chinese Walls in RBAC [Sandhu 1993;
1996]. It also does not deal with SOD in the presence of role hierarchies.
Moreover, as shown, there are additional SOD properties that have not
been identified in the previous literature.

Here, we take a different approach to understanding SOD. Rather than
simply enumerating different kinds of SOD we show how RCL 2000 can be
used to specify the various separation of duty properties.

4.1 Static SOD

Static SOD (SSOD) is the simplest variation of SOD. In Table I, we show
our expression of several forms of SSOD. These include new forms of SSOD
that have not previously been identified in the literature. This demon-
strates how RCL 2000 helps us in understanding SOD and discovering new
basic forms of it.

Property 1 is the most straightforward property. The SSOD requirement
is that no user should be assigned to two roles which are in conflict with
each other. In other words, it means that conflicting roles cannot have
common users. RCL 2000 can clearly express this property, which is the
classic formulation of SSOD identified by several papers including Gligor et
al. [1998], Kuhn [1997], and Sandhu et al. [1996]. It is a role-centric
property.

222 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

Property 2 follows the same intuition as Property 1, but is permission-
centric. Property 2 says that a user can have at most one conflicting
permission acquired through roles assigned to the user. Property 2 is a
stronger formulation than Property 1, which prevents mistakes in role-
permission assignment. This kind of property has not been previously
mentioned in the literature. RCL 2000 helps us discover such omissions in
previous work. In retrospect, Property 2 is an “obvious property” but there
is no mention of it in over a decade of SOD literature. Even though
Property 2 allows more flexibility in role-permission assignment since the
conflicting roles are not predefined, it can also generate roles that cannot
be used at all. For example, two conflicting permissions can be assigned to
a role. Property 2 simply requires that no user can be assigned to such a
role or any role senior to it, which makes that role quite useless. Thus,
Property 2 prevents certain kinds of mistakes in role-permissions but
tolerates others.

Property 3 eliminates the possibility of useless roles with an extra
condition, ?permissions *~OE~R!! ù OE~CP!? # 1. This condition ensures
that each role can have at most one conflicting permission without consid-
eration of user-role assignment.

With this new condition, we can extend Property 1 in the presence of
conflicting permissions as in Property 4. In Property 4, we have an
additional condition that conflicting permissions can only be assigned to
conflicting roles. In other words, nonconflicting roles cannot have conflict-
ing permissions. The net effect is that a user can have at most one
conflicting permission via roles assigned to the user.

Property 4 can be viewed as a reformulation of Property 3 in a role-
centric manner. Property 3 does not stipulate a concept of conflicting roles.
However, we can interpret conflicting roles to be those that happen to have
conflicting permissions assigned to them. Thus, for every cpi, we can define
cri 5 $r [R ? cpi ù permissions ~r! Þ f%. With this interpretation,
Properties 3 and 4 are essentially identical. The viewpoint of Property 3 is
that conflicting permissions get assigned to distinct roles which thereby
become conflicting, and therefore cannot be assigned to the same user.
Which roles are deemed conflicting is not determined a priori but is a
side-effect of permission-role assignment. The viewpoint of Property 4 is
that conflicting roles are designated in advance and conflicting permissions

Table I. Static Separation of Duty

Properties Expressions

1. SOOD-CR ? roles *~OE~U!! ù OE~CR! ? # 1
2. SOOD-CP ? permissions ~roles *~OE~U!!! ù OE~CP! ? # 1
3. Variation of 2 (2) ∧ ? permissions *~OE~R!! ù OE~CP! ? # 1
4. Variation of 1 (1) ∧ ? permissions *~OE~R!! ù OE~CP! ? # 1

∧ permissions ~OE~R!! ù OE~CP! Þ f f OE~R! ù OE~CR! Þ f
5. SSOD-CU (1) ∧ ? user ~OE~CR!! ù OE~CU! ? # 1
6. Yet another variation (4) ∧ (5)

Role-Based Authorization Constraints Specification • 223

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

must be restricted to conflicting roles. These properties have different
consequences on how roles get designed and managed but essentially
achieve the same objective with respect to separation of conflicting permis-
sions. Both properties achieve this goal with much higher assurance than
Property 1. Property 2 achieves this goal with similar high assurance but
allows for the possibility of useless roles. Thus, even in the simple situation
of static SOD, we have a number of alternative formulations offering
different degrees of assurance and flexibility.

Property 5 is a very different property and is also new to the literature.
With a notion of conflicting users, we identify new forms of SSOD. Property
5 says that two conflicting users cannot be assigned to roles in the same
conflicting role set. This property is useful because it is much easier to
commit fraud if two conflicting users can have different conflicting roles in
the same conflicting role set. This property prevents this kind of situation
in role-based systems. A collection of conflicting users is less trustworthy
than a collection of nonconflicting users, and therefore should not be mixed
up in the same conflicting role set. This property has not been previously
identified in the literature.

We also identify a composite property that includes conflicting users,
roles, and permissions. Property 6 combines Properties 4 and 5 so that
conflicting users cannot have conflicting roles from the same conflict set
while ensuring that conflicting roles have at most one conflicting permis-
sion from each conflicting permission set. This property supports SSOD in
user-role and role-permission assignment with respect to conflicting users,
roles, and permissions.

4.2 Dynamic SOD

In RBAC systems, a dynamic SOD property with respect to the roles
activated by the users requires that no user can activate two conflicting
roles. In other words, conflicting roles may have common users but users
can not simultaneously activate roles that are in conflict with each other.
From this requirement, we can express user-based Dynamic SOD as
Property 1. We can also identify a session-based DSOD property that can
apply to the single session as Property 2. We can also consider these
properties with conflicting users such as Properties 1-1 and 2-1. Additional
analysis of DSOD properties based on conflicting permissions can also be
pursued as was done for SSOD.

Table II. Dynamic Separation of Duty

Properties Expressions

1. User-based DSOD ? roles *~sessions ~OE~U!!! ù OE~CR! ? # 1
1-1. User-based DSOD with CU ? roles *~sessions ~OE~OE~CU!!!! ù OE~CR! ? # 1
2. Session-based DSOD ? roles *~OE~sessions ~OE~U!!!! ù OE~CR! ? # 1
2-1. Session-based DSOD with CU ? roles *~OE~sessions ~OE~OE~CU!!!!! ù OE~CR! ? # 1

224 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

5. CONCLUSION

In this article, we have described the specification language RCL 2000.
This language is built on RBAC96 components and has two nondeterminis-
tic functions OEand AO. We have given a formal syntax and semantics for
RCL 2000 and have demonstrated its soundness and completeness. Any
property written in RCL 2000 may be translated to an expression written
in a restricted form of first order predicate logic, which we call RFOPL.
During the analysis of this translation, we proved two theorems that
support the soundness and completeness of the specification language RCL
2000 and RFOPL, respectively.

RCL 2000 provides us a foundation for studying role-based authorization
constraints. It is more natural and intuitive than RFOPL. The OE and AO
operators were intuitively motivated by Chen and Sandhu [1995] and
formalized in RCL 2000. They provide a viable alternative to reasoning in
terms of long strings of universal quantifiers. Also the same RCL 2000
expression has multiple but equivalent RFOPL formulations indicating
that there is a unifying concept in RCL 2000.

There is room for much additional work with RCL 2000 and similar
specification languages. The language can be extended by introducing time
and state. Analysis of RCL 2000 specifications and their composition can be
studied. The efficient enforcement of these constraints can also be investi-
gated. A user-friendly front-end to the language can be developed so that it
can be realistically used by security policy designers.

REFERENCES

AHN, G.-J. 2000. The RCL 2000 language for specifying role-based authorization constraints.
Ph.D. Dissertation. George Mason Univ., Fairfax, VA.

AHN, G. -J. AND SANDHU, R. 1999. The RSL99 language for role-based separation of duty
constraints. In Proceedings of 4th ACM Workshop on Role-Based Access Control (RBAC ’99,
Fairfax, VA, Oct. 28-29). ACM, New York, NY, 43–54.

CHEN, F. AND SANDHU, R. S. 1995. Constraints for role-based access control. In Proceedings of
the first ACM Workshop on Role-Based Access Control (RBAC ’95, Gaithersburg, MD, Nov.
30–Dec. 1), C. E. Youman, R. S. Sandhu, and E. J. Coyne, Eds. ACM Press, New York, NY,
39–46.

GIURI, L. AND IGLIO, P. 1996. A formal model for role-based access control with constraints. In
Proceedings of 9th IEEE Workshop on Computer Security Foundations (Kenmare, Ireland,
June). IEEE Press, Piscataway, NJ, 136–145.

GLIGOR, V. D., GAVRILA, S., AND FERRAIOLO, D. 1998. On the formal definition of separation-
of-duty policies and their composition. In Proceedings of the 1998 IEEE Computer Society
Symposium on Research in Security and Privacy (Oakland, CA, May). IEEE Computer
Society Press, Los Alamitos, CA, 172–183.

JAEGER, T. 1999. On the increasing importance of constraints. In Proceedings of 4th ACM
Workshop on Role-Based Access Control (RBAC ’99, Fairfax, VA, Oct. 28-29). ACM, New
York, NY, 33–42.

KUHN, D. R. 1997. Mutual exclusion of roles as a means of implementing separation of duty in
role-based access control systems. In Proceedings of the Second ACM Workshop on
Role-based Access Control (RBAC ’97, Fairfax, VA, Nov. 6–7), C. Youman, E. Coyne, and T.
Jaeger, Chairs. ACM Press, New York, NY, 23–30.

Role-Based Authorization Constraints Specification • 225

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

OSBORN, S., SANDHU, R., AND MUNAWER, Q. 2000. Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst. Secur. 3,
2 (May).

SANDHU, R. S. 1993. Lattice-based access control models. IEEE Computer 26, 11, 9–19.
SANDHU, R., FERRAIOLO, D., AND KUHN, R. 2000. The NIST model for role-based access control:

Towards a unified standard. In Proceedings of 5th ACM Workshop on Role-Based Access
Control (RBAC ’00, Berlin, Germany, July 26 - 27). ACM, New York, NY, 47–63.

SANDHU, R. AND MUNAWER, Q. 1998. How to do discretionary access control using roles. In
Proceedings of the Third ACM Workshop on Role-Based Access Control (RBAC ’98, Fairfax,
VA, Oct. 22–23), C. Youman and T. Jaeger, Chairs. ACM Press, New York, NY, 47–54.

SANDHU, R. S. 1996. Role hierarchies and constraints for lattice-based access controls. In
Proceedings of the Fourth European Symposium on Research in Computer Security (ESO-
RICS96, Rome, Italy, Sept. 25-27), E. Bertino, Ed. Springer-Verlag, New York, NY.

SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN, C. E. 1996. Role-based access
control models. IEEE Computer 29, 2 (Feb.), 38–47.

SIMON, R. AND ZURKO, M. E. 1997. Separation of duty in role based access control
environments. In Proceedings of the 10th IEEE Workshop on Computer Security Founda-
tions (Rockport, MA, June 10-12). IEEE Computer Society Press, Los Alamitos, CA,
183–194.

Received: April 2000; revised: August 2000; accepted: October 2000

226 • G.-J. Ahn and R. Sandhu

ACM Transactions on Information and System Security, Vol. 3, No. 4, November 2000.

