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1. INTRODUCTION

Traditional access control models such as lattice-based access control (LBAC)
[Bell and LaPadula 1975; Denning 1976; Sandhu 1993] and role-based access
control (RBAC) [Sandhu et al. 1996] primarily consider static authorization de-
cisions based on subjects’ permissions on target objects. Policy-based authoriza-
tion management systems have been proposed [Bertino et al. 2001; Damianou
et al. 2001; Jajodia et al. 2001; Jajodia et al. 1997], in which a centralized
reference monitor (or distributed reference monitor with centralized adminis-
tration) checks a subject’s permission when access is requested and the request
is granted according to the security policies at the time of the access request.
Once a subject is granted a permission, there are no more security checks for
continued access.

Developments in information technology, especially in electronic commerce
applications, require additional features for access control. In recent informa-
tion systems, the usage of a digital object can be not only an instantaneous
access or activity, like read and write, but also temporal and transient, such
as payment-based online reading, metered by reading time or chapters, or a
downloadable music file that can only be played 10 times. Thus, a subject’s per-
mission may decrease, expire, or be revoked along with the usage of the object.

Recently proposed usage control (UCON) is a new access control model that
extends traditional access control models in multiple aspects [Park and Sandhu
2004]. In UCON, an access may be an instantaneous action, but may also be a
process lasting for some duration with several related and subsequent actions.
Actions and events during an access process may result in changes to the sys-
tem state, such as subject or object attributes, or in changes in the status of an
access (e.g., revoke an access). Usage control can be enforced before or during an
access process, or both. A usage decision in UCON is made by policies of autho-
rizations, obligations, and conditions (also referred as UCONABC core models).
Authorization decisions are determined by policies based on the attributes of
subjects and objects, and rights. Obligations are actions that are required to
be performed before or during an access process. Conditions are environment
restrictions that are required to be valid before or during an access. An extreme
example of UCON is the traditional access control models, in which the autho-
rization decision is made instantly when an access request is generated and
there is no further check after that. More generally, usage control is a compre-
hensive model to represent the underlying principles of existing access control
models, as well as the access control in digital rights management (DRM), trust
management, and other modern information systems.

The distinguishing properties of UCON beyond traditional access control
models are the continuity of access decisions and the mutability of subject and
object attributes. In UCON, authorization decisions are not only checked and
made before an access, but may be repeatedly checked during the access and
may revoke the access if some policies are not satisfied, according to the changes
of the subject or object attributes, or environmental conditions. Mutability is a
new concept introduced by UCON, but its features can be found in traditional
access control models and policies. For example, in a Chinese Wall policy, if a
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subject accesses an object in a conflict-of-interest set, then he/she cannot access
any other conflicting objects in the future. That means, the potential object list
that the subject can access (we can consider this a subject attribute) has been
changed as a side effect of a previous access. This change, consequently, will
restrict the next access of this subject. History-based access control policies can
be expressed by UCON with this feature of attribute mutability. Mutability
is also useful to specify dynamic constraints in access control systems, such as
separation-of-duty (SoD) policies, cardinality constraints, etc. Another prospec-
tive area is consumable access, which is becoming an important aspect in many
applications, especially in DRM. For example in a pay-per-use DRM application
with fixed credit of a subject, the available access time decreases with ongoing
access.

Continuity and mutability in UCON introduce interactive and concurrent
concepts into access control. An access results in the update of subject or object
attributes as side effects. These changes, in turn, may result in the change of
other ongoing or future accesses by the same subject, or to the same object, or
some access that is implicitly related, which means that an access may change
not only its own state, but also the state of other accesses.

Park and Sandhu [Sandhu and Park 2003; Park and Sandhu 2004] presented
the concept of mutability and continuity, and a conceptual model of UCON,
which consists of several core submodels, including authorizations, obligations,
and conditions. The main contribution of this paper is to formalize UCON model
with a temporal logic, while in previous work the model is informal and concep-
tual. As UCON fundamentally extends the underlying mechanism from tradi-
tional access control models and comprehensively captures the new features of
recent proposed security systems, a formalized specification of the principles of
UCON and its flexibility is necessary. With a logical specification, we provide a
tool to precisely define policies for system designers and administrators. With
a conceptual and informal model, the capability to define policy is limited. A
logical specification also provides the precise meaning of the new features of
UCON, such as the mutability of attributes and the continuity of usage control
decisions. Finally, to analyze the general properties of UCON models, such as
expressive power and safety problem, we need a formalized model.

We use an extended form of Lamport’s temporal logic of actions (TLA)
[Lamport 1994] to build our logic model and formal specification. The basic
components include predicates between subject, object, and system attributes,
as well as actions performed by the system or subjects. A usage control policy is
a logic formula built from these components that has to be satisfied by a UCON
model.

The rest of this paper is organized as follows. Section 2 shows a motivating
example of usage control, especially the new features of continuity and mu-
tability. Section 3 gives a brief introduction of UCON. Section 4 briefly intro-
duces TLA. Section 5 presents the details of our logic model. Section 6 presents
the specification of the core UCON authorization models with our logic model.
Sections 7 and 8 introduce the logical specification of obligation core models
and condition core models, respectively. In Section 9 we propose a set of rules
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to specify a general UCON model and the completeness and soundness prop-
erties. Section 10 illustrates the flexibility and expressive power of our logical
model. Some related work in access control with temporal aspects is reviewed
in Section 11. Finally, we give our conclusions and present some ongoing and
future work in Section 12.

2. MOTIVATING EXAMPLE

In this section, we present an example motivating the new features of UCON.
Traditional access control models and policies have difficulties or lack the flexi-
bility to specify policies in these scenarios. This example is originally from [Park
and Sandhu 2004].

Consider a DRM application with limited number of simultaneous usages,
where an object o can only be accessed and simultaneously used by a maximum
of 10 users at a time. Each new access request must be granted and there is
only one access generated from a single user at any time. If the number of users
accessing the object is 10, then one existing user’s ongoing access is revoked
when a new request is generated. There are different policies to determine
which user’s ongoing access must be revoked. Among them,

(1) revocation by start time: the longest usage is revoked;
(2) revocation by idle time: the usage with the longest idle time is revoked;
(3) revocation by total usage time: the usage with the longest accumulating

usage time is revoked.

For these three different policies,1 we need to define different attributes for
subjects and objects.

1. For each subject, we define the starting time as an attribute. The list of
accessing subjects is defined as an object attribute and, each time a new ac-
cess request is generated, this attribute is updated by adding the requesting
subject. In UCON terminology, this is a pre-update. If the total accessing
number is already 10, then the accessing subject with the earliest start time
is revoked and the new access is permitted. When an access is ended by a
subject or revoked by the system, the subject is removed from the object’s
accessing list. This is called a post-update.

2. An object has the same attribute as in (1). Each subject has two attributes:
the status of the subject with a value busy or idle, and the continuous idle
time in a single usage process. In order to monitor the idle time, the system
has to check the status and update the idle time during the entire ongo-
ing access by means of ongoing-update. Similar to (1), there are pre-update,
revoking access, and post-update actions. Revocation is performed with re-
spect to the longest idle access when the total count of ongoing accessing
subjects is larger than 10.

3. Here again an object has the same attribute as in (1). Each subject has an
attribute of accumulating usage time to record the total usage time of this

1These policies require specification of a tie-breaking rule, which we ignore for sake of simplicity.
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Fig. 1. Usage control model.

subject on this object over the subject and object life. Similar to (1) and (2),
there are pre-update, revoking access, and post-update actions. Revocation
is performed with respect to the subject with the longest usage time access
when the total count of ongoing accessing subjects is larger than 10. In
addition, there is a post-update on the subject attribute after the usage
(either ended by a subject or revoked by the system) by adding this usage
time to the subject’s historically accumulating accessing time.

In this example, an access is a process that interacts not only with a subject,
but also with the system and other related processes, which are accessing or
trying to access the same object concurrently. An access decision is no longer
a single function of subject, object, right, but depends on the attributes of the
subject and the object involved in the access, and may change the attributes of
these entities. On the other side, an access is not a simple action, but consists
of a sequence of actions and events not only from a subject, but also from the
system.

3. USAGE CONTROL

In this section we first briefly review the general ideas of UCON, then discuss
attribute mutability in UCON. The details of the conceptual UCON model can
be found in Sandhu and Park [2003] and Park and Sandhu [2004].

3.1 UCON Model

As depicted in Figure 1, a usage control system has six components: subjects and
their attributes, objects and their attributes, rights, authorizations, obligations,
and conditions.2 The authorizations, obligations and conditions are components
of usage control decisions. An authorization permits or denies an access based
on the subject and/or the object attributes. Obligations are activities that have

2Note that this diagram is slightly different from that in Sandhu and Park [2003] and Park and
Sandhu [2004]. Here we place the usage decisions, not the rights, at the center.
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Fig. 2. Continuity and mutability properties of UCON.

to be performed by subjects before or during an access. Conditions are system
environment restrictions, which are not related to subject or object attributes.

The most important properties that distinguish UCON from traditional ac-
cess control models and trust management are the continuity of usage decisions
and the mutability of attributes. Continuity means that control decisions can
be determined and enforced not only before an access, but during the period of
the access. Figure 2 shows a complete usage process consisting of three phases
along the time line: before usage, ongoing usage, and after usage. The control
decision components can be checked and enforced in the first two phases, named
pre-decisions and ongoing-decisions, respectively. In the after usage phase, no
decision is checked and enforced since there is no access control after a subject
finishes a usage on an object. There can be obligations and conditions (post-
obligation and postconditions) defined in this phase. UCON is a session-based
access control model, since it controls the current access request and ongoing
access. The obligations and conditions after an access are regarded as long-
term obligations and conditions, which are not included in the core UCON, but
should be included in related administrative models. In this paper we only focus
on the core aspects of UCON, while administrative models will be developed in
the future.

Mutability means that subject and/or object attributes can be updated as
the results of an access. Along with the three phases, there are three kinds of
updates: pre-updates, ongoing-updates, and post-updates. All these updates are
performed and monitored by the system. An update of subject or object attribute
in an access may result in a system action to allow or revoke current access or
another access, according to the authorizations of the access. An update on the
current usage may generate cascading updates, while an update on another
access can act as an external event that would cause a change of the usage
status, such as revocation. These are unique features of UCON models because
of attribute mutability.

3.2 Attribute Management and Mutability

A usage control model is based on several underlying assumptions. In UCON, a
usage decision is request-based, i.e., rights are not preassigned to subjects and
permissions are computed at the time of usage requests. Authorization deci-
sions are based on subject and object attributes according to the usage-control
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policies. Depending on the usage control policies, these attributes may have to
be updated and their management is a key concern in usage control. Attribute
management can be either “administrator-controlled” or “system-controlled.”

Administrator-controlled attributes can be modified only by explicit adminis-
trative actions. These attributes are modified at the administrator’s discretion
but are “immutable” in that the system does not modify them automatically,
unlike mutable attributes. Here the administrator can be either a security offi-
cer or a user, although, in general, administrative actions are made by security
officers. Administrator-controlled attributes are typical in traditional access
control policies, such as mandatory access control (MAC) and RBAC. Static
separation of duty and user-role assignment in RBAC are other examples of
this case.

Unlike administrator-controlled, in system-controlled attribute manage-
ment, updates are the side effects or results of a subject’s usage on objects. For
instance, a subject’s credit balance is decreased by the value of the usage on an
object at the time of the usage. This is different from the update by an admin-
istrative action because the update in this case is done by the system, while
in administrator-controlled management the update involves administrative
decisions and actions. This is why system-controlled attributes are “mutable”
attributes that do not require any administrative action for updates. Attribute
mutability is considered as part of UCON core models. In this paper our concern
lies in the system-controlled mutability issue, where updates are made as side
effects of subjects’ actions on objects. Five types of access control policies with
system-controlled attribute mutability are summarized in [Park et al. 2004],
including exclusiveness, accounting, immediate access revocation, obligations,
and dynamic confinements.

4. TEMPORAL LOGIC OF ACTIONS

Extending temporal logic [Manna and Pnueli 1991] by introducing boolean-
valued actions, the temporal logic of actions (TLA) [Lamport 1994] is a powerful
tool to specify systems and their properties, especially for interactive and con-
current systems. In this section, we first give a brief introduction to the basic
terms and the syntax of temporal formulas, and then introduce some additional
temporal operators, along with their semantics.

4.1 Building Blocks

Variables, values, and states are basic concepts in TLA. Values are elements of
a data type. A variable has a name like x and y and can be assigned a value.
We assume that there is an infinite set of available variables with names x, y ,
etc., to which values can be assigned. A constant is a variable that is assigned
with a fixed value. A state is characterized by assignment of a value s[[x]] to
each variable x.

A function is a nonboolean expression built from variables, operator symbols,
and constants, such as x2 + y − 3. The semantics [[ f ]] of a function f is a mapp-
ing from states to values. For example, [[x2 + y −3]] is the mapping that assigns
to the state s the value s[[x]]2 +s[[ y]]−3, where s[[x]] and s[[ y]] denote the values
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that s assigns to x and y . Generally,

s[[ f ]] ≡ f (∀‘v’: s[[v]]/v)

where f (∀‘v’: s[[v]]/v) is the value obtained by substituting s[[v]] for each variable
v in the expression. Formally, a variable is also a function that assigns the value
s[[x]] to the state s.

A predicate is a boolean expression built from variables, operator symbols,
and constants, such as x = y + 1. The semantics [[P ]] of a predicate P is a
mapping from states to boolean values. A state s satisfies a predicate P iff
s[[P ]], the value of [[P ]] in s, equals true.

An action is a boolean-valued expression formed from variables, primed vari-
ables, operator symbols, and constants, such as x ′ = y + 1 and x ′ − 1 /∈ y ′.
Formally, an action represents a relation between old and new states, where
unprimed variables refer to the old state and the primed variables refer to the
new state. Formally, an action A is a function assigning a boolean s[[A]]t to a pair
of states (s, t). For example, x ′ = y +1 has the boolean value of t[[x]] = s[[ y]]+1.
We say that (s, t) is an A step if s[[A]]t equals true. Generally,

s[[A]]t ≡ A(∀‘v’: s[[v]]/v, t[[v]]/v′)

Since a predicate P is a boolean expression built from variables and con-
stants, it is regarded as a special action without primed variables. A pair (s, t)
is a P step iff s[[P ]] is true.

4.2 Temporal Formula and Semantics

The basic temporal operator is � (“Always”). The semantics of a temporal action
is defined using the concept of behavior. A behavior σ in TLA is an infinite
sequence of states < s0, s1, s2, . . . > (a finite set of states can be regarded as
infinite with identical repeating states). With this idea, the semantics of an
atomic formula with actions is defined as follows.

< s0, s1, s2, . . . > [[A]] ≡ s0[[A]]s1
< s0, s1, s2, . . . > [[�A]] ≡ ∀n ≥ 0 : sn[[A]]sn+1

The same semantics can be defined for predicates, since a predicate is a special
form of action.

In TLA, a formula is built from predicates and actions with logical connec-
tors and temporal operators. Recursively, a temporal formula is defined by the
following grammar in BNF:

< formula >:≡< predicate > | < action > |¬ < formula > |
< formula > ∧ < formula > | < formula > ∨ < formula > |
< formula >→< formula > |� < formula > |

A formula is an assertion about a behavior. The semantic value σ [[F ]] of a
formula F is a boolean value on a behavior σ . Formally,

< s0, s1, s2, . . . > [[F ]] ≡ s0[[F ]]s1
< s0, s1, s2, . . . > [[�F ]] ≡ ∀n ≥ 0 :< sn, sn+1, sn+2, . . . > [[F ]]
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4.3 Extension of TLA

Other future operators, such as “Eventually” (♦), can be defined using the “Al-
ways” (�) operator. The relationship between the “Always” and the “Eventually”
operators can be expressed as:

♦F ≡ ¬�¬F

Based on the semantics of temporal actions and formulas, we can similarly
define other temporal operators and semantics.

4.3.1 The “Next” and “Until” Temporal Operator. For a behavior
< s0, s1, s2, . . . >, the semantics of the Next operator (©) is defined as:

< s0, s1, s2, . . . > [[©F ]] ≡ s1[[F ]]s2

Until (U) is a binary operator. A formula FUG is true if F is always true until
G is true along the sequence of states. Formally,

< s0, s1, s2, . . . > [[FUG]] ≡ ∃i ≥ 0 : (si[[G]]si+1 ∧ (0 ≤ j < i →
sj [[F ]]sj+1))

Note that the semantics of FUG has no requirement on G for sj and F for si and
the following states, which is different from the “until” in the English language.

There is an equivalence between these temporal operators as the following
shows.

♦F ≡ (F ∨ ¬F )UF

4.3.2 Past Temporal Operators. TLA only defines future temporal opera-
tors like � and ♦. In traditional temporal logic there are past temporal operators
to specify the properties during the time preceding the current time. For a be-
havior < s0, s1, s2, . . . > in TLA, if we consider s0 as the state at the current
time, then s1, s2, . . . are states of the future on the time line. We use the state
sequence . . . , s−2, s−1 for states in the past along this time line. Therefore, a
behavior is a state sequence:

< . . . , s−2, s−1, s0, s1, s2, . . . >

We can now define past temporal operators similar to the future ones: � (Has-
always-been), � (Once), � (Previous), S ( Since). Formally,

< . . . , s−2, s−1, s0, s1, s2, . . . > [[�F ]] ≡ ∀n < 0 : sn[[F ]]sn+1
< . . . , s−2, s−1, s0, s1, s2, . . . > [[�F ]] ≡ ∃n < 0 : sn[[F ]]sn+1
< . . . , s−2, s−1, s0, s1, s2, . . . > [[�F ]] ≡ s−1[[F ]]s0
< . . . , s−2, s−1, s0, s1, s2, . . . > [[FSG]] ≡
∃i < 0 : (si[[G]]si+1 ∧ (i < j < 0 → sj [[F ]]sj+1))

Similar to the future operators, there are some equivalences among these
past operators, such as

�F ≡ ¬�¬F
�F ≡ FS(F ∨ ¬F )
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5. LOGICAL MODEL OF UCON

In this section we present a logical approach for formalizing UCON. First we
describe the basic components, such as predicates and actions, then we define
the logic model of UCON with these components.

5.1 Attributes and States

A system state is a set of assignments of values to variables. In UCON, there
are three different kinds of variables: subject attributes, object attributes, and
system attributes.

In UCON each entity (subject or object) is specified by a finite set of attributes.
We require that each entity has at least one attribute for identity, called name,
which is unique and cannot be changed. An attribute of an entity is denoted
as ent.att, where ent is the subject or object’s identity and att is the attribute
name. Hereafter, we assume that an entity name without any attribute specified
denotes its identity.

An attribute is a variable of a specific datatype, which includes a set of pos-
sible values (domain) and operators to manipulate them. In any state of the
system, all attributes of an entity are assigned with values from their corre-
sponding domains. The datatype of an attribute depends on what kind of at-
tribute it is, such as group membership, role, security clearance, credit amount,
etc. The assignment of a value to an attribute is denoted by ent.att = value.

System attributes are variables that are not related to a subject or
an object directly, such as system clock and location. We define a spe-
cial system attribute to specify the status of a single access process
(s, o, r). Specifically, the function state(s, o, r) is a mapping from {(s, o, r)} to
{initial , requesting , denied , accessing , revoked , end }. The semantics of the
initial state is that the access (s, o, r) has not been generated, while requesting
means the access has been generated and is waiting for the system’s usage de-
cision; denied means that the system has denied the access request according
to the usage control policies before usage; accessing means that the system has
permitted the access and the subject has been accessing the object immediately
after that. An access goes to the revoked state when it is revoked by the sys-
tem during the ongoing usage phase, or it goes to an end state when a subject
finishes the usage.

In UCON, a function is an expression built from one or more attributes and
constants. Formally, a function is a mapping from a set of attribute values to
a new value. For instance, in the example in Section 2, the total number of
ongoing accessing subjects for an object is a function of the object’s attribute (a
list of accessing subjects).

The variables for the attributes (including subjects, objects, and the system),
the functions, and the constants comprise the basic terms of our logical model
in UCON. A state of a UCON system is an assignment of values to all subject,
object, and system attributes.

5.2 Predicates

A predicate is a boolean expression built from variables, functions, and con-
stants, where variables includes subject attributes, object attributes, and
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system attributes. The semantics of a predicate is a mapping from system
states to boolean values. A state satisfies a predicate if the attribute val-
ues assigned in this state satisfy the predicate. For example, the predicate
s.credit > $100 is true if s’s credit attribute value in the current state of the sys-
tem is larger than $100. Since a system may have very different predicates from
another system, the set of predicates for a general UCON model is not fixed.
As examples, a unary predicate is built from one attribute variable and con-
stants, e.g., s.credit ≥ $100.00, o.classification = “supersecure.” A binary predi-
cate is built from two different attribute variables, e.g., dominate(s.cleareance,
o.classification), s.credit ≥ o.value, (s, r) ∈ o.acl, where o.acl is object o’s access
control list. Note that the two attributes in a binary predicate can be from a
single subject or object, or one subject and one object, or from the system. A
predicate can be defined with any number of attributes from single entity, or
two entities, or the system.

5.3 Actions

There are two types of actions in UCON: usage control actions and obligation
actions.

5.3.1 Usage Control Actions. Usage control actions include actions to up-
date attribute values and actions to change the status of a single access process.

An update action changes the system state to a new state by updating the
value of an attribute. Note that only subject and object attributes can be updated
in UCON. The changes of system attributes are not captured in UCON core
models, as these changes occur by events outside the scope of the control of
UCON model.

Corresponding to the point where an update is performed, there are
three kinds of update actions defined in UCON: preupdate, onupdate, and
postupdate. We distinguish these three types based on the phase where these
actions are performed by the system: before usage, ongoing usage, and after us-
age, respectively. Essentially, each of these actions updates an attribute value
to a new value. In a real UCON system, an update action can have an arbi-
trary name specified by the system or policy designer. A UCON model can have
multiple updates in each phase for different attributes on a single or different
states.

If the system performs an update successfully, the attribute value is changed
to a new value, and the action is true, otherwise, it is false. Note that in our
model we do not consider the time delay of an action and we assume that an
action is always performed instantly causing the transition to the next state. In
a real implementation, there needs to be a mechanism to monitor the process
and audit the update, so that the system can recover in the event of a failure.

Another type of usage control actions includes those performed by a subject
or the system that change the status of an access (s, o, r). As mentioned before,
there are six different possible values of state(s, o, r) during an access life cycle.
The transition from a state to another state is a usage control action, as shown
in Figure 3, which only shows the state transitions of the system attribute
state(s, o, r) in one usage session.
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Fig. 3. State transition of a single access with usage control actions.

Fig. 4. Usage control actions.

We can categorize all usage control actions into two classes: actions per-
formed by a subject and actions performed by the system. Figure 4 shows these
actions during the life cycle of a usage process. They are briefly explained below.

(1) tryaccess(s, o, r): generating a new access request (s, o, r), performed by sub-
ject s.

(2) permitaccess(s, o, r): granting the access request of (s, o, r), performed by
the system.

(3) denyaccess(s, o, r): rejecting the access request of (s, o, r), performed by the
system.

(4) revokeaccess(s, o, r): revoking an ongoing access (s, o, r), performed by the
system.

(5) endaccess(s, o, r): ending an access (s, o, r), performed by a subject s.
(6) preupdate(attribute): updating a subject or an object attribute before grant-

ing access or after denying an access, performed by the system.
(7) onupdate(attribute): updating a subject or an object attribute during the

usage phase, performed by the system. The asterisk in Figure 4 indicates
that this action may be performed repeatedly by the system to continuously
update an attribute.
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(8) postupdate(attribute): updating a subject or an object attribute after access,
performed by the system.

5.3.2 Obligation Actions. In UCON, an obligation is an action that must
be performed by a subject before or during an access. Formally, an obligation
is a statement with variables and attributes between two system states. In
this paper, we do not explicitly include any variables or attributes from which
obligations are built, since the obligation requirements of an access heavily
depend on specific applications.

For an access (s, o, r), an obligation is an action described by ob(sb, ob), where
ob is the obligation action name, and sb and ob are the obligation subject and
object, respectively. Note that sb and ob may be the same as s and o, or different,
depending on particular applications. For example, the downloading of a music
file may need the requesting subject to click a privacy button. The obligation is
defined as

click privacy(s, privacy statement)

where the obligation subject is the same as the accessing subject and
privacy statement is the obligation object. As another example, a child’s watch-
ing an online movie may need one of the parents’ agreement in advance, where
the obligation subject (parent) is different from the accessing subject. In this
paper we assume that an obligation action is always doable whenever required,
so that an obligation is not dependent on other permissions.

5.4 Model and Satisfaction of Formulas

With the predicates and actions that have been introduced, we can define a
logic model of UCON.

Definition 5.1. A logical model of UCON is a 5-tuple: M = (S, PA, PC ,
AA, AB), where

—S is a set of sequences of system states,
—PA is a finite set of authorization predicates built from the attributes of

subjects and objects,
—PC is a finite set of condition predicates built from the system attributes,
—AA is a finite set of usage control actions,
—AB is a finite set of obligation actions.

A state is a set of assignments of values to attributes, that is, a function on
the set of subjects and their attributes, the set of objects and their attributes,
and the set of system attributes. The set AA includes update actions and the
actions changing the status of an access (s, o, r).

An assumption of our logical model is that all predicates and actions are
computable, e.g., a predicate is a computable function of attribute values.

A logic formula is built from predicates and actions with logic connectors and
temporal operators.
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Definition 5.2. A logical formula in UCON is defined by the following gram-
mar in BNF:

ø ::= a|p(t1, . . . , tn)|(¬ø)|(ø∧ø)|(ø → ø)|�ø|♦ø|©ø|øUø|�ø|�ø|�ø|øSø|
where a is an action, p is a predicate of arity n, and t1, . . . , tn are terms.

If in a state sequence sq of a model M, a state s satisfies a formula ø, we
write M, sq, s � ø. The satisfaction relation � is defined by induction on the
structure of ø and only for s0 ∈ sq. Specifically,

(1) M, sq, s0 � p iff s0[[p]], where p ∈ PA ∪ PC .
(2) M, sq, s0 � a iff s0[[a]]s1, where a ∈ AA ∪AB, and s1 is next state of s0 in sq.
(3) M, sq, s0 � ¬ø iff M, sq, s0 � ø.
(4) M, sq, s0 � ø1 ∧ ø2 iff M, sq, s0 � ø1 and M, sq, s0 � ø2.
(5) M, sq, s0 � ø1 → ø2 iff M, sq, s0 � ø1 or M, sq, s0 � ø2.
(6) M, sq, s0 � �ø iff ∀n ≥ 0 : M, sq, sn � ø.
(7) M, sq, s0 � ♦ø iff ∃n ≥ 0 : M, sq, sn � ø.
(8) M, sq, s0 � ©ø iff M, sq, s1 � ø.
(9) M, sq, s0 � ø1Uø2 iff ∃i ≥ 0 : M, sq, si � ø2 ∧ (0 ≤ j < i → M, sq, sj � ø1)

(10) M, sq, s0 � �ø iff ∀n < 0 : M, sq, sn � ø.
(11) M, sq, s0 � �ø iff ∃n < 0 : M, sq, sn � ø.
(12) M, sq, s0 � �ø iff M, sq, s−1 � ø.
(13) M, sq, s0 � ø1Sø2 iff ∃i < 0 : M, sq, si � ø2 ∧ (i < j ≤ 0 → M, sq, sj � ø1)

6. SPECIFICATION OF AUTHORIZATION CORE MODELS

For each decision component in UCON, several core models are defined based
on the phase where updates are performed. In this section, we first briefly in-
troduce the core authorization models, then present their policy specifications.
Obligation and condition models are illustrated in the next two sections, re-
spectively.

In authorization core models, usage control decisions are dependent on sub-
ject and object attributes, which can be checked and determined in the first two
phases of an access. Based on possible updates in all three phases, eight core
authorization models can be defined as below.

— preA0: a usage control decision is determined by authorizations before the
usage and there is no attribute update before, during, or after this usage.

— preA1: a usage control decision is determined by authorizations before the
usage and one or more subject or object attributes are updated before this
usage.

— preA2
3: a usage control decision is determined by authorizations before the

usage and one or more subject or object attributes are updated during this
usage.

3preA2 is not a core model in Park and Sandhu [2004]. For generality, we include it here. The same
holds for preB2 in the next section.
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—preA3: a usage control decision is determined by authorizations before the
usage and one or more subject or object attributes are updated after this
usage.

—onA0: usage control is checked and the decision is determined by authoriza-
tions during the usage and there is no attribute update before, during, or
after this usage.

—onA1: usage control is checked and the decision is determined by authoriza-
tions during the usage and one or more subject or object attributes are up-
dated before this usage.

—onA2: usage control is checked and the decision is determined by authoriza-
tions during the usage and one or more subject or object attributes are up-
dated during this usage.

—onA3: usage control is checked and the decision is determined by authoriza-
tions during the usage and one or more subject or object attributes are up-
dated after this usage.

For models that enforce authorizations during a usage
(ongoing-authorization models), ongoing checking captures not only the
attribute changes from this local usage process, but also other related usage
processes. For example, a subject attribute change due to the system admin-
istrator’s action may revoke an ongoing access to an object if anyone of the
authorization predicates of this access is no longer valid.

6.1 The Model preA0

As presented in Sandhu and Park [2003] and Park and Sandhu [2004], most
traditional access control models can be expressed as preA0 model, in which an
authorization decision is determined by the system before the access happens,
and there is no update for subject or object attributes. The usage control policy
is:

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pi))

where p1, . . . , pi are predicates built from subject and/or object attributes, which
are pre-authorization predicates. The permitaccess action grants the permission
to s and starts the access. This policy states that a permitaccess action implies
that the authorization predicates must be true “before” the current system
state.

Note that this policy states the minimum requirements of a preA0 core model.
We keep this assumption in all policy specifications of core models within this
paper. By a UCON policy, we refer to a set of logical formulas for single usage
process (s, o, r) all through this paper.

Negated predicates are not required explicitly, since we can always define a
normal predicate for a negated one. A disjunctive form of authorization pred-
icates can also be specified by having one policy for each component. For a
single-usage process (s sequence of states), only one policy for (s, o, r) is sat-
isfied by the model, since a system may have multiple policies for an access
(s, o, r).
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All authorization policies in UCON are defined for positive permissions (to
enable permissions). For an access request, if there is no policy to enable the
permission according to the attribute values, then the access is denied by de-
fault. Because of the closed system, no policy is specified to deny an access in
this paper. The same holds for obligation and condition policies.

Example 1. In mandatory access control (MAC), each subject is assigned
to a security clearance and each object is assigned to a security classification.
Both clearance and classification are labels in a lattice structure. A subject’s
clearance and an object’s classification are compared to enforce some security
policies, such as the simple and the star property. If the security clearance
and classification are defined as attributes of subjects and objects, respectively,
MAC as in Bell-LaPadula can be expressed in UCON with two preA0 policies
as shown below.

(1) permitaccess(s, o, read) →
�(tryaccess(s, o, read) ∧ dominate(s.clearance, o.classification))

(2) permitaccess(s, o, write) →
�(tryaccess(s, o, write) ∧ dominate(o.classification, s.clearance))

where dominate is a binary predicate on a subject’s clearance and an object’s
classification and dominate(x, y) is true iff x is a higher level label in the lattice
than y .

Example 2. Discretionary access control (DAC) model with access control
list (ACL) can be expressed with a preA0 policy. A subject attribute is its identity
and an object attribute is an access control list acl of pairs (id , r), where id is a
subject’s identity, and r is a right with which this subject can access this object.

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r) ∧ ((s.id , r) ∈ o.acl ))

6.2 The Model preA1

In preA1, an authorization decision is checked before an access and there are
one or more update actions before the system grants the permission to the
subject. The usage control policy is:

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pi))
(2) permitaccess(s, o, r) → �preupdate(attribute)

where attribute is either a subject or an object attribute. The first rule is the
same as in preA0. The second rule says that when a permitaccess occurs, there
is a preupdate action that occurred before it. For multiple updates on different
attributes, this rule is:

permitaccess(s, o, r) → �preupdate1(attribute1) ∧ �preupdate2(attribute2) ∧ . . .

Without explicitly mentioning it, we only include one update action in all
core models. Also, without loss of generality, we assume that in each logical
formula there is at most one update for an attribute, as multiple updates on
the same attribute have the same effect as the last one.
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The two rules in this policy can be specified in a single rule as shown by the
following.

permitaccess(s, o, r) →
�(tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pi)) ∧ �preupdate(attribute)

We assume that the time line is bounded during the life time of an access
period so the “Once” operator does not refer to any past state before tryaccess in
a single usage process. Therefore, in preA1, the preupdate action is performed
after the tryaccess, the authorization predicates are required to be true before
the preupdate, and there is no constraint after the update action. The same
assumption is also made for future temporal operators, i.e., they do not refer to
the states after the tryaccess action of the next access request.

Example 3. In a DRM pay-per-use application, a subject has a numerical
valued attribute of credit and an object has a numerical valued attribute of
value. A read access can be approved when a subject’s credit is more than an
object’s value. Before the access can begin, an update to the subject’s credit is
performed by the system by subtracting the object’s value. The policy is:

(1) permitaccess(Alice, ebook1, read) → �(tryaccess(Alice, ebook1, read) ∧
(Alice.credit ≥ ebook1.value)) ∧ �preupdate(Alice.credit)
preupdate(Alice.credit) : Alice.credit′ = Alice.credit − ebook1.value

This rule specifies that whenever Alice’s credit is more than the value of ebook1,
she can get the reading permission, and the granting of the permission to Alice
implies an update of her credit. The preupdate results in a new value of Alice’s
credit by subtracting ebook1’s value from the original credit.

6.3 The Model preA2

In preA2, an authorization decision is checked and enforced before an access,
and there are one or more update actions during the usage process. Although
these updates cannot change the decision of the current ongoing usage, they
may affect other ongoing or following accesses from this subject or to this object.
The policy for preA2 is:

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pi))
(2) permitaccess(s, o, r) → ♦(onupdate(attribute) ∧ ♦endaccess(s, o, r))

The first rule is the same as that in preA0. The second rule states that there is
an ongoing update before the endaccess action and after the permitaccess action.
In a case when an update is necessary in each state during the ongoing-usage
phase, this rule is expressed as

permitaccess(s, o, r) → onupdate(attribute) U endaccess(s, o, r)

This rule states that after the permitaccess action, the attribute is updated in
each state “until” the endaccess action. Since a permitaccess action changes the
value of state(s, o, r) to accessing, and endaccess changes it to end, this policy is
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equivalent to the following.

�((state(s, o, r) = accessing) → onupdate(attribute))

Note that updates can be performed after endaccess, but not captured by the
preA2 core model. Also, in preA2, since the authorization check is performed
before the access, there is no revocation during the usage process in this and
other pre-authorization models.

For a more general case when the ongoing update of an attribute is only
needed when particular predicates are true (e.g., a subject’s idle time is updated
only when the access status is idle), the policy is:

�((state(s, o, r) = accessing) ∧ pu1 . . . ∧ puj → onupdate(attribute))

where pu1, . . . , puj are predicates that require the update when they are sat-
isfied.

6.4 The Model preA3

In preA3, an authorization decision is checked before the access and there are
one or more update actions after the usage process. The usage control policy is:

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r) ∧ (p1 ∧ · · · ∧ pi))
(2) endaccess(s, o, r) → ♦postupdate(attribute)

The first rule is the same as in preA2. The second rule says that a postupdate
action must be performed by the system after an access is ended by a subject.
Similar to preA2, no authorization is enforced after granting the access, so there
is no revocation in this model.

Example 4. In a DRM membership-based application, a reader s has at-
tributes expense and readingGroup and a book o has attributes readingGroup
and readingCost. A subject can read any book in his/her own reading group.
The policy is:

(1) permitaccess(s, o, read) →
�(tryaccess(s, o, read) ∧ (s.readingGroup = o.readingGroup))

(2) endaccess(s, o, read) → ♦postupdate(s.expense)
postupdate(s.expense) : s.expense′ = s.expense + o.readingCost

In this example, the authorization policy states that if both s and o belong to
the same reading group, s can read the book and his/her expense is updated by
adding the cost of this book after the access.

6.5 The Model onA0

In the pre-authorization models, there is no security check after a system grants
a permission. In onA0, authorizations are enforced during an access period. The
usage control policy is given below.

(1) �(¬(p1 ∧ · · · ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r))

In this model, ongoing authorization predicates (p1, . . . , pi) have to be satisfied
in any state during the access period (after the action permitaccess), otherwise
the access is immediately revoked by the system.

ACM Transactions on Information and System Security, Vol. 8, No. 4, November 2005.



Formal Model and Policy Specification of Usage Control • 369

This policy can also be specified as the following formula with the “Until”
operator.

permitaccess(s, o, r) →
(p1 ∧ · · · ∧ pi) U (revokeaccess(s, o, r) ∨ endaccess(s, o, r))

which indicates that if a usage is permitted, the authorization predicates are
true until this usage process is revoked by the system or ended by the subject.
Since the revokeaccess action changes state(s, o, r) from accessing to revoked
and endaccess action changes state(s, o, r) from accessing to end, this formula is
equivalent to the original one. Similarly, we can use both approaches in other
ongoing models (in this and next two sections).

Since we are specifying the core aspects of UCON, pre-authorization rules are
not included in ongoing authorization models and, for simplicity, the tryaccess
action implied by the permitaccess action is ignored. The same holds for other
ongoing core models in this paper. In practice, an application may require a
combination of several core models. We discuss this in Section 9.

Example 5. In an organization, a user Bob (with role employee) has a tem-
porary position to conduct a short-term project with a certificate of temp cert.
While Bob is accessing some sensitive information, his digital certificate
(temp cert) for this project is being repeatedly checked. If his certificate (num-
ber) is in the Certification Revocation List (CRL) of the organization, his tem-
porary role membership is revoked and he cannot access the any more infor-
mation. The policy is:

(1) �(¬((Bob.role = employee) ∧ (Bob.temp cert /∈ CRL)) ∧ (state(Bob, o, r) =
accessing) → revokeaccess(Bob, o, r))

6.6 The Model onA1

In onA1, the authorization decision is enforced during the usage process and
there are one or more update actions before a subject starts to access an object.
The control policy is:

(1) permitaccess(s, o, r) → �tryaccess(s, o, r) ∧ �preupdate(attribute)
(2) �(¬(p1 ∧ · · · ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r))

The first rule implies a pre-update action before the permitaccess action, which
is similar to preA1. However, unlike in preA1, the predecision based on autho-
rization predicates is ignored in this rule, since there is no authorization check
before a subject starts to access an object in onA1.

6.7 The Model onA2

In onA2, there are one or more update actions during a usage period. The control
policy is:

(1) �(¬(p1 ∧ · · · ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r))
(2) permitaccess(s, o, r) →

♦(onupdate(attribute) ∧ ♦(endaccess(s, o, r) ∨ revokeaccess(s, o, r)))
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Again, in the second rule, we only specify that there is only one update action
during the ongoing-usage phase. In applications where an update is required
in every ongoing state, the third rule is changed to:

permitaccess(s, o, r) →
onupdate(attribute) U (endaccess(s, o, r) ∨ revokeaccess(s, o, r))

Similar to preA2, this rule can be specified as:

�((state(s, o, r) = accessing) → onupdate(attribute))

or, more generally,

�((state(s, o, r) = accessing) ∧ pu1 . . . ∧ puj → onupdate(attribute))

where pu1, . . . , puj are predicates that require the update when they are
satisfied.

6.8 The Model onA3

In onA3, update action is required after a usage process. The control policy is:

(1) �(¬(p1 ∧ · · · ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r))
(2) endaccess(s, o, r) → ♦postupdate(attribute)
(3) revokeaccess(s, o, r) → ♦postupdate(attribute)

In many applications, the update after an access ended by a subject, is different
from the one after an access is revoked by the system, as shown in the second
and third rules. Here we simply use the same action name of postupdate, but
they may change an attribute to different values, or update different attributes.
For example, an ended access may update the total usage time of the subject,
while a revoked access may update another attribute to record the time and
reason of this revocation for auditing purposes. If the updates are the same for
two cases, these two rules can be combined as in

endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(attribute)

Example 6. Consider the usage control policies for the example in
Section 2. In this example, an object attribute is a set of accessing subjects
accessing S = {s|state(s, o, r) = accessing}. We also define the system clock
as a system attribute. For the different policies we define different subject at-
tributes.

(a) Revocation by the earliest start time. We define the starting time (startTime)
as a subject attribute. The usage control policy can be specified as a combi-
nation of onA1 and onA3 as follows.
(1) permitaccess(s, o, r) →

�tryaccess(s, o, r)∧�preupdate(o.accessingS)∧�preupdate(s.startTime)
preupdate(o.accessingS) : o.accessingS′ = o.accessingS ∪ {s}
preupdate(s.startTime) : s.startTime′ = sys.clock

(2) �(¬(|o.accessingS| ≤ 10) ∧ (state(s, o, r) = accessing) ∧ (s.startTime =
MinstartTime(o.accessingS)) → revokeaccess(s, o, r))
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(3) endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(o.accessingS) ∧
♦postupdate(s.startTime)
postUpdate(o.accessingS) : o.accessingS′ = o.accessingS − {s}
postUpdate(s.startTime) : s.startTime′ = null

where |o.accessingS| is the number of accessing subjects with object o, and
MinstartTime(o.accessingS) is the earliest start time from accessing S. The
first rule is a onA1 rule specifying that whenever a subject tries to ac-
cess the object, there must be two pre-updates before the subject starts
to access, one updating accessing S by adding this requesting subject,
and another updating s.startTime by assigning the current system clock.
The second rule says that when the total number of accessing users is
larger than 10, and the subject’s startTime is the earliest one, its ac-
cess is revoked. The third rule specifies two post-updates needed when
the access is ended or is revoked, one updating accessingS by removing
the subject and another one updating s.startTime by assigning the value
null, which means the subject is not involved in an access. The post-
updates are the same for both endaccess and revokeaccess actions in this
system.

(b) Revocation by the longest idle time. We define two subject attributes: the
status of the usage (status with value busy or idle) and the accumulative
idle time in a single usage period (idleTime). The usage control policy is a
combination of onA1, onA2, and onA3 as follows.
(1) permitaccess(s, o, r) →

�tryaccess(s, o, r)∧�preupdate(o.accessingS)∧�preupdate(s.idleTime)
preupdate(o.accessingS) : o.accessingS′ = o.accessingS ∪ {s}
preupdate(s.idleTime) : s.idleTime′ = 0

(2) �(¬(|o.accessingS| ≤ 10) ∧ (state(s, o, r) = accessing) ∧ (s.idleTime =
MaxidleTime(o.accessingS)) → revokeaccess(s, o, r))

(3) �((state(s, o, r) = accessing)∧(s.status = idle) → onupdate (s.idleTime))
onupdate(s.idleTime) : s.idleTime′ = s.idleTime + 1

(4) endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(o.accessingS)
postupdate(o.accessingS) : o.accessingS′ = o.accessingS − {s}

where MaxidleTime(o.accessingS) is the largest idleTime in the object’s
accessing S attribute. Rules (1) and (4) are similar to (1) and (3) in
(a), respectively, except that in rule (1), one pre-update action is to
initialize the subject’s idleTime. In rule (2), the revocation is deter-
mined by the s.idleTime. Rule (3) specifies the mutability of the sub-
ject attribute by saying that there must be a continuous update of
s.idleTime performed by the system whenever the status of the subject is
idle.

(c) Revocation by the longest total usage time. We define the accumulating usage
time usageTime as a subject attribute. The control policy is a combination
of onA1 and onA3 as follows.
(1) permitaccess(s, o, r) →

�tryaccess(s, o, r) ∧ �preupdate(o.accessingS)
preupdate(o.accessingS) : o.accessingS′ = o.accessingS ∪ {s}
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(2) �(¬(|o.accessingS| ≤ 10) ∧ (state(s, o, r) = accessing) ∧ (s.usageTime =
MaxusageTime(o.accessingS)) → revokeaccess(s, o, r))

(3) endaccess(s, o, r) ∨ revokeaccess(s, o, r) →
♦postupdate(s.usageTime)∧ ♦postupdate(o.accesingS)
postupdate(o.accesingS) : o.accessingS′ = o.accessingS − {s}
postupdate(s.usageTime) : s.usageTimes′ = s.usageTime +
sys.periodT

where MaxusageTime(o.accessingS) is the largest usageTime in accessing S.
Rule (1) is the same as in the previous case except that there is only one
pre-update action; rule (2) specifies that the revocation is determined by the
total usage time of the subject. Rule (3) says that after each usage, there
must be an update on usageTime by adding this usage time to the old value.
The sys.periodT is a system attribute to record this accessing’s period.4 Note
that the revocation is determined by a subject’s historically accumulating
total usage time before this ongoing access. The time of an ongoing access
is not considered in the usageTime attribute of a subject.

7. SPECIFICATION OF OBLIGATION CORE MODELS

Obligations and conditions are two important components in the usage deci-
sion of UCON, besides authorizations. In this section, we discuss the logical
approach to obligations. The specification of conditions is discussed in the next
section.

Because of the continuity of a usage decision, there are two types of obliga-
tions in UCON: (1) pre-obligations: obligations that must have been performed
before a subject starts to access an object; and (2) ongoing-obligations: obliga-
tions that must be performed during a usage process.

Obligations that have to be performed after an access, since they only affect
the future usage process, are considered as global obligations [Sandhu and
Park 2003; Park and Sandhu 2004]. For example, an action of a user clicking
an agreement button before playing a music file is regarded as an obligation,
while the payment action of a monthly billing is a global obligation, because this
action does not affect the current usage access. In UCON, an administration
model is needed to capture global obligations. In this paper, we only focus on the
session-based usage control model, in which only obligations before and during
the usage process are considered. The global obligations will be described in
our future work.

Similar to authorization core models, we distinguish different obligation core
models, based on the phase where updates are performed as shown below.

—preB0: a usage control decision is determined by obligations before the access
and there is no attribute update before, during, or after the usage.

—preB1: a usage control decision is determined by obligations before the access
and one or more subject or object attributes are updated before the usage.

4A system attribute may be defined and updated repeatedly along a usage process to record a single
access’s period. While the update of system attributes is not included in UCON core models, for
simplicity we just use an attribute to conceptually illustrate the post-update action here.
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—preB2: a usage control decision is determined by obligations before the ac-
cess and one or more subject or object attributes are updated during the
usage.

—preB3: a usage control decision is determined by obligations before the ac-
cess and one or more subject or object attributes are updated after the
usage.

—onB0: usage control is checked and the decision is determined by obligations
during the access and there is no attribute update before, during, or after the
usage.

—onB1: usage control is checked and the decision is determined by obligations
during the access and one or more subject or object attributes are updated
before the usage.

—onB2: usage control is checked and the decision is determined by obligations
during the access and one or more subject or object attributes are updated
during the usage.

—onB3: usage control is checked and the decision is determined by obligations
during the access and one or more subject or object attributes are updated
after the usage.

In ongoing obligation core models, obligation actions may be required contin-
uously (i.e., in each ongoing state of the system), like the satisfaction of pred-
icates in ongoing authorization models. Ongoing obligation actions may also
be needed periodically, or in any state when some conditions are satisfied, e.g.,
when an event happens. For example, a user has to click an advertisement at
30-min intervals or every 20 web pages accessed. For these purposes, attribute
predicates can be defined to specify the conditions when obligation actions are
needed.

7.1 The model preB0

Similar to the model preA0, the policy of preB0 is:

(1) permitaccess(s, o, r) → �tryaccess(s, o, r) ∧ (�ob1 ∧ �ob2 ∧ . . . ∧ �obi)

where ob1, . . . , obi are obligation actions for access (s, o, r). This rule requires
that an access can be granted only after all the obligations are satisfied. The
difference between preB0 and preA0 is that, in preB0, an obligation is satisfied
before an access requested is granted and generally may not be performed in
the same state, so that the “Once” operator is applied for each of them in the
policy formula. In preA0, instead, the authorization predicates are checked in a
single state. As mentioned in Section 6.2, the “Once” operator does not refer to
any state before the tryaccess action in a single access process. This indicates
that all obligation actions are for the current access request.

Note that here we just ignore the authorization factors (attribute predicates),
since we are focusing on the obligation core model.

Example 7. In an online electronic marketing system, in order to place an
order, a customer has to click a button to agree to the order policies. We define
an action cl ick agreement as an obligation for each order, where the obligation
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subject is the same as the ordering subject, and the agree statement is the
obligation object. The usage control policy is:

(1) permitaccess(s, o, order) →
�tryaccess(s, o, order) ∧ �click agreement(s, agree statement)

7.2 The Model preB1

In preB1, usage control is decided by obligations before the access and there
must be update(s) before the access. Similar to preA1, the policy is:

(1) permitaccess(s, o, r) → �tryaccess(s, o, r) ∧ (�ob1 ∧ �ob2 ∧ . . . ∧ �obi) ∧
�preupdate(attribute)

This rule is similar to that in preB0 except that an update action must be
performed after tryaccess and before premitaccess, as the “Once” operator does
not refer to any state before the tryaccesss action in a single-usage process.

7.3 The Model preB2

Similar to preA2, in preB2 the usage-control decision is checked before an access
and update action(s) can be performed during the access. The policy is:

(1) permitaccess(s, o, r) → �tryaccess(s, o, r) ∧ (�ob1 ∧ �ob2 ∧ . . . ∧ �obi)
(2) permitaccess(s, o, r) → ♦(onupdate(attribute) ∧ ♦endaccess(s, o, r))

For the case where an update is required in every state during the ongoing
usage phase, the second rule becomes:

permitaccess(s, o, r) → onupdate(attribute) U endaccess(s, o, r)

or

�((state(s, o, r) = accessing) → onupdate(attribute))

or, more generally,

�((state(s, o, r) = accessing) ∧ pu1 . . . ∧ puj → onupdate(attribute))

where pu1, . . . , puj are predicates that require the update when they are
satisfied.

7.4 The Model preB3

Similar to preA3, in preB3 the obligations are checked before the access and
there are one or more update actions after the usage process. The usage control
policy is:

(1) permitaccess(s, o, r) → �tryaccess(s, o, r) ∧ (�ob1 ∧ �ob2 ∧ . . . ∧ �obi)
(2) endaccess(s, o, r) → ♦postupdate(attribute)

The first rule is the same as those in preB2. The second rule says that a
postupdate action must be performed by the system after an access is ended
by a subject. Since the control policy is not enforced after granting the access,
there is no revocation in this and other preobligation models.
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Example 8. In the eample in Section 7.1, a customer’s orderList is updated
by adding the ordered item after he/she places an order. This can be expressed
with a preB3 policy as the following.

(1) permitaccess(s, o, order) →
�tryaccess(s, o, order) ∧ �click agreement(s, agree statement)

(2) endaccess(s, o, order) → ♦postupdate(s.orderList)
postupdate(s.orderList) : s.orderList′ = s.orderList ∪ {o}

7.5 The Model onB0

In onB0, the usage control policy is enforced during an access period. The policy
is:

(1) �(¬(
∧

i(pi1 ∧ . . . ∧ piki → obi)) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r))

In this policy, obi is an obligation action required in an ongoing state of the
system when predicates pi1, . . . , piki , defined on subject and/or object attributes,
are true. Similar to onA0, the policy specifies that after the permitaccess, either
all the obligations are satisfied when the subject is accessing the object, or the
access is immediately revoked.

When obligations are required in every ongoing state, this policy is:

�(¬(
∧

i(true → obi)) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r))

or

�(¬(
∧

i obi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r))

Example 9. In order to use an online provider service, an advertisement
banner must be opened on the client’s side, or the service is disconnected. This
can be expressed in the onB0 model as follows.

(1) �(¬open ad (s, ad banner) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r))

In this policy, the open ad is an obligation action, on the obligation object
ad banner, that must be true during the whole accessing process.

7.6 The Model onB1

In onB1, there are one or more update actions before a subject starts to access
an object. The policy is:

(1) �(¬(
∧

i(pi1 ∧ . . . ∧ piki → obi)) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r))

(2) permitaccess(s, o, r) → �tryaccess(s, o, r) ∧ �preupdate(attribute)

The first rule is the same as in onB0, while the second rule specifies that
there is an update action before accessing the object. Since there is no usage
control check before a subject starts to access an object, the second rule does
not imply any obligation before the permitaccess action.
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7.7 The Model onB2

In onB2, there are one or more update actions during an access process. The
policy is:

(1) �(¬(
∧

i(pi1 ∧ . . . ∧ piki → obi)) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r))

(2) permitaccess(s, o, r) → ♦(onupdate(attribute) ∧ ♦endaccess(s, o, r))

Similar to preB2, for the cases where an update is required in every state
during the ongoing access, the second rule becomes

permitaccess(s, o, r) → onupdate(attribute) U endaccess(s, o, r)

or

�((state(s, o, r) = accessing) → onupdate(attribute))

or, more generally,

�((state(s, o, r) = accessing) ∧ pu1 . . . ∧ puj → onupdate(attribute))

where pu1, . . . , puj are predicates that require the update when they are
satisfied.

7.8 The Model onB3

In onB3, there must be update action(s) after a usage process. The control policy
is:

(1) �(¬(
∧

i(pi1 ∧ . . . ∧ piki → obi)) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r))

(2) endaccess(s, o, r) → ♦postupdate(attribute)
(3) revokeaccess(s, o, r) → ♦postupdate(attribute)

Similar to onA3, the post-update after an access is ended by a subject may be
different from the one after an access is revoked by the system, as shown by
different rules.

Example 10. In an online accessing application, a user needs to click an
advertisement every 30 min. A subject attribute UsageTime is the ongoing
usage time in a single session. The policy can be specified as a combination
policy of onB1, onB2, and onB3 as follows.

(1) �(¬((s.UsageTime mod 30 = 0) → cl ick ad (s, ad banner))∧(state(s, o, r) =
accessing) → revokeaccess(s, o, r))

(2) permitaccess(s, o, r) → �preupdate(s.UsageTime)
preupdate(s.UsageTime) : s.UsageTime′ = 0

(3) �((state(s, o, r) = accessing) → onupdate(s.UsageTime))
onupdate(s.UsagtTime) : s.UsageTime′ = s.UsageTime + 1

(4) endaccess(s, o, r) ∨ revokeaccess(s, o, r) → ♦postupdate(s.UsageTime)
postupdate(s.UsageTime) : s.UsageTime′ = 0
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In this policy, the click ad is an ongoing obligation action that must be per-
formed when the UsageTime is a multiple number of 30. To reset this attribute
when the subject starts and ends (or be revoked by the system) the access, re-
spectively, preupdate and postupdate actions are needed. An ongoing update is
used to record the accumulative usage time. Here we simplify this update by
the increment of UsageTime in each ongoing state.

8. SPECIFICATION OF CONDITION CORE MODELS

Conditions are environmental restrictions that have to be valid before or dur-
ing a usage process. Formally, a condition is a predicate built from system
attribute(s). For example, a subject obtains a permission only when the system
clock is in daytime, or in a particular period during daytime.

Based on the point when a condition for a usage is checked, there are two
types of conditions: (1) pre-conditions: conditions that must be true before an
access; (2) ongoing-conditions: conditions that must be true during the process
of accessing an object.

Since post-conditions do not affect the current usage request, it is considered
in the administrative model of UCON in our future work.

Similar to the authorization and obligation core models, a set of core con-
ditions models can be defined, by replacing the authorization predicates or
obligation actions with system attributes in decision rules. For simplicity only,
the preC0 and onC0 core models are illustrated here. Note that in a condition
core model, while the system attributes determine a usage decision, the sys-
tem attribute changes are not captured in the model. As in authorization and
obligation core models, all updates in a condition core model are performed on
subject and/or object attributes.

The policy for the model preC0 is expressed by:

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r) ∧ (pc1 ∧ · · · ∧ pci))

where pc1, . . . , pci are condition predicates built from system attributes. This
policy is very similar to that of preA0 and preB0, except that the decision is de-
termined by predicates of system attributes, instead of the subject’s and object’s
attributes in preA0, and obligation actions in preB0.

The policy of onC0 is:

(1) �(¬(pc1 ∧ · · · ∧ pci) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r))

This policy is similar to that of onA0 and onB0 except for the condition
predicates.

Example 11. Suppose that a day-shift user (with role dayshifter) can access
an object only during daytime. We define the local time currentT as a system
attribute, denoting an environment status, not an attribute of any subject or
object. This is a combined model of preA0, preC0, and onC0. The policy can be
expressed as the following:

(1) permitaccess(s, o, r) →
�(tryaccess(s, o, r) ∧ (s.role = dayshifter) ∧ (8am ≤ currentT ≤ 5pm))
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(2) �(¬(8am ≤ currentT ≤ 5pm) ∧ (state(s, o, r) = accessing) →
revokeaccess(s, o, r))

The first rule specifies the pre-authorization and precondition built from the
subject’s role name and the system time. The second rule specifies the ongoing
condition built from the system time.

9. FORMAL SPECIFICATION OF GENERAL UCON MODELS

After specifying the core models in UCON, we study the formal semantics of a
general UCON model in this section. Specifically, we show that a general UCON
policy can be expressed with a set of logical formulas instantiated from a fixed
set of scheme rules and a set of logical formulas instantiated from these rules
can be satisfied by at least one UCON model. These two properties are regarded
as the completeness and soundness of our policy specification language.

9.1 Scheme Rules

In general, a usage control decision is determined by authorizations, obliga-
tions, and conditions. As shown in the core models in previous sections, autho-
rizations are specified by predicates on subject and object attributes, obligations
by subject actions, and conditions by predicates on system attributes. Therefore
a general usage decision is the combination of these components.

For an access (s, o, r), let pa1, . . . , pai be a set of authorization predicates,
ob1, . . . , obj be a set of obligation actions, and pc1, . . . , pck be a set of condition
predicates. According to the specifications of the core models explained in pre-
vious sections, a UCON policy can be specified by two kinds of logical rules:
a usage control decision rule and an update rule. For pre and ongoing deci-
sion, the logical formulas can be specified as the following control rules (CRs),
respectively.

CR1: permitaccess(s, o, r) →
�(tryaccess(s, o, r) ∧ (

∧
ni

pani ) ∧ (
∧

nk
pcnk )) ∧ (

∧
nj

�obnj )

CR2: �(¬((
∧

ni
pani ) ∧ (

∧
nj

(pbnj 1 ∧ . . . ∧ pbnj kn j
→ obnj )) ∧ (

∧
nk

pcnk )) ∧
(state(s, o, r) = accessing) → revokeaccess(s, o, r))

where 1 ≤ ni ≤ i, 1 ≤ nj ≤ j , 1 ≤ nk ≤ k, and pbnj 1, . . . , pbnj j kn j
are predicates

to determine when the ongoing obligation obnj is required.
An access request can be granted if its predecision components are true,

while an ongoing access can be continued if all ongoing decision components
are true. For an access, its pre and ongoing decision components may or may
not be the same.

The three types of update actions can be specified as the following update
rules (URs).

UR1: permitaccess(s, o, r) → �preupdate(attribute)
UR2: permitaccess(s, o, r) → ♦(ondupate(attribute) ∧

♦(endaccess(s, o, r) ∨ revokeaccess(s, o, r)))
UR3: �(state(s, o, r) = accessing → onupdate(attribute))
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UR4: �((state(s, o, r) = accessing) ∧ pu1 ∧ . . . puj → onupdate(attribute))
UR5: endaccess(s, o, r) → ♦postupdate(attribute)
UR6: revokeaccess(s, o, r) → ♦postupdate(attribute)

where UR1 is for pre-updates, UR2, UR3, and UR4 are for ongoing updates, and
UR5 and UR6 are for post-updates. pu1, . . . , puj are predicates that require an
update when satisfied during an access. For simplicity, we only include a single
attribute in each update. Different rules can update the same attribute, or more
generally different attributes. A rule can also update multiple attributes, as we
have explained in previous sections.

Both the control rules and update rules presented here are schema of real
logical formulas in a UCON policy. A rule in a real system is an instance of one
of these rules. A policy in the core models in previous sections can be specified by
an instance formula of a control rule and an instantiated formula of an update
rule. In general, a UCON policy can be a combination of multiple core models,
which are specified by a set of the control and update rules. Note that a policy
refers to a single usage process (s, o, r), as mentioned in Section 6.1. As there
may exist multiple policies for (s, o, r), only one of them is satisfied during an
access process.

9.2 Completeness and Soundness

The fixed set of scheme rules preserves the completeness and soundness prop-
erties of our policy specification language.

THEOREM 9.1. (Completeness) Any UCON policy can be specified by a non-
empty set of control rules and a set of update rules, instantiated from different
scheme rules.

Proof. By construction of the control rules and update rules, we know CR1 and
CR2 are not in conflict since they imply control decisions in different phases in
a single-usage process. The same holds for the update rules. Furthermore, the
set of control rules specifies all possible decisions in a single-usage process and
the set of update rules specify all possible updates in a single-usage process.
Therefore, a general UCON policy can be specified by a non-empty set of control
rules and a set of update rules.

By completeness we mean that a general UCON model conceptually defined
in [Park and Sandhu 2004] can be formally specified with our logical model.
That is, the set of scheme rules is adequate to specify policies for all UCON core
models and any combination of them.

THEOREM 9.2. (Soundness) For a non-empty set of control rules and a set of
update rules, which are instantiated from different scheme rules there is at least
one UCON model in which the system state transitions satisfy these rules.

Proof. We construct a UCON model to satisfy a maximum set of scheme rules
for single access (s, o, r). Consider two control rules, which are instances of
CR1 and CR2, respectively, and six update rules, one for each unique scheme
update rule, respectively. Without loss of generality, we assume that all the
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Fig. 5. State transitions.

attributes in these update rules are different, since, as we have mentioned in
Section 6, multiple updates on the same attribute can be reduced to a single
update. Consider a system where a state is specified by the attributes (subject’s,
object’s, and the system’s) in all of the rules. Initially the system state is s0 and
state(s, o, r) = initial. The state transitions are constructed with the following
steps and illustrated in Figure 5.
� In s0, the subject s generates an access request (tryaccess) to o with right r,

the value of state(s, o, r) is changed to requesting, and the system’s new state
is s1. The other attributes have the same values as in s0.

� With the subject and object attributes and system attributes in s1, if any
of the predicates specified in CR1 is not satisfied, or at least one obligation
actions in CR1 is not performed, then the system state changes via the action
denyaccess(s, o, r) to s2, where state(s, o, r) = denied.

� In s1, if all the predicates in CR1 are satisfied, and all the obligations are
performed by the corresponding subjects defined in CR1, the update action
in UR1 is performed, and the system state changes to s3.

� In s3 the permitaccess(s, o, r) action is performed by the system and the sys-
tem state changes to s4, where state(s, o, r) = accessing .

� If any predicate or obligation action included in CR2 is not satisfied in s4,
the access is revoked, and system state changes to s5, where state(s, o, r) =
revoked.

� In s5, the update action in UR6 is performed and the system state changes
to s6.

� If all the predicates and obligation actions included in CR2 are satisfied in
s4, the update actions in UR2 and UR3 are performed by the system in s4.
If all the predicates in UR4 are satisfied in s4, perform the update action in
UR4 and the system state changes to s7.

� In s7 the subject s ends the access and the system state changes to s8, where
the system attribute state(s, o, r) = end.

� The update action in UR5 is performed in s8 and the system state changes
to s9.

With simple modeling checking, we can verify that all the rules are satisfied
in these state transitions. That is, this model satisfies the maximum set of
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scheme rules. Therefore, any set of control and update rules can be satisfied by
at least one UCON model.

10. EXPRESSIVITY AND FLEXIBILITY

UCON is the first model to bring authorization, obligation, and condition to-
gether into access control. Both mutability and continuity are rarely discussed
in traditional access control models and applications. In this section, we apply
the proposed logical specification language to show how to express policies in
various applications.

10.1 Role-Based Access Control Models

In RBAC [Sandhu et al. 1996], a role is a collection of permissions, and a per-
mission is a pair (object, right) implying the right to the object. A role can be
assigned to a user by an administrator or a security officer. A user can be as-
signed to a set of roles. In a session, a user activates a subset of his roles and
obtains all the permissions associated with these activated roles. Roles may be
organized in a partial order hierarchy in which high-level roles (senior roles)
inherit the permissions assigned to low-level roles (junior roles). RBAC can
be expressed as pre-authorization models in UCON, in which user-role assign-
ments can be regarded as subject attributes, permission-role assignments can
be regarded as object attributes, and the partial-order relation between roles
in role hierarchy is expressed by attribute predicates.

Example 12. Consider an RBAC1 model [Sandhu et al. 1996] where all
roles R are in a partial-order hierarchy with respect to domination relation ≥.
A subject (a user in RBAC1) has an attribute actRole with value a subset of R,
the activated roles in a session. An object has an attribute perRole with value
a set of pairs (role, r), where r is a right. A permission (o, r) is assigned to a role
iff (role, r) ∈ o.perRole. The predicate rpar (role, o) is true if there exists role’
such that role ≥ role′ and (role′, r) ∈ o.perRole.

The usage control policy for RBAC1 is expressed by:

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r)∧ (role ∈ s.actRole)∧rpar (role, o))

This is a basic preA0 policy specifying that if role is in the subject’s actRole
attribute and rpar (role, o) is true, then the subject can be granted access to the
object with the right r.

RBAC with constraints can also be expressed with a UCON model. There
are many types of constraints that can be defined in RBAC such as mutually
exclusive roles, cardinality, and prerequisite roles. [Sandhu et al. 1996]. With
appropriate attributes defined for subjects and objects, we can specify RBAC
models with constraints using UCON.

Example 13. Consider an RBAC2 model with an exclusive constraint,
where role1 can be activated by a user only if role3 is not activated in the
same session. Each object has the same attributes defined in the previ-
ous example. For each subject, besides the attribute actRole, the attribute
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asgRole = {role1, role2, . . . , rolen} denotes explicit user-role assignments. We
can express this model in UCON preA1 as follows:

(1) permitaccess(s, o, r) → �(tryaccess(s, o, r) ∧ (role1 ∈ s.asg Role) ∧ (role1 /∈
s.actRole) ∧ (role3 /∈ s.actRole) ∧ rpar (role1, o)) ∧ �preupdate(s.actRole)
preupdate(s.actRole) : s.actRole′ = s.actRole ∪ {role1}

This rule specifies that the permission (s, o, r) can be granted if role1 is in the
subject’s asgRole, but not in actRole (i.e., role1 is assigned to s but not activated),
rpar (role1, o) is true, and role3 is not in the value of the attribute actRole of the
subject. The permitaccess action implies a pre-update action of the subject’s
actRole attribute by adding role1 to it.

10.2 Chinese Wall Policy

The original Chinese Wall policy [Brewer and Nash 1988] prevents informa-
tion flow between companies in conflict of interest. More generally, if a subject
accesses an object in a conflict-of-interest set, then this subject cannot access
any other object in this set in the future. We define an attribute to store the
usage history of a subject: each time this subject generates an access request
to an object, this attribute is checked and the authorization decision is deter-
mined by the history. In the meantime, this attribute is updated to record this
access information if the access request is approved. We show the policy with
the following example.

Example 14. Consider a system with a set of conflict object classes C =
{c1, c2, . . . , cn}. An object attribute class indicates which class it belongs to.
A subject attribute is defined as ac = {cs1 , cs2 , . . . , csm}, where s1, . . . , sm are
integers from 1 to n, to record the classes that a subject has accessed. Another
subject attribute is ao = {o1, o2, . . . , ok}, which stores the objects that the subject
has accessed. If a subject has accessed an object, the Chinese Wall policy is:

(1) permitaccess(s, o, read) → �(tryaccess(s, o, read) ∧ (o ∈ s.ao))

For an access request for an object not in the subject’s ao, the policy is:

(1) permitaccess(s, o, read) → �(tryaccess(s, o, read)∧ (o /∈ s.ao) ∧ (o.class /∈
s.ac)) ∧ �preupdate(s.ac) ∧ �preupdate(s.ao)
preupdate(s.ac) : s.ac′ = s.ac ∪ {o.class}
preupdate(s.ao) : s.ao′ = s.ao ∪ {o}

The first one is a preA0 policy, which specifies that when a subject wants to
access an object accessed before, the access request is approved and there is no
update. The second one is a preA1 policy, because of the update of the subject’s
attributes. Specifically, if an object’s conflict set is not in a subject’s ac list,
this subject can access this object and both ac and ao must be updated before
the access. Note that in this system there are two policies for the permission
(s, o, read). In a real access period, only one of them is satisfied, as we mentioned
in Section 6.1.
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10.3 Dynamic Separation of Duty

Dynamic separation of duty (DSoD) is a basic access control policy in many
security systems. The concept of mutability for exclusiveness [Park et al. 2004]
is presented to capture the attribute mutability property in DSoD. Specifically,
an object attribute is defined to store the history of the subjects accessing this
object. Here we present a simple example of object-based DSoD from [Simon
and Zurko 1997].

Example 15. In a check-issuing system, a check is prepared by a subject
in the clerk role and issued by a subject in the supervisor role. A subject may
have both a clerk role and a supervisor role at the same time, but a subject is
not allowed to issue a check that is prepared by himself. For each object, the
two attributes preparer and issuer store the subjects that prepare and issue this
object, respectively. Initially the values of preparer and issuer are both null (not
available). Each subject has two attributes: sid (subject identity) and role. A
predicate ≥ is defined to specify the dominance relation between two roles. The
policies for prepare and issue are specified as follows, respectively.
(1) permitaccess(s, o, prepare) → �(tryaccess(s, o, prepare) ∧ (s.role ≥ clerk) ∧

(o.preparer = null)) ∧ �preupdate(o.preparer)
preupdate(o.preparer) : o.preparer′ = s.sid

(2) permitaccess(s, o, issue) →
�(tryaccess(s, o, issue) ∧ s.role ≥ supervisor) ∧ (o.preparer = null) ∧
(o.issuer = null) ∧ (o.preparer = s.sid)) ∧ �preupdate(o.issuer)
preupdate(o.issuer) : o.issuer′ = s.sid

Both policies are preA1 ones. The first one says that a subject with a role-
dominating clerk can prepare a check and this check’s preparer attribute is set
to the subject’s identity. The second one specifies that a subject with a role-
dominating supervisor can issue a check only if this subject is not the one who
prepares this check.

10.4 MAC Policy with High Watermark Property

In traditional MAC, a subject’s clearance is assigned by a system administrator
and cannot be changed unless the administrator assigns a new label to it. This
can be expressed with a UCON preA0 model, as shown in Section 6. With the
high watermark property, the security clearance can be updated as a result of
the user’s access actions and this update has to follow some predefined policies.
We show this property in MAC as a preA1 model.

Example 16. Suppose L is a lattice of security labels with relation ≥.
A subject has two attributes, clearance to represent the current label, and
maxClear to represent the maximum clearance label. An object has one at-
tribute, classification. All these attributes have as value domain the lattice L.
The authorization policy for read is:

(1) permitaccess(s, o, read) → �(tryaccess(s, o, read) ∧
(s.maxClear ≥ o.classification)) ∧ �preupdate(s.clearance)
preupdate(s.clearance): s.clearance’= LUB(s.clearance,o.classification)

where LUB is a function that returns the least upper bound of two labels.
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10.5 Hospital Information Systems

In this section we show some examples of hospital information systems that
require not only authorizations, but also obligations and conditions.

Example 17. Suppose that a doctor (s) can perform (r) a particular oper-
ation (o) only if he has operated more than three times before.5 This can be
expressed as a preA1 model. The total times of the operations that a doctor has
performed is stored as the subject attribute exp. The policy is:

(1) permitaccess(s, o, perform) →
�(tryaccess(s, o, perform)∧(s.role = doctor)∧(s.exp > 3))∧�preupdate(s.exp)
preupdate(s.exp) : s.exp′ = s.exp + 1

Example 18. In this example, a doctor can perform an operation on a pa-
tient only if the patient agrees to it on a consent form. This agreement is an
obligation to be completed before the operation, where the patient is the obliga-
tion subject and the consent is the obligation object. This model can be expressed
by a combination of preA0 and preB0. The policy is:

(1) permitaccess(s, o, operate) →
�(tryaccess(s, o, operate) ∧ (s.role = doctor) ∧ �ob agree(o, consent))

The predecision components of this policy are a conjunction of an authoriza-
tion predicate and an obligation, both of which must be satisfied before the
access can start.

Example 19. In this example, a junior doctor can perform an operation only
when there is a senior doctor monitoring the operation. An ongoing obligation
ob monitor(s1, s2) is defined, where s1 is a senior doctor and s2 is a junior doctor.
This model is a combination of preA0 and onB0.

(1) permitaccess(s, o, operate) →
�(tryaccess(s, o, operate) ∧ (s.role = j unior doctor))

(2) �(¬((s1.role = senior doctor) ∧ ob monitor(s1, s)) ∧ (state(s, o, operate) =
accessing) → revokeaccess(s, o, operate))

11. RELATED WORK

Bertino et al. [1994, 1996, 1999] introduce a temporal authorization model for
database management systems. In this model, a subject has permissions on an
object during some time intervals or a subject’s permission is temporally de-
pendent on an authorization rule. For example, a subject can access a file only
for one week. Our authorization model is different: we consider the temporal
characteristics in a single-usage period, with mutable attributes of subject and
object before, during, and after an access, that is, the temporal properties are
the result of the mutability of subject and object attributes, which change due

5The examples in this section just show applications of our logical specification language, but do
not provide a complete system specification. In this example, some other attribute predicates or
conditions may enable a doctor to perform an operation at the beginning (when exp ≤ 3), e.g., in
the presence of senior doctors, which are not included here.
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to the side effects of accesses and usages. In contrast, Bertino et al.’s model
focuses on the validity of authorization policies with time period and the tem-
poral property of a policy is not related to an access action, but dependent on
the system administration policies. Gal et al. [2000] propose a temporal data
authorization model (TDAM) for access control to temporal data. This work is
orthogonal to our approach, since we focus on the temporal authorization and
usage process, while TDAM focuses on the temporal attributes of data. For for-
mal specifications with temporal logic in security policies, Siewe et al. [2003]
apply interval temporal logic to express and compose access control polices and
Hansen and Sharp [2003] introduce an approach for the analysis of security
protocols using interval logic. The main difference in our approach is that we
focus on the atomic actions and temporal properties during a single-usage pro-
cess, while their approaches focus on a higher level of system policies or security
protocols.

Joshi et al. [2005] presented a generalized temporal RBAC model (GTRBAC)
to specify temporal constraints in role activation, user-role assignment, and
role-permission assignment. For example, a user can only activate a role for a
particular duration. The concept of temporal constraint is different from the
mutability of UCON, since it does not have update actions. The dependency
constraint in GTRBAC [Joshi et al. 2003] is similar to the concept of obligation
in UCON, but the dependency is more like the implication relation between
events in GTRBAC, i.e., if an event happens, it triggers another event; while in
UCON, obligations are explicit required actions to permit an access.

Bettini et al. [2002a, 2002b] present concepts of provisions and obligation in
policy management: provisions are conditions or actions performed by a subject
before the authorization decision, while obligations are conditions or actions
performed after an access. In our model, we distinguish between conditions
and obligations. All the actions that a subject has to perform before usage are
regarded as obligations, while for future actions, we consider them as the obli-
gations for future usage requests or long-term obligations. Chomicki and Lobo
[2001] investigate the conflicts and constraints of historical actions in policies.
In their paper, actions are application activities and constraints are expressed
with linear-time temporal connectors. In our paper, we define obligations as
actions required by an access and represent the logic approach with TLA.

12. CONCLUSIONS AND FUTURE WORK

We have developed a formal specification of UCON with temporal logic of ac-
tions. A logic model is given by a set of sequences of system states specified by a
set of subjects and their attributes, a set of objects and their attributes, and the
system attributes. The authorization predicates are built from the subject and
object attributes. Actions are the state transitions of the system, including us-
age control actions to update attributes and accessing status of a usage process,
and obligation actions that have to be satisfied before or during an access. Con-
ditions are predicates on system attributes. Temporal formulas represent usage
control policies and are built from authorization predicates, actions, and sys-
tem predicates. We prove that a fixed set of scheme rules can be used in UCON
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specifications with soundness and completeness properties. The powerful spec-
ification capability and flexibility of the extended TLA strengthens UCON with
precise modeling and specification.

This work opens several directions for further investigation. First of all, we
can develop administrative models for UCON, including attributes manage-
ment, administrative policies, etc. UCON is attribute-based and this requires
synchronized attribute acquisition and management. As mentioned in this pa-
per, postobligations and postconditions are in the scope of the administrative
model. If a subject does not satisfy an obligation after an access, a security ad-
ministrator needs to take compensatory actions according to the administrator
policies.

As a comprehensive access control model with new properties, UCON has
shown strong expressivity and flexibility to specify modern access control sys-
tems. In general, the expressive power and the decidability of safety are two
conflicting properties of an access control model. We are investigating the safety
problem, which is a fundamental problem in access control. In UCON, the safety
problem consists of deciding whether a subject can obtain a particular permis-
sion on an object, given a set of attributes and initial values, as well as updates
of these attributes by performing some accesses. Restricted UCON models with
reasonable expressive power and decidable safety are under investigation.

As mentioned in Section 1, concurrency is a unique feature in UCON, which
has been seldom investigated in access control models. In an open system, an
update action of an attribute will result in a change in the authorization deci-
sion in another access happening concurrently. The properties of access control
models in such open and concurrent environments need to be investigated.
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