
The Multilevel Relational (MLR) Data
Model

RAVI SANDHU and FANG CHEN
George Mason University

Many multilevel relational models have been proposed; different models offer different
advantages. In this paper,we adapt and refine several of the best ideas from previous models
and add new ones to build the new Multilevel Relational (MLR) data model. MLR provides
multilevel relations with element-level labeling as a natural extension of the traditional
relational data model. MLR introduces several new concepts (notably, data-borrow integrity
and the UPLEVEL statement) and significantly redefines existing concepts (polyinstantiation
and referential integrity as well as data manipulation operations). A central contribution of
this paper is proofs of soundness, completeness, and security of MLR. A new data-based
semantics is given for the MLR data model by combining ideas from SeaView, belief-based
semantics, and LDV. This new semantics has the advantages of both eliminating ambiguity
and retaining upward information flow. MLR is secure, unambiguous, and powerful. It has
five integrity properties and five operations for manipulating multilevel relations. Soundness,
completeness, and security show that any of the five database manipulation operations will
keep database states legal (i.e., satisfy all integrity properties), that every legal database state
can be constructed, and that MLR is noninterfering. The expressive power of MLR also
compares favorably with several other models.

Categories and Subject Descriptors: H.2.0 [Database Management]: General—Security,
integrity, and protection; H.2.7 [Database Management]: Database Administration

General Terms: Security

Additional Key Words and Phrases: Access control, confidentiality, multilevel security, polyin-
stantiation

1. INTRODUCTION
In multilevel data models, data items and subjects have their own access
classes (or levels), e.g., TS (Top Secret), S (Secret), U (Unclassified), etc.,
known as classifications and clearances. Access by subjects is restricted by
mandatory access controls, roughly expressed as “no read up, no write
down,” to follow the well-known Bell and LaPadula [1975] model, and its
variations described by Sandhu [1993]. However, from a security stand-
point, this restriction should be strengthened by a further requirement:

Authors’ address: Information and Software Engineering Department, George Mason Univer-
sity, Mail Stop 4A4, Fairfax, VA 22033; email: sandhu@gmu.edu; URL:www.list.gmu.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 1094-9224/98/1100–0093 $5.00

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998, Pages 93–132.

operations from any given level should not be accepted or rejected due to
existence or absence of any higher level data, otherwise some signaling
channels for leakage of high-level data (i.e., indirect methods of communi-
cation from higher-level processes to lower-level ones) will occur [Jajodia
and Sandhu 1991]).

Many multilevel relational data models have been proposed in the
literature, for example, SeaView [Denning et al. 1988;Lunt et al. 1990];
LDV [Haigh et al. 1991]; and those proposed by Sandhu-Jajodia [Sandhu
and Jajodia 1991; 1993]; Jajodia-Sandhu [1991;1993]; and by Smith-Wins-
lett [1992], and so on. Each of these models has its innovations and strong
points (e.g., the integrity properties in SeaView and in the Sandhu-Jajodia
model, the belief-based semantics of the Smith-Winslett model, the multi-
level manipulation of the Jajodia-Sandhu model, the derive option of LDV,
etc.).

How can the best features of these models be reconciled and unified into
a secure, unambiguous, and powerful multilevel relational data model? We
confront this question directly by presenting the Multilevel Relational
(MLR) data model. MLR introduces several new concepts, notably data-
borrow integrity and the UPLEVEL statement. Other concepts adapted
from previous models are significantly redefined, notably polyinstantiation
and referential integrity, as well as data manipulation statements. The end
result is a simple, flexible, and powerful model. It contains five integrity
properties and five operations for manipulating multilevel relations. More-
over, MLR eliminates ambiguity and retains upward information flow.

MLR is substantially based on the data model proposed by Sandhu and
Jajodia [1993]. Many aspects of that model are in turn derived from
SeaView [Denning et al. 1998]. The most significant difference between the
Sandhu-Jajodia and SeaView models is the requirement, introduced in
Sandhu and Jajodia [1993], that there can be at most one tuple in each
access class for a given entity. This gives us the simplicity of tuple-level
labeling, combined with the flexibility of element-level labeling. There are
also several other subtle, but very important, differences in the precise
formulation of various properties.

There are two major problems left unsolved in the Sandhu and Jajodia
[1993] model, semantic ambiguity and operational incompleteness. To illus-
trate semantic ambiguity, consider the following relation SOD(SHIP, OBJ,
DEST) where SHIP is the primary key and the security classifications are
assigned at the granularity of individual data elements. OBJ and DEST are
abbreviations for OBJECTIVE and DESTINATION, respectively.

TC is an abbreviation for TUPLE-CLASS. The label in the TC attribute
applies to the entire tuple. It must dominate the labels or each element of

SHIP OBJ DEST TC

Enterprise U Spying S Talos U S
Enterprise U Exploration U Talos U U

94 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

the tuple. We assume the reader is familiar with basic aspects of lattice-
based access control [Sandhu 1993], and we use the conventional labels TS
. S . C . U. Say that the data in tuples with TC at U and S are,
respectively, accepted as the real data by subjects at levels U and S.1

However, what is the data accepted by subjects at level TS? In the
Sandhu-Jajodia model, absence of a tuple at TS means there is no addi-
tional data at this level. But there are both tuples at U and S in this
relation. Do subjects at TS take the values from S or from U? Is it
necessary to force them to choose the one at the higher security class? Are
there situations in which a subject at TS should accept values from the
tuple at U rather than S?

Taking another more general example of semantic ambiguity, let M1 and
M2 be incomparable labels whose least upper bound is S and greatest lower
bound is U, as shown in Figure 1 (we use this lattice throughout the paper).
Consider the following relation.

Which OBJ value is accepted by subjects at S? Mining or Spying or even
Exploration? Again, is it necessary to force S-subjects to accept data from
any specific level?

As for operational incompleteness, how can a tuple whose individual
classification attributes are at U, M1, and M2 be instantiated by a subject
at S? In fact, in previous models, there is no way for a subject at, say, S to
add tuples like the following.

1Note that the same individual user can have subjects at U and at S, so it is proper to talk
about data accepted by subjects at a given level rather than by users.

Fig. 1. A partially ordered lattice.

SHIP OBJ DEST TC

Enterprise U Mining M1 Talos U M1

Enterprise U Spying M2 Talos U M2

Enterprise U Exploration U Talos U U

The Multilevel Relational (MLR) Data Model • 95

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

In order to solve these problems we integrate ideas from a number of
previous models to establish the new MLR data model. To complete this
integration, we introduce several new concepts and refine many old ones.

We fully define the MLR data model in this paper. The new data-based
semantics for both data and operations is also given. Moreover, we prove
that the MLR model is a sound, complete, and secure data model. These
proofs show that any of the database manipulation operations provided will
keep the database state legal (i.e., satisfy all integrity properties), that
every legal database state can be constructed, and the MLR data model is
secure, in that all information flow is upwards in the security lattice. The
expressive power of the MLR model is discussed by comparing it with
several other models.

The rest of the paper is organized as follows. In Sections 2 and 3 we
define the MLR model and its data semantics. The expressive power of
MLR is discussed in Section 4. Section 5 addresses the model’s data
manipulation operations. Sections 6, 7, and 8 prove, respectively, the
soundness, completeness, and security of the MLR data model. In Section 9,
we summarize our major contributions and give our conclusions.

2. THE BASIC MODEL

We define the MLR model in three parts. In this section we formally define
the so-called basic model. We give a data interpretation for the basic model
as a part of the data semantics and describe how the MLR data model
corresponds to the real world. We also discuss the practicality of the model.
The next section describes the five integrity properties of MLR. Discussion
of data manipulation in MLR is deferred to Section 5.

2.1 Model Definition

A multilevel relation consists of the following two parts.

Definition 2.1 A multilevel relation scheme is denoted by R~A1, C1,
A2, C2, . . . , An, Cn, TC!, where each Ai is a data attribute over domain
Di, each Ci is a classification attribute for Ai, and TC is the tuple-class
attribute. The domain of each Ci is specified by a set $Li . . . Hi% containing
all access classes of a sublattice ranging from Li up to Hi (Hi $ Li).2 The
domain of TC is ø i51

n ~$Li . . . H%!, where H is system high and ø stands
for set union.

Definition 2.2 A relation instance, denoted by r~A1, C1, A2, C2, . . . ,
An, Cn, TC!, is a set of distinct tuples of the form ~a1, c1, a2, c2, . . . , an,
cn, tc!, where each ai { Di and ci { $Li . . . Hi%, or ai 5 null and ci {

2More generally, the domain of Ci can be any arbitrary subset of access classes. This is a
straightforward generalization.

SHIP OBJ DEST TC

Enterprise U Mining M1 Sirius M2 S

96 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

$Li . . . Hi% ø null, and tc $ lub $ci ? ci Þ null: i 5 1 . . . n%. Here lub
denotes the least upper bound.3

We assume that there is a user-specified apparent primary key AK
consisting of a subset of the data attributes Ai. In general AK will consist
of multiple attributes. In Section 3 we see that all attributes in AK are
required to have the same classification level. Meanwhile, each Ai can also
be seen as a group of attributes with an identical classification level. In
order to simplify our notation, we use A1 as synonymous to AK, i.e., A1 and
AK both denote the apparent primary key. We also assume that the
relation scheme is itself classified at the greatest lower bound of Li (i 5
1 . . . n).4 A tuple whose tuple class is c is said to be a c-tuple, while a
subject whose clearance is c is said to be a c-subject.

There are two subtle differences in these definitions relative to Sandhu
and Jajodia [1992]. First, the domain of TC is different from that in
Sandhu and Jajodia [1993], which is {lub {Li : i 5 1 . . . n} . . . lub {Hi :
i 5 1 . . . n}}. Second, the Sandhu and Jajodia [1993] model does not allow
classification attributes to be null. These changes are primarily for the
INSERT semantics (Section 5.2), because now the tuple

can be inserted into the relation by a U-subject, even if the domain of the
classification attribute for DEST is limited to, say, S . . . TS, in which case,

is not allowed.
In MLR every relation has only one relation instance at any time. As we

see in Section 2, subjects at different levels may have different views of the
instance. Previous models have defined a relation as having a different
relation instance at each level. This modification is simply a technical one
for convenience of semantic description.

We define tc $ lub {ci ci Þ null: i 5 1 . . . n} in the same way as
Sandhu and Jajodia [1993], by which

3As we will see in Section 3, there will always be some ci that is nonnull, therefore, lub { ci
ci Þ null: i 5 1. . . n} is always well defined.
4Scheme classification in multilevel relations remains an open research issue.

SHIP OBJ DEST TC

Enterprise U Exploration U null null U

SHIP OBJ DEST TC

Enterprise U Exploration U null U U

The Multilevel Relational (MLR) Data Model • 97

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

In fact, the former says S-subjects borrow from U-subjects the data
currently owned by U-subjects, and the data could be changed by U-
subjects; whereas the latter means S-subjects have their own data for OBJ
and DEST, which could not be changed by U-subjects. The value equiva-
lence of OBJ and DEST in the latter case is just coincidental; data
interpretation is discussed at length in Section 2.2.

The following definition is taken directly from the traditional relational
data model.

Definition 2.3 A database is a collection of relations. A database state is
a collection of all relation instances of a database at a particular time.

2.2 Data Interpretation

The intuitive ideas of our data-based semantics are as follows.

(1) The data accepted by subjects at one level consist of two parts: the data
owned by them and the data borrowed from lower-level subjects. The
latter can be changed by the lower-level subjects who own them.

(2) The data that a subject can see are those accepted by subjects at its
level or at levels below it.

Here data is treated as a common resource shared by subjects at a given
level. For simplicity, other access controls, such as discretionary or role-
based, are omitted. The basic ideas come from combining belief-based
semantics [Smith and Winslett [1992] and the LDV model [Haigh et al.
1991]. In Sections 3 and 5 we will show how these ideas lead to a complete
semantics for MLR.

We consider the following example first, where SHIP is assumed to be
AK.

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U S
Enterprise U Exploration U Talos U U

is allowed and has different meanings than

SHIP OBJ DEST TC

Enterprise U Exploration S Talos S S
Enterprise U Exploration U Talos U U

SHIP OBJ DEST TC

Enterprise S Spying S Rigel S S
Enterprise U Exploration U null S TS
Enterprise U Exploration U Talos U U

98 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

This example describes two entities, (Enterprise, S) and (Enterprise, U)
which are, respectively, created by a U-subject and an S-subject, and can
only be deleted by U-subjects and S-subjects, respectively. The TS-tuple,
i.e., the tuple with TC as TS, is added by a TS-subject and all data in it are
accepted by TS-subjects. Let us take a closer look at the entity (Enterprise,
U). The U-tuple, i.e., the tuple with TC as U, is the base tuple, which can
only be deleted when the entire entity is to be deleted, including the
TS-tuple. TS-subjects can see both the TS-tuple and the U-tuple, whereas
U-subjects can only see the U-tuple. The OBJ value of the TS-tuple,
Exploration, is borrowed from U-subjects, and is subject to change when
that of the U-tuple is changed or deleted. The null in the TS-tuple means
that TS-subjects are expecting to borrow DEST data from S-subjects, but
there is no DEST data currently owned by them for this entity. Also,
absence of an S-tuple in this entity indicates that this entity is not accepted
by S-subjects.

Entity polyinstantiation and element polyinstantiation are also illus-
trated here. They are two types of polyinstantiation, a technique to prevent
inference violations. Entity polyinstantiation occurs when a relation con-
tains multiple tuples with the same AK values but different CAK values.
With element polyinstantiation, a relation contains two or more tuples with
identical AK and CAK values, but with different values for one or more Ai’s
(2 # i # n). In this example, for the AK value Enterprise, there are two
CAK values S and U; while for the same (Enterprise, U), there are two
different DEST values: null and Talos.

We now give a formal description of the above intuitive ideas. For all
instances r~A1, C1, A2, C2, . . . , An, Cn, TC! and for all tuples t { r, the
data are interpreted as follows.

(1) Apparent Primary Key A1 and its Classification Attribute C1

—t@A1, C1# identifies an entity in r and also gives the class level of the
entity.

—t@C1# 5 c1 means the entity is created by a c1-subject and can only be
deleted by c1-subjects. The entity is called a c1-entity.

(2) Tuple-Class Attribute TC
—t@TC# 5 tc with t@C1# 5 c1 means that

—t is added by a tc-subject and all data in t are accepted by
tc-subjects. Absence of t means the c1-entity is not accepted by
tc-subjects.

—t can only be seen by subjects with level c9 $ tc. In other words, all
a c9-subject can see are tuples t9 with t9@TC# # c9.

—t can be deleted either by tc-subjects, or by c1-subjects in cases
where the entire entity is deleted.5

5 Note that discretionary or nondiscretionary access controls can be used to control which
subject can delete the tuple.

The Multilevel Relational (MLR) Data Model • 99

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

—When t@TC# 5 t@C1#, t is the base tuple of the entity, all tuples t9 {

r such that t ’@A1, C1# 5 t@A1, C1# are based on t, and t can only be
deleted when the entire entity is to be deleted.

(3) Data Attribute Ai and Classification Attribute Ci (2 # i # n)
—t@Ai, Ci# with t@Ci# 5 ci and t@TC# 5 tc (ci # tc) indicates that

—the data t@Ai# accepted by tc-subjects are currently owned by
ci-subjects.

—t@Ai, Ci# can be maintained (updated) either by ci-subjects or by
tc-subjects.

—When t@Ci# , t@TC#, t@Ai# Þ null is borrowed from the t9@Ai# of t9
which has t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# 5 t9@Ci# 5 t@Ci#,6 and is
subject to change when t9@Ai, Ci# is changed or t9 is deleted.

(4) Null Value
—t@Ai, Ci# 5 [null, ci] (ci , tc) means that for attribute Ai, tc-subjects

expect to borrow data owned by ci-subjects, however, no data are
currently owned by them.

—Both t@Ai, Ci# 5 [null, null] and t@Ai, Ci# 5 [null, tc] means that for
Ai no data are available at level tc. The [null, null] case applies when
tc {/ $Li . . . Hi%; the [null, tc] case applies otherwise .

2.3 MLR Model vs Real World

How a data model corresponds to the real world is an essential issue, both
in evaluating the model and using the model to design databases. A basic
question is: What do data in a model represent? Consider a traditional
database example first. What does the following tuple mean?

One answer is that in the real world there is a ship called Enterprise that
will go to explore Talos. Another answer is that it stands for an opinion
held by some people who think a ship called Enterprise will go to explore
Talos. These two answers are very different. The first one states that the
tuple represents a fact in the real world, which should definitely be true;
whereas the second states that it is just somebody’s idea, which may or may
not be true in the real world. Although in many cases these two answers
may not conflict with each other, still they are different, and we feel the
second one is more reasonable. The correctness of data in a database really
depends on how the data are obtained. It is ultimately a problem of
cognition. We can also say that the second answer is more general than the
first, in the sense it includes both true cognition and false cognition of the
real world.

6This issue will be discussed in greater detail in Sections 3 and 5.

SHIP OBJ DEST

Enterprise Exploration Talos

100 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

Now let us consider an MLR example. What does the following instance
mean?

If we use an approach similar to the second answer above, we can
interpret this relation as representing opinions of three different groups of
people with security levels TS, S, and U.7 For brevity, we denote these
three groups of people as TSs, Ss, and Us. Ss may think that their data
are more correct than that of Us, however, for some data, e.g. DEST, TSs
may nevertheless trust Us rather than Ss. Here both TSs and Ss trust Us
on the existence of Enterprise, which means all TSs, Ss, and Us are
talking about the same Enterprise, so TSs can trust either Ss or Us for
some of the data about Enterprise, say, OBJ or DEST. Generally, if there
are polyinstantiation tuples with same A1, C1 value, they refer to the same
real world entity. This is called element polyinstantiation.

As an entity-polyinstantiation case, consider the following instance.

Here TS trusts U that a ship called Enterprise exists, therefore it clearly
knows that its Enterprise is exactly the same as that meant by U. On the
other hand, S has its own opinion, which is totally independent from that of
U, even on the existence of a ship called Enterprise. There could be a case
where S addresses its opinion before U does, and therefore has no idea
about what U might say later. Of course, S can change its opinion if it finds
out subsequently it can trust U on the existence of Enterprise, and that its
Enterprise is exactly what U means also. Generally, if there are polyin-
stantiation tuples with same A1 but different C1, they could refer to the

7So far we have talked about subjects who accept data at a given level. We can extend this
concept to users or people by understanding the opinion of a user to be that of the subject at
the user’s clearance, i.e., the highest labeled subject that this user can invoke. For example, a
user cleared to TS can access data as a TS, S, U, or C subject and get a different view each
time. The opinion of a TS user is therefore the opinion of TS subjects. However, while logged in
as a S subject, the TS user will see data from a S user’s perspective. In this context, the TS
user is trusted to behave like an S user and not leak TS data deliberately or inadvertently.

SHIP OBJ DEST TC

Enterprise U Spying S Talos U TS
Enterprise U Spying S Rigel S S
Enterprise U Exploration U Talos U U

SHIP OBJ DEST TC

Enterprise U Spying TS Talos U TS
Enterprise S Spying S Rigel S S
Enterprise U Exploration U Talos U U

The Multilevel Relational (MLR) Data Model • 101

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

same real world entity or to different ones. Resolving this is beyond the
scope of a data model, and is basically a problem of cognition.

It is possible that TS feels there exist two different Enterprises, men-
tioned by U and S, and it wants to trust U and S. However, if later on TS
wants to say that “Kirk is the captain of the Enterprise,” it is not clear
which Enterprise Kirk is the captain of, or maybe of both. Theoretically,
there could be a way to deal with this problem: TS gives a nick name to
each of the two ships, say Enterprise-U to the Enterprise mentioned by U
and Enterprise-S to that mentioned by S, using “Kirk is the captain of
Enterprise-U” and/or “Kirk is the captain of Enterprise-S” accordingly. But
if there are some other groups at levels even higher than TS, they will have
to know all the nick names defined by TS before they can understand
and/or use TS ’s data. The problem becomes even worse if Enterprise-U is
used in some other situation such as “Maintenance of Enterprise-U is in
July” identified by both “maintenance” and “Enterprise-U”, because there
could be several different versions of “maintenance of Enterprise-U” ac-
cepted by some specific group at the same time, leading to recursive nick
names. (This issue will be discussed further in Section 3.1.)

2.4 Practicality

As we have seen, data-based semantics takes the following ideas from
belief-based semantics: for an entity at level c1, absence of a c-tuple (c .
c1) means the entity is not accepted by c-subjects. In other words, in order
to reference an c1-entity, c-subjects should add a c-tuple of the entity into
the relation first, even though all the data accepted by c-subjects belong to
the subjects below c. Actually, this is the crucial requirement for eliminat-
ing semantic ambiguity.

This requirement would be quite acceptable if 95% of entities had
different data at different levels. Unfortunately, often only 5% of entities
have secret data at levels higher than unclassified; which means that for
the other 95% of entities, high level tuples just repeat unclassified data. If
there are m levels higher than unclassified, to reference unclassified data
at every level, all these data are logically repeated m times. A naive
implementation would not just waste space but also waste user time, since
the repetition is explicitly performed by subjects at each level.

Under this reasonable logical model, we must face practical issues of the
physical model. Fortunately, there are several techniques that deal with
these problems.

To avoid wasting space, we can physically (not logically) expand the
tuple-class attribute TC to be a tuple-class attribute set, containing several
levels whose data are exactly the same in all A1, C1, . . . , An, Cn. Hence,
instead of keeping several repeated tuples in the database, we can physi-
cally just keep one tuple and indicate all levels that accept it in the TC set.
For example, ~a1, c1, . . . , an, cn, $tc1, . . . , tcm%! can stand for ~a1, c1,

102 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

. . . , an, cn, tc1!, . . . , ~a1, c1, . . . , an, cn, tcm!. If later on some subject
needs to change some data in it, it may be divided to several tuples with
some different Ai or Ci values.

To save effort in explicitly accepting a tuple at each level above its tuple
class, we can allow subjects, or the database administrator, to set some
defaults. For example, c-subjects can set defaults such as that: for all
entities in R, all data owned by c9-subjects (c9 , c) are accepted. That is to
say, whenever a c9-subject inserts an entity into R, a c-tuple of the entity is
automatically created and all data of the c-tuple are borrowed from
c9-subjects (we may possibly just put c into the TC set of the c9-tuple). For
single-level relations, i.e., for any i, j such that 1 # i, j # n, Li 5 Lj 5
Hi 5 Hj, this approach could be very useful. For example, a single-level
relation could be used to keep common knowledge such as the city name,
location, area, climate, etc, which can be used by subjects at any level. This
needs to be done with some care to make sure that inconsistencies do not
arise (Section 3).

It is easy to see that there are many variations of these two basic
approaches. Physical issues may also depend on the storage strategies used
to construct the DBMS. Since the MLR model is a logical data model,
further discussion about physical issues is outside the scope of this paper.
Our objective here is to simply sketch the feasibility argument.

3. INTEGRITY PROPERTIES

There are five integrity properties in the MLR data model, of which entity
integrity and foreign key integrity are taken from the original SeaView
model; polyinstantiation integrity and referential integrity are significantly
redefined by the authors; and data-borrow integrity is introduced. In
particular, the polyinstantiation integrity property given here is much
more general than that of SeaView[Denning et al. 1988] or the Sandhu and
Jajodia [1993] model, in that it takes care of both entity and element
polyinstantiation. The redefined referential integrity property also deals
with some new reference problems arising from data-borrow.

3.1 Entity Integrity

The Entity Integrity property given here was first proposed by SeaView
[Denning et al. 1988], and has stayed unchanged in most work since then.

Property 1. [Entity Integrity (EI)] Let AK be the apparent primary
key of R. An instance r of a multilevel relation R satisfies entity integrity if
and only if for all t { r:

(1) Ai { AK f t@Ai# Þ null;

(2) Ai, Aj { AK f t@Ci# 5 t@Cj#; and

(3) Ai {/ AK, Aj { AK f t@Ci# $ t@Cj# or t@Ci# 5 null.

The Multilevel Relational (MLR) Data Model • 103

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

The first requirement is exactly the definition of entity integrity in the
traditional relational model, which ensures that no tuple in r has a null
value for any attribute in AK. The second requirement says that all
attributes in AK have the same classification in a tuple, i.e., AK is
uniformly classified, and so we can define CAK to be the classification of the
apparent primary key AK. The final requirement states that in any tuple
the class of nonkey attributes must dominate CAK.

The requirement of uniformly classified AK in MLR is consistent with
the intuitive ideas of data-based semantics. When a subject at, say, level S
addresses an independent opinion, all the data are classified at its level.
Later on, if another subject at, say, level TS needs to borrow some data
from S, the TS-subject should address the same entity as that of S. In MLR
we use AK attributes as well as their classification attributes to identify an
entity, so in order to address the same entity the TS-subject has to use
exactly the same values for the classification attributes of AK as that of S,
leading to uniformly classified AK.

3.2 Polyinstantiation Integrity

Polyinstantiation integrity is required by many models. However, our
definition is much more general than previous ones. It is the first to treat
both entity polyinstantiation and element polyinstantiation in a unified
manner.

Property 2. [Polyinstantiation Integrity (PI)] An instance r of a
multilevel relation R satisfies polyinstantiation integrity if and only if for
1 # i # n,

(1) A1, TC 3 Ci ; and

(2) A1, C1, Ci 3 Ai .

The second requirement is the original polyinstantiation integrity neces-
sary for both the SeaView and Sandhu-Jajodia models, which says that the
real primary key of the relation is A1, C1, C2, . . . , Cn. The first require-
ment is derived from the following two conditions (as well as the second
requirement above):

(a) A1, TC 3 C1; and

(b) A1, C1, TC 3 Ai, Ci.

In Sandhu et al. [1990], (b) is an example of tuple-class polyinstantiation
integrity,8 which says that every entity in a relation can have at most one
tuple for every access class; whereas (a) is new (and is discussed below).

8It has been misexpressed in many places as A1, C1, TC 3 Ai, which is too weak, since, for
example, it allows tuples ,Enterprise, S, Spying, S, Rigel, S, TS. and ,Enterprise, S, Spying,
TS, Rigel, S, TS. in the same relation.

104 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

The new property (a) can be called an example of entity polyinstantiation
integrity. The intuitive idea of this property is that there could be several
entities in a relation with the same AK value, but subjects at any security
level can accept at most one entity with that AK value. For example,

is allowed when at each level TS, S, or U, subjects accept only one entity
with AK value as Enterprise. However,

is not allowed when there are two entities with the same AK value
Enterprise (Enterprise, S) and (Enterprise, U), accepted at level S. S-
subjects could choose either of them, but not both, to avoid semantic
confusion.

This is very different from the no entity polyinstantiation integrity of
Sandhu and Jajodia [1993]. In our case, there can be no downward
information leakage, since entity polyinstantiation is allowed across secu-
rity levels, and therefore no insertion is rejected due to existing entity
polyinstantiation at higher levels (see Section 5 for details). Also, there is
no ambiguity, since no entity polyinstantiation is allowed in what is
accepted by subjects at any particular security level.

MLR does not support nick name definition (Section 2) because we feel
using nick names is very confusing. This confusion exists in the real world.
Sandhu and Jajodia [1992] list several approaches to eliminate entity
polyinstantiation. For example, a TS user is allowed to log in as an
S-subject and rename the lower level entity. This can solve some problem
with entity polyinstantiation but may leak some information.

3.3 Data-Borrow Integrity

The newly introduced data-borrow integrity is a key property in our
data-based semantics. Allowing data-borrow ensures that the MLR data
model can retain upward information flow. Changes to data at a lower level
can be automatically propagated to higher levels. This is somewhat like a
“write-up” operation, except that existing higher level data elements cannot
be overwritten.

The data-borrow integrity property is expressed as follows.

SHIP OBJ DEST TC

Enterprise U Spying TS Talos U TS
Enterprise S Mining S Rigel S S
Enterprise U Exploration U Talos U U

SHIP OBJ DEST TC

Enterprise S Spying S Rigel S S
Enterprise U Mining S Talos U S
Enterprise U Exploration U Talos U U

The Multilevel Relational (MLR) Data Model • 105

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

Property 3. [Data-Borrow Integrity (DBI)] An instance r of a multi-
level relation R satisfies data-borrow integrity if and only if for all t { r
and 1 # i # n, if t@Ai# Þ null ∧ t@Ci# , t@TC#, there exists t9 { r such
that t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# 5 t9@Ci# 5 t@Ci# ∧ t9@Ai# 5 t@Ai#.

This is based on the following idea in data-based semantics: c-tuple
contains all the data accepted (but not necessarily owned) by c-subjects;
absence of a c-tuple means that the entity is not accepted by c-subjects.

Consider the following relation instances:

The former instance satisfies DBI but the latter one does not. Here DBI
requires that the U-tuple, which is the source of the data Enterprise and
Exploration, exist. This is because absence of a U-tuple means that
U-subjects did not accept the entity Enterprise at the moment; which
implies that the data once owned by U-subjects is invalid and, of course,
can no longer be used by S-subjects.

Note that DBI cannot be derived from PI. For example, the second
instance above does not satisfy DBI but does satisfy PI.

3.4 Foreign Key Integrity

Foreign key integrity was originally proposed by SeaView [Denning et al.
1988].

Property 4. [Foreign Key Integrity (FKI)] Let FK be a foreign key of
the referencing relation R. An instance r of a multilevel relation R satisfies
foreign key integrity if and only if for all t { r, either ~@Ai { FK!@t@Ai#
5 null# or ~@Ai { FK!@t@Ai# Þ null# and

(1) Ai, Aj { FK f t@Ci# 5 t@Cj# .

The first part of this property arises from traditional relations. The
motivations for the second part are similar to those for the uniform
classification of apparent primary keys in EI; and similarly we can define
CFK to be the classification of the foreign key FK.

3.5 Referential Integrity

Referential integrity appears both in SeaView and in the Sandhu-Jajodia
models. The main issue in referential integrity is avoidance of semantic

SHIP OBJ DEST TC

Enterprise U Exploration U Rigel S S
Enterprise U Exploration U Talos U U

SHIP OBJ DEST TC

Enterprise U Exploration U Rigel S S

106 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

ambiguity, as discussed at length in Sandhu and Jajodia [1990]. The
definition given here consists of two parts. The first part is similar to the
original SeaView and the Sandhu-Jajodia definitions. However, referential
ambiguity is eliminated by our data-based semantics. The second part of
the definition is to rule out some abnormal cases arising from simultaneous
reference and data-borrow.

Property 5. [Referential Integrity (RI)] Let FK1 be a foreign key in
the referencing relation R1 with apparent primary key AK1. Let R2 be the
referenced relation with apparent primary key AK2. Instances r1 of R1 and
r2 of R2 satisfy referential integrity if and only if

(1) for all t11 { r1 such that t11@FK1# Þ null, there exists t21 { r2 such
that t11@FK1# 5 t21@AK2# ∧ t11@TC# 5 t21@TC# ∧ t11@CFK1# $ t21@CAK2#;
and

(2) for all t11, t12 { r1 and t21, t22 { r2 if t11@AK1, CAK1# 5 t12@AK1, CAK1#
∧ t11@TC# 5 t21@TC# ∧ t12@TC# 5 t22@TC# 5 t11@CFK1# 5 t12@CFK1#
∧ t11@FK1# 5 t21@AK2# 5 t22@AK2#, then t21@AK2, CAK2# 5 t22@AK2,#
CAK2.

For convenience, we refer to these two parts of RI as RI(1) and RI(2),
respectively.

In traditional relations, the referential integrity property precludes the
possibility of dangling references. In other words, a nonnull foreign key
must have a matching tuple in the referenced relation. The requirement
t11@CFK1# $ t21@CAK1# in the first portion of our definition is proposed by
SeaView to allow only downward references. We require t11@TC# 5
t21@TC# as well, which means for any level c, c-tuples can only reference
c-tuples. This follows naturally from our data-based semantics: c-tuple
contains all the data accepted by c-subjects; to c-subjects, absence of a
c-tuple means the entity does not exist.

Consider the two examples described in Sandhu and Jajodia [1993] as an
impasse between referential ambiguity and modeling power. In the first
example, references between relation instances SOD and CS (CAPTAIN,
SHIP) (CAPTAIN is the primary key and SHIP is a foreign key)

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

CAPTAIN SHIP TC

Kirk U null U U
Kirk U Enterprise S S

The Multilevel Relational (MLR) Data Model • 107

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

were somewhat ambiguous in previous models because the S-tuple of CS
referenced both the U- and the S-tuple of SOD, and there is no way to
determine which one is correct. In MLR, since the S-tuple in CS can only
reference the S-tuple in SOD, there is no referential ambiguity. In the
second example, references between relation instances SOD and CS

would not, in previous models, have been allowed if the restriction t1@CFK#
$ t2@CAK# were replaced by t1@CFK# 5 t2@CAK# to eliminate referential
ambiguity because Enterprise in SOD has classification U rather than S in
CS. In MLR, the S-tuple of CS references the S-tuple of SOD without loss of
any modeling power. In both cases the meaning of (Enterprise, S) in the
S-tuple in CS is that Kirk is assigned to the Enterprise accepted by S users.

The second portion of RI is to rule out anomalous cases such as

There are two entities in the referenced instance SOD, (Enterprise, U) and
(Enterprise, S). Within SOD, Enterprise at TS means entity (Enterprise, U)
and at S means entity (Enterprise, S). However, for the referencing
instance CS, Enterprise at both TS and S means entity (Enterprise, S)
because TS-subjects borrow SHIP from S. Thus we have a problem that, in
this database state, Enterprise at level TS has two conflicting meanings,
(Enterprise, U) and (Enterprise, S)— which is certainly unacceptable.

It is clear that this anomalous case violates RI(2), because the two
referencing tuples in CS at level TS and S are of the same entity (Kirk, U);
and because the TS-tuple borrows the foreign key SHIP from the S-tuple,

SHIP OBJ DEST TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

CAPTAIN SHIP TC

Kirk U null U U
Kirk U Enterprise S S

SHIP OBJ DEST TC

Enterprise U Spying TS Talos U TS
Enterprise S Mining S Rigel S S
Enterprise U Exploration U Talos U U

CAPTAIN SHIP TC

Kirk U Enterprise S TS
Kirk U Enterprise S S
Kirk U Enterprise U U

108 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

but the two referenced tuples in SOD, at level TS and S, respectively, are of
two different entities, (Enterprise, U) and (Enterprise, S), respectively.

4. EXPRESSIVE POWER

In this section we compare the expressive power of MLR with several other
data models by giving ER (Entity-Relationship) style diagrams to show how
entities, tuples, and elements are related in different models. We address
the tuple-level labeling model first, since it is the simplest data model and
has been theoretically analyzed in Thuraisingham [1991]. The tuple-level
labeling model has simple schemes, as follows:

where there is only one label on the entire tuple. The expressive power of
the tuple-labeling data model is shown in Figure 2. Every entity is
identified by A1 and can have at most one tuple for each classification level.
Each tuple has its class level recorded in TC, and consists of n 2 1
elements associated with A1. The value of every element is kept in Ai ~2
i # n!.

Note that entity polyinstantiation is not possible in the context of Figure
2 because here an entity is only identified by A1. Fundamentally, tuple-
level labeling can directly provide either element polyinstantiation or
entity polyinstantiation, but not both. An alternate interpretation is shown
in Figure 3, in which every entity, identified by A1 and C15TC, can only
have one tuple. It is obviously more useful to opt for element polyinstantia-
tion, since this allows entities whose attributes are labeled at different
classes; whereas entity polyinstantiation requires all attributes of an entity
to be uniformly classified.

Fig. 2. The expressive power of the tuple-level labeling data model.

A1 A2 . . . An TC

The Multilevel Relational (MLR) Data Model • 109

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

The expressive power of the MLR data model is illustrated in Figure 4.
Here an entity is identified by A1 and C1, and may have at most one tuple
for each classification level. Each tuple has its class level recorded in TC,
and consists of n 2 1 elements. The value and owner’s level of every
element are kept in Ai and Ci (2 # i # n). It is clear that both entity
polyinstantiation and element polyinstantiation are allowed here, since
each entity is identified by both A1 and C1, and both tuple and elements
have their own classification levels.

What we call the semi-tuple-level labeling data model has the following
schemes:

This is exactly the same as the model provided by Smith and Winslett
[1992]. The expressive power of the semi-tuple-level labeling data model is
shown in Figure 5. Both entity polyinstantiation and element polyinstan-
tiation are allowed here, but there is no data-borrow. The semi-tuple-level
labeling model can also be seen as a restricted case of MLR in such a way
that Ci5TC for 2 # i # n. By this restriction, the model can no longer
account for the source of element data, and thereby no upward information
flow by data-borrow can exist. In other words, no “write up” is allowed.

Now compare MLR with SeaView. Although the SeaView model is not
grounded in belief-based semantics, we can still establish some relationship
between SeaView and MLR. The expressive power of the SeaView data
model is shown in Figure 6. The TC in SeaView is redundant, and can be
calculated from C1, . . . , Cn. Hence, in the diagram, it is attached with a
dotted line.

Fig. 3. An alternate interpretation of the tuple-level labeling data model.

A1 C1 A2 . . . An TC

110 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

What SeaView can do to counter the semantic ambiguity problem ad-
dressed in Section 1 is very limited. The model-theoretic semantics of
Quian [1994] is slightly different from the SeaView’s original “fact-based”
semantics [Quian 1993], in that it integrates some ideas from the belief-
based semantics to overcome semantic ambiguity. However, as long as
believability is equated to visibility, it is quite possible that either believ-
ability is maximized or visibility is minimized.

As an example, let us consider an MLR instance:

Fig. 4. The expressive power of the MLR data model.

Fig. 5. The expressive power of the semi-tuple-level labeling data model.

SHIP OBJ DEST TC

Enterprise U Mining S Talos U TS
Enterprise U Mining S Rigel S S
Enterprise U Exploration U Talos U U

The Multilevel Relational (MLR) Data Model • 111

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

In this case, all data accepted by TS-subjects are borrowed from lower-level
subjects. Furthermore, TS-subjects take DEST from U-subjects instead of
S-subjects, and the Talos data can be changed by U-subjects. Neither
SeaView nor the semi-tuple-labeling model can express this case because it
concerns data-borrow. In SeaView, TS-subjects should accept the S-tuple if
they do not have their own data. In semi-tuple-labeling model, TS-subjects
can only accept the data owned by themselves.

In summary, we have shown that MLR is a very powerful multilevel
relational data model, which can be used as a unified data model to support
general MLS database design.

5. MANIPULATION

There are five data manipulation statements in the MLR data model. Four
of them are the traditional SQL statements INSERT, DELETE, SELECT,
and UPDATE. The fifth statement is UPLEVEL, and is new to MLR. The
UPLEVEL statement is introduced to solve the manipulation incomplete-
ness problem discussed in Section 1. Compared to the Sandhu and Jajodia
[1992] model, we have redefined the semantics of the four traditional SQL
statements, and have replaced PUPDATE with UPLEVEL. The SELECT
statement given here is similar to that of Smith and Winslett [1992], and
our intent is to provide a friendly interface that is backward-compatible to
the standard SQL.

We first give several examples to show how these statements are used.
After that, we present formal syntax and semantics for all these data
manipulation statements and explain some important aspects. The syntax
is similar to that in Jajodia et al. [1990], and the explanation given here
concentrates on data-borrow and operation propagation.

Fig. 6. The expressive power of the SeaView data model.

112 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

5.1 Examples

First of all, we illustrate how a subject can add a tuple to an instance with
some data taken from lower levels. Suppose there is a relation instance, as
follows:

An S-subject applying to the instance the following UPLEVEL command

will give us the following result:

An S-tuple is added to SOD, whose OBJ and DEST values are borrowed
from the data owned by M1-subjects and M2-subjects, respectively.

Next, we illustrate the upward propagation of changes due to UPDATE,
DELETE, and UPLEVEL statements. Suppose an S-subject executes the
following UPDATE statement:

the result is

SHIP OBJ DEST TC

Enterprise U Mining M1 Talos U M1

Enterprise U Exploration U Sirius M2 M2

Enterprise U Exploration U Talos U U

UPLEVEL SOD
GET OBJ FROM M1,DEST FROM M2

WHERE SHIP 5 “Enterprise”

SHIP OBJ DEST TC

Enterprise U Mining M1 Sirius M2 S
Enterprise U Mining M1 Talos U M1

Enterprise U Exploration U Sirius M2 M2

Enterprise U Exploration U Talos U U

UPDATE SOD
SET DEST 5 “Rigel”
WHERE SHIP 5 “Enterprise”

SHIP OBJ DEST TC

Enterprise U Mining M1 Rigel S S
Enterprise U Mining M1 Talos U M1

Enterprise U Exploration U Sirius M2 M2

Enterprise U Exploration U Talos U U

The Multilevel Relational (MLR) Data Model • 113

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

Only the S-tuple is changed. Now the S-tuple has an OBJ value taken from
a lower level and a DEST value from its own level.

After that, if an M1-subject issues

the relation instance will be

The M1-tuple is changed, and the change is propagated to the S-tuple
because the OBJ value accepted by S-subjects is currently owned by
M1-subjects.

Furthermore, a DELETE statement from an M1-subject

will change the relation instance to

The M1-tuple is deleted and the OBJ value in the S-tuple is set to null since
no data is currently owned by M1-subjects.

If the M1-subject issues an UPLEVEL instead of the DELETE,

the result is

UPDATE SOD
SET OBJ 5 “Spying”
WHERE SHIP 5 “Enterprise”

SHIP OBJ DEST TC

Enterprise U Spying M1 Rigel S S
Enterprise U Spying M1 Talos U M1

Enterprise U Exploration U Sirius M2 M2

Enterprise U Exploration U Talos U U

DELETE
FROM SOD
WHERE SHIP 5 “Enterprise”

SHIP OBJ DEST TC

Enterprise U null M1 Rigel S S
Enterprise U Exploration U Sirius M2 M2

Enterprise U Exploration U Talos U U

UPLEVEL SOD
GET OBJ FROM U, DEST FROM U
WHERE SHIP 5 “Enterprise”

114 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

The M1-tuple is changed and all its values are borrowed from U-subjects.
The OBJ value of the S-tuple is null because there is no OBJ data currently
owned by M1-subjects.

An M2-subject issuing

to the instance above (* stands for all data attributes) will get the following
result:

(i.e., the tuple at level M2 with neither classification attribute nor tuple-
class attribute). This looks like a traditional SELECT statement applied to
a traditional relation, consisting of all data in the M2-tuple. If the state-
ment issued is

(*% stands for all attributes) the result is

All data attributes, classification attributes, as well as a tuple-class at-
tribute are included.

For entity-polyinstantiation cases, to the following instance:

SHIP OBJ DEST TC

Enterprise U null M1 Rigel S S
Enterprise U Exploration U Talos U M1

Enterprise U Exploration U Sirius M2 M2

Enterprise U Exploration U Talos U U

SELECT *
FROM SOD

SHIP OBJ DEST

Enterprise Exploration Sirius

SELECT *%
FROM SOD

SHIP OBJ DEST TC

Enterprise U Exploration U Sirius M2 M2

SHIP OBJ DEST TC

Enterprise M2 Spying M2 Sirius M2 M2

Enterprise U Exploration U Talos U U

The Multilevel Relational (MLR) Data Model • 115

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

a statement

issued by an S-subject is rejected, or PI is violated, since there are two
entities with SHIP as Enterprise satisfying the WHERE condition. In this
case the S-subject should add either SHIP%5U or SHIP%5M2 (SHIP%
stands for the classification attribute of SHIP) into the WHERE clause.

Finally, consider the two examples from Sandhu and Jajodia [1993]
mentioned in Section 3.5. If a TS-subject issues the following SELECT
statement

to both of them, where CAPTAIN% and DEST% stand for the classification
attributes of CAPTAIN and DEST respectively, the results returned to the
TS-subject are the same.

This is because in both cases the S-tuple of CS only joins with the S-tuple
of SOD. Note that the returned results do not have to satisfy the DBI
property, since they are just a portion of those two relation instances.

We now give the formal syntax and operational semantics of the IN-
SERT, DELETE, SELECT, UPDATE, and UPLEVEL statements.

5.2 The INSERT Statement

5.2.1 Syntax. The INSERT statement executed by a c-subject has the
following general form:

Symbol explanation: R is a relation name; Aj1, Aj2, . . . are data attribute
names, 1 # j1, j2, . . . # n, assuming relation R has data attributes A1,
. . . , An; aj1, aj2, . . . are data values for Aj1, Aj2, . . . , respectively. (In this

UPLEVEL SOD
GET OBJ FROM M2

WHERE SHIP 5 “Enterprise”

SELECT CS.CAPTAIN, CS.CAPTAIN%, SOD.DEST, SOD.DEST%, SOD.TC
FROM CS, SOD
WHERE CS.SHIP5SOD.SHIP
AT S

CAPTAIN DEST TC

Kirk U Rigel S S

INSERT
INTO R@~Aj1@, Aj2#. . . !#
VALUES ~aj1@, aj2#. . . !

116 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

paper we use [] as a syntax description, to stand for option and . . . for
repetition.)

The values specified must be from appropriate domains, i.e., aj1 { Dj1,
aj2 { Dj2, etc. Also, c { $Lj1 . . . Hj1%, c { $Lj2. . . Hj2%, and so on.

5.2.2 Semantics. Each INSERT data manipulation can insert at most
one tuple into the relation R. The inserted tuple t is constructed as follows:
for 1 # i # n,

(1) if Ai is in the attribute list of INTO clause, t@Ai, Ci# 5 ~ai, c!;

(2) if Ai is not in the attribute list of the INTO clause,
(a) if c { $Li . . . Hi%, t@Ai, Ci# 5 ~null, c!; and
(b) if c {/ $Li . . . Hi%, t@Ai, Ci# 5 ~null, null!;

Also, t@TC# 5 c.
The insertion is permitted if and only if

(1) there is no t9 { r such that t9@A1# 5 a1 ∧ t9@TC# 5 c; and

(2) the resulting database state satisfies EI, FKI, and RI(1).

If so, the tuple t is inserted into r. Otherwise the data manipulation is
rejected and the original database state is left unchanged.

5.2.3 Commentary. The INSERT semantics is quite straightforward,
except the (null, null) case, which is discussed in Section 2.1.

5.3 The DELETE Statement

5.3.1 Syntax. The DELETE statement executed by a c-subject has the
following general form:

Symbol explanation: R is a relation name, assuming relation R has data
attributes A1, . . . , An; p is a predicate expression that may include
conditions involving classification attributes, in addition to the usual case
of data attributes.

5.3.2 Semantics. Only tuples t { r with t@TC# 5 c are considered in
the evaluation of p. That is, p is effectively changed to p ∧ t@TC# 5 c. For
those tuples t { r that are selected, r is changed as follows:

(1) t is deleted;

(2) if t@C1# 5 c, all t9 { r with t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# . c are
deleted from r;

DELETE
FROM R
[WHERE p]

The Multilevel Relational (MLR) Data Model • 117

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

(3) if t@C1# , c, for t9 { r with t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# . c ∧
t9@Ci# 5 c (2 # i # n), t9@Ai# is set to null.

The DELETE statement is successful if at level c the resulting database
state satisfies RI(1), i.e., the subview of the database state at level c, which
consists of tuples with tuple classes equal to c, satisfies RI(1). Otherwise
the deletion is rejected and the original database state is left unchanged.

In case where RI(1) is not satisfied at some levels c9 (c9 . c), for the
relation R1 with relation instance r1 containing the referencing tuple t1 and
with apparent primary key AK1 and the foreign key FK1:

(1) if FK1 ù AK1 5 À, for t1@CFK1# 5 c9, t1 is set as t1@FK1# 5 null, and
for t91 { r1 with t91@AK1, CAK1# 5 t1@AK1, CAK1# ∧ t91@TC# . c9 ∧
t9@CFK1# 5 c9, t91@FK1# is set to null;

(2) if FK1 ù AK1 Þ À, t1 (at level c9) should also be deleted, which appears
as recursive deletion.

5.3.3 Commentary. Note that deleting lower-level tuples may lead to
deletion of tuples or setting data attributes to null at higher levels. This
propagation is consistent with other issues of data-based semantics because
what a borrower borrows is the value currently owned by the owner.
Therefore, in case some changes happen to the owner, corresponding
changes should happen to the borrower. Some variations are possible, such
as instead of deleting higher-level tuples or setting higher-level data
attributes to null, the system could just “freeze” and mark them, show
subjects at these levels some exceptions or warnings, and let the subjects
fix them. These variations are important in practice. and should be added
to the semantics explicitly in an actual implementation. Where higher-level
subjects do not want the values to be changed by lower-level subjects, they
should set data classified at their levels by using INSERT or UPDATE
(Section 5). User-defined integrity, e.g.. functional dependency, can be
handled in a very similar way to data reference.

The reason for adopting different policies in RI(1) for level c and levels c9
(c9 . c) is that the DELETE statement issued by a c-subject should not be
rejected due to violation of RI(1) at levels c9, otherwise there would be
downward information leakage. In case of FK1 ù AK1 Þ À, the referencing
tuple cannot be set where FK1 is null, since by EI, null is not allowed
within an apparent primary key. These issues arise with the UPDATE
statement also.

5.4 The SELECT Statement

5.4.1 Syntax. The SELECT statement executed by a c-subject has the
following general form:

118 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

Symbol explanation: R1, R2, . . . are relation names; B1, B2, . . . are
attribute names in R1, R2, . . . , each Bi is a data attribute or classification
attribute or tuple-class attribute. (Wildcards are available: * for all data
attributes, % for all classification attributes and tuple-class attributes, *%
for all attributes.) p is a predicate expression that may include conditions
involving the classification attributes, in addition to the usual data at-
tributes; c1, c2, . . . are values of classification levels (there is wildcard *
for all levels lower than or equal to c).

Values specified must be from appropriate domains. Also, c1 # c, c2 #

c, and so on.

5.4.2 Semantics. Only those tuples t { r1, r2, . . . that have t@TC# as
c,—and if there is no AT clause and they are not otherwise included in an
AT clause—will be taken into the calculation of p. If there is more than one
relation included in FROM clause, the predicate p is implicitly substituted
by p ∧ ~R1.TC 5 R2.TC 5 . . . !. For tuples t satisfying p, the data of t for
attributes listed in the SELECT clause are included in the result. A
SELECT statement is assumed to always succeed, although the returned
tuple set may be an empty set.

5.4.3 Commentary. Replacing p with p ∧ ~R1.TC 5 R2.TC 5 . . . !
serves to enforce that c-tuples in one relation only join with c-tuples in
other relations. This is based on the idea that a c-tuple contains all the
data accepted by c-subjects, and therefore should be only joined with other
c-tuples. Otherwise, it is difficult to interpret the returned result.

It is possible to combine the AT clause with the WHERE clause. How-
ever, it is more natural to separate them, in the sense that most users, who
have no need to see the lower-level data not accepted by them, can omit the
AT clause. Also, with wildcard * different from *%, these users do not even
have to see access classes.

5.5 The UPDATE Statement

5.5.1 Syntax. The UPDATE statement executed by an c-subject has the
following general form:

SELECT B1@, B2# . . .
FROM R1@, R2# . . .
[WHERE p]
[AT c1@, c2# . . .]

UPDATE R
SET Aj1 5 sj1@, Aj2 5 sj2# . . .
[WHERE p]

The Multilevel Relational (MLR) Data Model • 119

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

Symbol explanation: R is a relation name; Aj1, Aj2, . . . are data attribute
names, 1 # j1, j2, . . . # n, assuming relation R has data attributes A1,
. . . , An; sj1, sj2, . . . are scalar expressions for, respectively, Aj1, Aj2, . . . ; p
is a predicate expression that may include conditions involving classifica-
tion attributes, in addition to the usual data attributes.

Values specified must be from appropriate domains, i.e., ?sj1? { Dj1, ?sj2?
{ Dj2, etc., (?? stands for the calculated result). Also, c { $Lj1. . . Hj1%, c {

$Lj2. . . Hj2%, and so on.

5.5.2 Semantics. Only tuples t { r with t@TC# 5 c are taken into the
calculation of p. For tuples t { r that satisfy the predicate p, r is updated
as follows:

(1) if no attribute of A1 is in SET clause, for 2 # i # n, if Ai is in SET
clause:
(a) t@Ai, Ci# 5 ~?si?, c! ;
(b) for tuples t9 { r with t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# . c ∧

t9@Ci# 5 c, t9@Ai# 5 ?si?.

(2) if some attribute of A1 is in the SET clause,
(a) if t@C1# 5 c, all tuples t9 { r that have t9@A1, C1# 5 t@A1, C1# ∧

t9@TC# . c are deleted;
(b) if t@C1# , c,

(i) for 2 # i # n, if Ai is not in SET clause and t@Ci# , c, t@Ai,
Ci# 5 ~null, c!;

(ii) for tuples t9 { r with t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# . c ∧
t9@Ci# 5 c, t9@Ai# 5 null;

(c) for 1 # i # n, if Ai is in the SET clause, t@Ai, Ci# 5 ~?si?, c!.

The UPDATE data manipulation is successful if and only if:

(1) the resulting database state satisfies EI, FKI, and RI(1) (at level c); and

(2) where some attribute of A1 is in the SET clause,
(a) there is no t9 { r such that for the resulting t@A1#, t9@A1# 5 t@A1# ∧

t9@TC# 5 c;
(b) t is not referenced by any other tuple.

Otherwise the update statement is rejected and the original database state
is left unchanged.

Where RI(1) is not satisfied at levels c9 (c9 . c), the same techniques as
for the DELETE statement (Section 5) are used. If RI(2) is violated, for the
referencing tuples t1, t2 { r, where t1@TC# 5 c ∧ t2@TC# . c, t2@FK,
CFK# is set as (null, c).

5.5.3 Commentary. When the A1 of a base tuple is to be changed, all
higher level tuples of the entity will be deleted rather than acquiring a new

120 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

A1 value. This is because changing A1 means changing the entity, lower-
level subjects should not have the privilege of having higher-level subjects
to accept any new entity beyond their willingness to do so by UPLEVEL
statements.

Note that the data set by UPDATE is classified at the subject’s level and
will not be changed by any subject below it, unless the entire entity is
deleted.

The UPDATE semantics given here is a natural extension of the tradi-
tional one, in the sense that no extra tuple is generated. In the MLR model,
there are two ways to add tuples, INSERT and UPLEVEL.

5.6 The UPLEVEL Statement

5.6.1 Syntax. The UPLEVEL statement executed by a c-subject has the
following general form:

Symbol explanation: R is a relation name; Aj1, Aj2, . . . are data attribute
names, 2 # j1, j2, . . . # n, assuming relation R has data attributes A1,
. . . , An and A1 is an apparent key; cj1, cj2, . . . are values of classification

levels for Aj1, Aj2, . . . , respectively; p is a predicate expression that may
include conditions involving the classification attributes and tuple-class
attributes, in addition to the usual data attributes.

Values specified must be from appropriate domains, i.e., cj1 {

$Lj1 . . . Hj1%, cj2 { $Lj2 . . . Hj2%, and so on. Also, cj1 # c, cj2 # c, etc.

5.6.2 Semantics. Only tuples t { r with t@TC# # c are taken into the
calculation of p. For every entity that has at least one tuple t9 { r
satisfying the predicate p, a c-tuple t is constructed as follows:

(1) t@A1, C1# 5 t9@A1, C1# ;

(2) for 2 # i # n,
(a) if Ai is in GET clause,

(i) if there is a tuple t99 with t99@A1, C1# 5 t@A1, C1# ∧ t99@TC#
5 t99@Ci# 5 ci, set t@Ai, Ci# 5 t99@Ai, Ci#;

(ii) if there is no tuple t99 with t99@A1, C1# 5 t@A1, C1# ∧ t99@TC#
5 t99@Ci# 5 ci, set t@Ai, Ci# 5 ~null, ci!;

(b) if Ai is not in the GET clause,
(i) if c { $Li . . . Hi%, t@Ai, Ci# 5 ~null, c!;

(ii) if c {/ $Li . . . Hi%, t@Ai, Ci# 5 ~null, null!.

After that,

(1) if there is a tuple t99 with t99@A1, C1# 5 t@A1, C1# ∧ t99@TC# 5 c,

UPLEVEL R
GET Aj1 FROM cj1@, Aj2# FROM cj2 . . .
[WHERE p]

The Multilevel Relational (MLR) Data Model • 121

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

(a) replace t99 with t;
(b) for any tuple t999 and any 2 # i # n such that t999@A1, C1# 5 t@A1,

C1# ∧ t999@TC# . c ∧ t999@Ci# 5 c, if t@Ai, Ci# Þ t99@Ai, Ci#, set
t999 as t999@Ai# 5 null.

(2) if there is no tuple t99 with t99@A1, C1# 5 t@A1, C1# ∧ t99@TC# 5 c, add
t into r.

If RI(2) is violated, t@FK, CFK# is set as (null, c).
The UPLEVEL data manipulation is successful if and only if the result-

ing database state satisfies PI, FKI, and RI(1). Otherwise the data manip-
ulation is rejected and the original database state is left unchanged.

5.6.3 Commentary. In the MLR data model, the only way to establish or
reestablish connections between lower level data and higher level data is
by using UPLEVEL statements. Having established these connections,
certain kinds of “write up” can be done by subsequent UPDATE and
DELETE statements at lower levels. The connection established by UP-
LEVEL is exactly the data-borrow relationship, which is the fundamental
aspect of data-based semantics. Note that UPLEVEL also allows a c-subject
to get data from the original c-tuple, as well as to borrow from lower level
tuples, and replace the original c-tuple by the constructed one (with
changes propagated to higher level tuples).

If a subject, say at level S, wants to borrow data from M1, but for that
attribute M1 borrows data from U, MLR will set (null, M1) in the S-tuple
instead of getting data from U for S. From the security point of view, when
S trusts M1 and M1 trusts U, it does not necessarily mean that S should
trust U. If S trusts U, S should explicitly express this by issuing a
statement to borrow data from U. Using automatic “recursive get” seems
more dangerous than not. Practically, it might be useful for UPLEVEL to
have a SET clause just like the one in UPDATE, because it is quite possible
that a subject needs to add a tuple with some data taken from lower levels
and other data provided by itself. However, this is redundant in theory,
because the subject can use an UPLEVEL statement followed by an
UPDATE statement to carry out this function.

6. SOUNDNESS

In this section we will prove that the MLR model is a sound data model. To
clarify the essential meaning of soundness, we give the following two
definitions.

Definition 6.1 In the MLR data model, a legal database state is one in
which all relation instances satisfy the five integrity properties.

Definition 6.2 A sound data model is one in which any sequence of
provided operational statements will transform any legal database state to
a legal database state.

122 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

From these two definitions, we can see that integrity properties and
operational semantics play important roles in the soundness proof. In fact,
the traditional relational data model also has some integrity properties
regarding primary key, foreign key, and reference control. However, in
comparison to MLR, they are much simpler. The operational semantics of
the traditional relational data model is also very straightforward; its
soundness proof is therefore a trivial matter. For the MLR data model, due
to its element-level labeling and data-based semantics, the soundness proof
is much more complicated.

THEOREM 6.1 The MLR model is sound.

PROOF. To prove the soundness of the MLR model, we need to prove that
each of the INSERT, DELETE, UPDATE, and UPLEVEL statements
transform any legal database state to a legal database state. Note that any
SELECT statement will leave any database state unchanged. So there are
four cases to prove:

Case (1). For an INSERT statement, since EI, FKI, and RI(1) are
enforced by the INSERT semantics, we only need to show that the resulting
instance of relation R satisfies PI, DBI, and RI(2).

(1) PI is satisfied because
(a) there is no t99 in the original r with t99@A1, C1# 5 t@A1, C1# ∧

t99@TC# 5 c, since insertion t is permitted only if there is no t9 { r
such that t9@A1# 5 t@A1# ∧ t9@TC# 5 c;

(b) there is no t99 in the original r with t99@A1, C1# 5 t@A1, C1# ∧
t99@TC# . c, since the original r satisfies DBI;

(c) there is no t99 in the original r with t99@A1, C1# 5 t@A1, C1# ∧
t99@TC# , c, since the definition of relation instance requires tc $

c1.

(2) DBI is satisfied because there is no t@Ai# (1 # i # n) in t with t@Ci#
, t@TC#.

(3) RI(2) is also satisfied by the same reason as (1).

Case (2). For a DELETE statement, since RI(1) is enforced by the
DELETE semantics, we only need to show that the resulting database state
satisfies EI, PI, DBI, FKI, and RI(2):

(1) for relation R
(a) EI is satisfied because no tuple t99 in the original r, which satisfies

EI, will change t99@A1, C1#;
(b) PI is satisfied because

(i) no new tuple is added;
(ii) all tuples t9 in the original r with t9@A1, C1# 5 t@A1, C1# ∧

t9@TC# . c ∧ t9@Ci# 5 c (2 # i # n) will either be deleted or
set as t9@Ai# 5 null;

The Multilevel Relational (MLR) Data Model • 123

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

(iii) by the definition of relation instance, there is no tuple t99 with
t99@A1, C1# 5 t@A1, C1# ∧ t99@TC# , c ∧ t99@Ci# 5 c (2 # i
n).

(b) DBI is satisfied because all tuples t9 in the original r with t9@A1,
C1# 5 t@A1, C1# ∧ t9@TC# . c ∧ t9@Ci# 5 c (2 # i # n) are
either deleted or set as t9@Ai# 5 null;

(d) FKI is satisfied because
(i) all tuples in the original r satisfy FKI;

(ii) all tuples t9 in the original r with t9@A1, C1# 5 t@A1, C1# ∧
t9@TC# . c ∧ t ’@CFK# 5 c are either deleted or set as t ’@AFK,
CFK# 5 ~null, c!.

(e) RI(2) is also satisfied for the same reason as (1);

(2) for relation R1 etc., either FK1 ù AK1 5 À or FK1 ù AK1 Þ À; the
proof is similar to that for R.

Case (3). For an UPDATE statement, since EI, FKI, and RI are enforced
by the UPDATE semantics, we only need to show that the resulting
database state satisfies PI and DBI.

(1) for relation R:
(a) PI is satisfied because

(i) no new tuple is added;
(ii) if t@A1# is updated,

(A) all tuples t9 in the original r with t9@A1, C1# 5 t@A1, C1# ∧
t9@TC# . c ∧ t9@Ci# 5 c (2 # i # n) are either deleted
or set as t9@Ai# 5 null;

(B) for the resulting entity t@A1, C1#, the proof is similar to
that for an INSERT statement;

(iii) if t@A1# is not updated, for every updated t@Ai# (2 # i # n), all
t9 in the original r with t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# . c
∧ t9@Ci# 5 c is set to t9@Ai# 5 t@Ai#;

(iv) by the definition of relation instance, there is no t99 in the
original r with t99@A1, C1# 5 t@A1, C1# ∧ t99@TC# , c ∧
t99@Ci# 5 c (2 # i # n).

(b) DBI is also satisfied because
(i) every updated t@Ai# (1 # i # n) has t@Ci# 5 c;

(ii) if t@A1# is updated:
(A) all tuples t9 in the original r with t9@A1, C1# 5 t@A1, C1# ∧

t9@TC# . c ∧ t9@Ci# 5 c (2 # i # n) are either deleted
or set to t9@Ai# 5 null;

(B) for the resulting entity t@A1, C1#, the proof is similar to
that for an INSERT statement;

(iii) if t@A1# is not updated, for every updated t@Ai# (2 # i # n), all

124 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

t9 in the original r with t9@A1, C1# 5 t@A1, C1# ∧ t9@TC# . c
∧ t9@Ci# 5 c are set as t9@Ai# 5 t@Ai#.

(2) for relation R1 etc., the proof is similar to that of a DELETE statement.

Case (4). For an UPLEVEL statement, since PI, FKI, and RI are enforced
by the UPLEVEL semantics, we only need to show that the resulting
instance of relation R satisfies EI and DBI.

(1) EI is satisfied because for each added tuple t there is t9 in the original
r, which satisfies EI, such that t@A1, C1# 5 t9@A1, C1#.

(2) DBI is also satisfied because
(a) in the constructed c-tuple t,

(i) all t@Ai# (2 # i # n) with t@Ci# 5 c are either null or taken
from the original c-tuple that has t@Ci# 5 c;

(ii) all t@Ai# (2 # i # n) with t@Ci# 5 c9 , c are directly taken
from tuples at levels c9;

(b) where the original c-tuple t99 is replaced by t, for any 2 # i # n
such that t99@Ai, Ci# Þ t@Ai, Ci#, every tuple t999 at levels c9 (c9 .
c) with t999@Ci# 5 c will have t999@Ai# set to null.

Hence, all five operation statements will transform any legal database
state to a legal database state. And any sequence of the operation state-
ments provided here will transform any legal database state to a legal
database state. e

7. COMPLETENESS

The completeness of the MLR data model is proved in this section. Again,
we give the definition first.

Definition 7.1 A complete data model is one in which any legal database
state can be transformed by a sequence of the provided data manipulation
statements to any other legal database state.

The completeness of the traditional relational data model is very obvious,
since we can delete or insert any specific tuple without much limitation.
However, it becomes an issue in element-level labeling multilevel data
models. Recall the last example in Section 1, which illustrates the incom-
pleteness problem. This is why the MLR data model introduces a new data
manipulation statement UPLEVEL to complement the other four SQL
statements.

THEOREM 7.1 The MLR model is complete.

To prove the completeness of the MLR model, we need to prove the
following lemmas.

LEMMA 7.1 Any legal database state can be transformed by a sequence of
the provided data manipulation statements to an empty database state.

The Multilevel Relational (MLR) Data Model • 125

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

PROOF. From the DELETE semantics, we can make the following points:

(1) Any entity can be entirely deleted totally by deleting the base tuple of
the entity.

(2) In deleting an entity, if the values of A1 and C1, which identify the
entity, are given in the WHERE clause, the operation will not change
any other entity, except those with tuples referencing this A1, C1.

(3) If we delete entities with referencing tuples before we delete entities
with referenced tuples, RI will always be satisfied and the DELETE
operation will not be rejected.

So by deleting all entities in all relation instances, we can get the empty
database state. e

LEMMA 7.2 An empty database state can be transformed by a sequence of
provided data manipulation statements to any legal database state.

PROOF. Any legal database state can be constructed as follows:

(1) Entities with referencing tuples are added before adding entities with
referenced tuples.

(2) A multilevel entity can be added as follows:
(a) all tuples of the entity are added in reverse topologically sorted

order of their TC values;
(b) each tuple is added by a subject at the level equal to the TC value of

the tuple, as follows.
(i) The base tuple t1 is added by an INSERT statement with all Ai

that have t1@Ai# Þ null listed in the INTO clause, and t1@Ai# in
the VALUES clause.

(ii) Adding any additional tuple tm is done by an UPLEVEL state-
ment, possibly followed by an UPDATE statement. All Ai and
tm@Ci# with tm@Ci# , tm@TC# are included in the USE clause of
the UPLEVEL statement; whereas all Ai and tm@Ai# that have
tm@Ci# 5 tm@TC# ∧ tm@Ai# Þ null are included in the SET
clause of the UPDATE statement. Also, A1, C1, and their values
are put into the WHERE clauses of both UPLEVEL and UP-
DATE.

This process is successful because

(1) adding one entity will not change any other entity, since A1, C1 and
their values are included in the WHERE clauses of both UPLEVEL and
UPDATE;

(2) EI, FKI, and PI are always satisfied, since the constructed database
state is a legal one;

(3) DBI is always satisfied, since

126 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

(a) the constructed database state is a legal one;
(b) all tuples of an entity are added in reverse topologically sorted

order of their TC values;

(4) RI is always satisfied, since
(a) the constructed database state is a legal one;
(b) entities with referencing tuples are added before adding entities

with referenced tuples.

From the INSERT, UPLEVEL, and UPDATE semantics, we can easily see
that the added tuples are exactly t1 and tms. e

We now have the proof of Theorem 2, as follows.

PROOF. [Theorem 7.1] From Lemmas 7.1 and 7.2, any legal database
state can be transformed by a sequence of provided operation statements to
any other legal database state. e

8. SECURITY

Security is the fundamental issue of the MLR data model, and is the
essential difference between the traditional data model and multilevel
secure data models. Therefore, the security proof of the MLR data model is
concerned with whether or not the MLR data model satisfies the security
requirements of no “downward” information flow. Our proof is based on the
concept of noninterference [Goguen 1982].

In this section we use the following notation:

—S: all subjects with varying clearance levels;

—T : all tuples with varying tuple classes in a database state.

Given any access level c,

—SV~c! : the set of subjects with clearance levels lower than or equal to c;

—SH~c! : S 2 SV~c!;

—TV~c! : the set of tuples with tuple classes lower than or equal to c;

—TH~c! : T 2 TV~c!.

It is clear that for any access level c, S 5 SV~c! ø SH~c! and SV~c! ù

SH~c! 5 À; while T 5 TV~c! ø TH~c! and TV~c! ù TH~c! 5 À.
The security requirement can now be defined as follows.

Definition 8.1 A secure data model is one that is noninterfering, i.e., for
any access level c, deleting any input from subject s1 { SH~c! does not
affect the output to any subject s2 { SV~c!.

There are two assumptions here regarding the term “output.” One is that
we do not take care of the response timing problem. Our security proof does
not deal with timing covert channels (typical in noninterfering proofs).

The Multilevel Relational (MLR) Data Model • 127

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

These channels arise due to implementation-specific details, and are not
inherent in the data model at this level of abstraction. The second assump-
tion is that all tuples returned for a SELECT are given in a deterministic
order rather than in different orders on different occasions. These two
assumptions allow us to concentrate on signaling channels, which are
inherent in the deterministic data model.

As shown in Figure 7, the input to the MLR data model is a sequence of
operations from subjects with varying clearance levels, which are expressed
by the INSERT, DELETE, SELECT, UPDATE, and UPLEVEL statements;
the outputs are the results returned to the subjects, including

(1) a set of returned tuples for any SELECT statement;

(2) a SUCCESS or FAILURE (S/F) information for any INSERT, DELETE,
UPDATE, or UPLEVEL statement.

THEOREM 8.1 The MLR model is secure.

We prove the following lemmas first.

LEMMA 8.1 For any access level c, changing TH~c! does not affect the
output to any subject s { SV~c!.

PROOF. By the SELECT semantics, in processing a SELECT statement
issued by a c9-subject s { SV~c! (c9 # c), no tuples in TH~c9! are either
taken into the calculation of p or put into the returned tuple set. Since c9
c implies TH~c9! $ TH~c!, changing TH~c! does not affect the tuple set
output to s { SV~c!.

By the INSERT, DELETE, UPDATE, and UPLEVEL semantics, for any
c9-subject s { SV~c! (c9 # c):

(1) any INSERT statement issued by s could be rejected if and only if
(a) there is a tuple t9 { r with t9@A1# 5 a1 ∧ t9@TC# 5 c9; or
(b) the inserted tuple t violates EI or FKI; or
(c) t references some c9-tuple t9, which does not exist.

(2) any DELETE statement issued by s could be rejected if and only if the
deleted tuple t is referenced by some c9-tuple t9.

Fig. 7. The interface of the MLR data model.

128 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

(3) any UPDATE statement issued by s could be rejected if and only if
(a) where some attribute of A1 is in the SET clause, there is a tuple t9

{ r with t9@A1# 5 t@A1# ∧ t9@TC# 5 c9, where t is the updated
tuple; or

(b) t violates EI or FKI; or
(c) where some attribute of A1 is in SET clause, the original t is

referenced by some c9-tuple t9; or
(d) t references some c9-tuple t9, which does not exist.

(4) any UPLEVEL statement issued by s could be rejected if and only if
(a) there is a tuple t9 { r with t9@A1# 5 t@A1# ∧ t9@C1# Þ t@C1# ∧

t9@TC# 5 c9, where t is the constructed tuple; or
(b) t violates FKI; or
(c) t references some c9-tuple t9, which does not exist.

In all cases, only t or c9-tuple t9 needs to be considered. Since t, t9 {/
TH~c9! $ TH~c!, changing TH~c! does not affect the S/F information
output to s { SV~c!; so changing TH~c! does not affect the output to s {

SV~c!. e

LEMMA 8.2 For any access level c, deleting any input from subject s {

SH~c! does not change TV~c!.

PROOF. Note that a subject can change database states only by an
INSERT, DELETE, UPDATE, or UPLEVEL statement:

(1) an INSERT statement issued by a c9-subject s { SH~c! (c9 . c) can
only generate a c9-tuple t9. Since c9 . c, t9 {/ TV~c!;

(2) a DELETE statement issued by a c9-subject s { SH~c! (c9 . c) can
only
(a) delete c9-tuples t9, and may propagate changes to tuples t99 at levels

c99 (c99 . c9);
(b) may either update or delete referencing tuples t991 at levels c99 (c99

. c9), and possibly propagate changes to tuples t9991 at levels c999
(c999 . c99).

Since c999 . c99 . c9 . c, all these t9, t99, t991, t9991 {/ TV~c!;

(3) an UPDATE statement issued by a c9-subject s { SH~c! (c9 . c) can
only
(a) change c9-tuples t9, and may propagate the changes to tuples t99 at

levels c99 (c99 . c9);
(b) may either update or delete referencing tuples t991 at levels c99 (c99

. c9), and possibly propagate changes to tuples t9991 at levels c999
(c999 . c99).

Since c999 . c99 . c9 . c, all these t9, t99, t991, t9991 {/ TV~c!;

The Multilevel Relational (MLR) Data Model • 129

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

(4) an UPLEVEL statement issued by a c9-subject s { SH~c! (c9 . c) can
either add a new c9-tuple t9 or change an original c9-tuple t99, and
propagate the changes to tuples t999 at levels c999 (c999 . c9). Since c999
. c9 . c, all these t9, t99, t999 {/ TV~c!;

From this we can see that deleting any input from subject s { SH~c! does
not change TV~c!. e

These two lemmas are illustrated in Figure 8; we can now prove Theorem
8.1

PROOF. [Theorem 8.1]. From Lemmas 8.1 and 8.2, for any level c, since
S 5 SV~c! ø SH~c!, SV~c! ù SH~c! 5 À, T 5 TV~c! ø TH~c!, TV~c!
ù TH~c! 5 À, deleting any input from subject s1 { SH~c! does not affect
the output to s2 { SV~c!. e

9. CONCLUSION

In this paper we fully defined the MLR model and proved that the MLR
model is sound, complete, and free of downward information flows. The
redefined polyinstantiation integrity and referential integrity properties as
well as the newly introduced UPLEVEL statement and data-borrow integ-
rity strongly support the fact that the MLR model is a secure, unambigu-
ous, and powerful data model.

In the MLR data model, any subject can not only “read down,” i.e., get
data accepted by subjects at its level or at the levels below it, but also do
some kind of “write up,” i.e., change data accepted by subjects at levels
above it, provided the data are owned by subjects at its level.

At any given level an apparent primary key value identifies only one
entity, which avoids referential ambiguity. However, in general, an appar-
ent primary key value can indicate different entities at different levels,
therefore entity polyinstantiation is allowed across classification levels,
which prevents downward information leakage arising from rejecting low-

Fig. 8. What can affect and cannot affect relations.

130 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

er-level insertion. Some other approaches may be useful to supplement our
polyinstantiation integrity property, especially for some specific cases.

Since the MLR data model has a clear and unambiguous semantics, some
further extensions are fairly straightforward. For example, many user-
defined integrity constraints in the traditional data model, some of which
even include aggregation functions, can also be included in the MLR data
model. In the MLR model, all these traditional constraints are applied at
each classification level on those tuples accepted by subjects at that level.
Of course, some techniques must be used to prevent downward information
leakage, similar to what is done in referential integrity checking.

Another interesting issue is scheme classification. In MLR, a scheme is
classified at the greatest lower bound of Li (i 5 1 . . . n). However, there
may be some cases where one wants to hide entirely some attributes from
lower-level subjects, i.e., subjects at different levels have different schemes.
There are several questions that arise: Who is in charge of scheme creation
and maintenance? What is the relationship between schemes at different
levels? Would this appear as “scheme polyinstantiation”? What about those
user-defined integrity constraints with respect to scheme classification?

REFERENCES

BELL, D. E. AND LAPADULA, L. J. 1975. Secure computer systems: Unified exposition and
multics interpretation. Tech Rep. MTR-2997. MITRE Corp., Bedford, MA.

CHEN, F. AND SANDHU, R. S. 1995. The semantics and expressive power of the multilevel
relational data model. In Proceedings of the IEEE Symposium on Research in Security and
Privacy. IEEE Computer Society Press, Los Alamitos, CA, 128–142.

DENNING, D. E., LUNT, T. F., SCHELL, R. R., SHOCKLEY, W. R., AND HECKMAN, M. 1988. The
SeaView security model. In Proceedings of the IEEE Symposium on Research in Security
and Privacy. IEEE Computer Society Press, Los Alamitos, CA, 218–233.

GOGUEN, J. A. AND MESEGUER, J. 1982. Security policies and security models. In Proceedings
of the IEEE Symposium on Research in Security and Privacy. (Oakland, CA), IEEE
Computer Society Press, Los Alamitos, CA, 11–20.

JAJODIA, S. AND LANDWEHR, C. E., Eds. 1991. Database Security IV: Status and
Prospects. North-Holland Publishing Co., Amsterdam, The Netherlands.

JAJODIA, S., AND SANDHU, R. 1991. Honest databases that can keep secrets. In Proceedings of
the 14th NIST-NCSC National Computer Security Conference (Washington, DC, Oct.),
267–282.

JAJODIA, S., SANDHU, R. S., AND SIBLEY, E. 1990. Update semantics of multilevel relations. In
Proceedings of the 6th Annual Computer Security Applications Conference. (Tucson, AZ,
Dec.), 103–112.

JAJODIA, S. AND SANDHU, R. S. 1991. Toward a multilevel secure relational data model. In
Proceedings of the 1991 ACM SIGMOD International Conference on Management of Data
(Denver, CO, May 29–31, 1991), J. Clifford and R. King, Eds. ACM Press, New York, NY,
50–59.

LUNT, T. F., DENNING, D. E., SCHELL, R. R., HECKMAN, M., AND SHOCKLEY, W. R. 1990. The
SeaView security model. IEEE Trans. Softw. Eng. 16, 6 (June), 593–607.

QIAN, X. 1994. A model-theoretic semantics of the multilevel relational model. In Proceedings
of the 4th International Conference on Extending Database Technology: Advances in Data-
base Technology (Cambridge, UK, March 28–31, 1994), M. Jarke, J. Bubenko, and K.
Jeffery, Eds. Lecture Notes in Computer Science, Springer-Verlag, New York, NY,
201–214.

QIAN, X. AND LUNT, T. 1993. Tuple-level vs. element-level classification. In Database Security
VI. Results of the Sixth Working Conference of IFIP Working Group 11.3 (Simon Fraser

The Multilevel Relational (MLR) Data Model • 131

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

Univ., Vancouver, B.C., Canada, Aug. 19–21, 1992), B. Thuraisingham and C. E. Landwehr,
Eds. Elsevier Science Inc., New York, NY, 301–315.

SANDHU, R. S. 1993. Lattice-based access control models. IEEE Computer 26, 11, 9–19.
SANDHU, R. S. AND JAJODIA, S. 1992. Polyinstantiation for cover stories. In Proceedings of the

European Symposium on Research in Computer Security (Toulouse, France, Nov.)
Y. Deswarte, G. Eizenberg, and J.-J. Quisquater, Eds. Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 307–328.

SANDHU, R. S. AND JAJODIA, S. 1993. Referential integrity in multilevel secure databases. In
Proceedings of the 16th National Computer Security Conference. (Baltimore, MD, Sept.
20–23), 39–52.

SANDHU, R. S., JAJODIA, S., AND LUNT, T. 1990. A new polyinstantiation integrity constraint
for multilevel relations. In Proceedings of the IEEE Workshop on Computer Security
Foundations (Franconia, NH, June), 159–165.

SMITH, K. AND WINSLETT, M. 1992. Entity modeling in the MLS relational model. In
Proceedings of the International Conference on Very Large Data Bases (Vancouver, Canada,
Aug. 1992), IEEE Computer Society Press, Los Alamitos, CA, 199–210.

THURAISINGHAM, B. M. 1991. A nonmonotonic typed multilevel logic for multilevel secure
database/knowledge-base management systems. In Proceedings of the Fourth IEEE Work-
shop on Computer Security Foundations, 127–138.

Received: December 1997; revised: March 1998; accepted: March 1998

132 • R. Sandhu and F. Chen

ACM Transactions on Information and System Security, Vol. 1, No. 1, November 1998.

