16 : IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 1, FEBRUARY 1996

A Trusted Subject Architecture for Multilevel
- Secure Object-Oriented Databases

Roshan K. Thomas and Ravi S. Sandhu

Abstract—In this paper, we address security in object-oriented database systems for multilevel secure environments. Such an
environment consists of users cleared to various security levels, accessing information labeled with varying classifications. Our
purpose is three-fold. First, we show how security can be naturally incorporated into the object model of computing so as to form a
foundation for building multilevel secure object-oriented database management systems. Next, we show how such an abstract
security model can be realized under a cost-effective, viable, and popular security architecture. Finally, we give security arguments
based on trusted subjects and a formal proof to demonstrate the confidentiality of our architecture and approach.

A notable feature of our solution is the support for secure synchronous write-up operations. This is useful when low level users
want to send information to higher level users. In the object-oriented context, this is naturally modeled and efficiently accomplished
through write-up messages sent by low level subjects. However, such write-up messages can pose confidentiality leaks (through
timing and signaling channels) if the timing of the receipt and processing of the messages is observable to lower level senders.
Such covert channels are a formidable obstacle in building high-assurance secure systems. Further, solutions to problems such as
these have been known to involve various tradeoffs between confidentiality, integrity, and performance. We present a concurrent
computation model that closes such channels while preserving the conflicting goals of confidentiality, integrity, and performance.
Finally, we give a confidentiality proof for a trusted subject architecture and implementation and demonstrate that the trusted
subject (process) cannot leak information in violation of multilevel security.

Index Terms—Multilevel security, secure write-up, object-oriented databases, trusted subject architecture, covert channels,

confidentiality proof.

1 INTRODUCTION

VER the past decade, object-oriented computing has
become a very active field for research and develop-
ment. We attribute this partly to the broad applicability of
the object-oriented paradigm itself. It is thus perhaps inevi-
table that the field of information security also looks to this
paradigm for fresh ideas and influences. Consider for ex-
ample, the ability of the paradigm to model as objects the
structure and behavior of real-world entities in an applica-
tion domain. This makes it easier to specify, interpret, and
implement security requirements and policies in terms of
objects rather than more primitive computer-oriented ab-
stractions and representations. Thus we have lately wit-
nessed several research and development proposals for se-
cure object-oriented databases—efforts that attempt to in-
corporate security features in object-oriented data models.
In this paper, we turn our attention to multilevel secure
(mls) object-oriented database management systems [12],
[13], [15], [21], [28]. A multilevel secure environment con-
sists of users cleared to various security levels accessing
information labeled with varying classifications. The clear-
ances and classifications typically form a lattice structure
with the high security levels lying towards the top of the
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lattice [23]. From a confidentiality viewpoint, information is
allowed to flow only upwards in the lattice. An access con-
trol or security policy ensures this by governing the ac-
cesses to the information by the different users. The policy
itself is enforced through appropriate mechanisms. In the
object-oriented context, one way to accomplish this is to
control the exchange of messages between objects at vari-
ous Jevels.

The purpose of our discussions here is_three-fold. First
we wish to give a gentle introduction to multilevel security,
multilevel architectures, and security in object-oriented sys-
tems. We present a message-based security model that can
be used as a foundation in building secure object-oriented
systems. Our second objective is to show how such an ab-
stract security model can be realized using a viable and
commercial architecture. Lastly we give security arguments
and a formal proof to demonstrate the security of this archi-
tecture. This gives us the assurance that the architecture
cannot be exploited to leak information in violation of the
security policy. _

A key feature of our solutions is the support for write-
up operations. Write-up operations are initiated when low
level information needs to be sent to higher levels. They are
particularly useful in applications that call for active and
reactive capabilities such as when events would have to be
monitored and actions triggered when certain conditions
become true. In secure active databases, the option of
sending low level information to higher levels by read-
down operations is not always feasible or efficient. A high
level subject would have to continually keep polling the
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lower levels for updates of low level information. The
polling window is often not easy to compute. As such,
write-up remains the natural and efficient alternative.

Most commercial mls relational database systems do not
support write-up operations. This can be attributed to the
fact that arbitrary and primitive write-up operations can
obliterate high-level data, thereby affecting its integrity.
However, in the object-oriented context, write-up opera-
tions result in the invocation of appropriate methods in the
high level target object. This, along with the properties of
encapsulation and information hiding, provide defenses
and ensure that the state of the object is modified only in
predefined and controllable ways.

A formidable obstacle in building high-assurance multi-
level secure systems is the presence of covert channels. Such
a channel is a communication path that can be exploited by
colluding users or processes to leak information. These
channels arise due to processes sharing resources in a sys-
tem. Security models and access control mechanisms often
do not provide enough defenses against these channels.
Unfortunately, in the object-oriented and message-based
environments, an instance of this problem manifests in
terms of signaling channels associated with synchronous
write-up operations. A synchronous operation is one where
the sender object’s method is suspended until processing is
completed in the higher level receiver object and a reply is
returned back to the sender (mimicing remote procedure
call semantics). Since a high level receiver object can
modulate the time taken to complete its processing and
return a reply, this time can be observed by the lower level
sender. Such timings can be used to construct a pattern of

signals which convey information from the high object to.

lower levels and pose confidentiality leaks which violate
the security policy.

To address this covert channel, we have pursued a solu-
tion which calls for concurrent computations to service
write-up operations. In other words whenever a write-up
message is sent, the sender is allowed to continue and a
new concurrent computation (process) is created to service
the receipt of the message. Hence the sender object can no
longer observe any timing delays and the channel is closed.
It is important to note that in essence we now have an
asynchronous operation; however we require that the net
effect of the operation on objects be the same as that of a
synchronous write-up.

The field of information security is concerned with three
separate but interrelated goals, namely, confidentiality, in-
tegrity, and availability. We are thus interested in solutions
that address the various dimensions of the confidentiality-
integrity-availability security triad. The concurrent compu-
tation model mentioned above addresses the confidentiality
aspect by closing the signaling channels associated with
supporting synchronous write-up operations. However, the
integrity objective will mandate that the concurrent compu-
tations not modify objects arbitrarily. These modifications

should preserve the semantics of the originally intended

synchronous execution. This will require scheduling and
synchronization of the various concurrent processes. The
availability objective mandates that computations do not
starve and unnecessary delays in scheduling be minimized.

We elaborate on how our computing model can be im-
plemented in a trusted subject architecture. This architec-
ture along with two others, namely, the kernelized and rep-
licated architectures, represent three well-known architec-
tural approaches to the design of high-assurance multilevel
secure systems. However, from a commercial standpoint,
the trusted subject architecture has been the choice of data-
base vendors. The implementation of our computation
model in the kernelized and replicated architectures has
been discussed elsewhere in the literature [26], [27].

The key component of our architecture is a trusted
scheduler charged with scheduling the various concurrent
processes created during the course of write-up processing.
The scheduler itself is called a “multilevel process” as it
deals with inputs and outputs at various security levels. As
we shall discuss later, such a process is also considered to be
a “trusted subject” and hence an architecture with such a
subject is referred to as a trusted subject architecture. The
term “trusted” is used to convey the fact that such a process
by virtue of its ability to see and process information at
multiple levels has to be exempted from access control re-
strictions, and as such, is trusted not to abuse this privilege
and leak information.

To get a system certified for high-assurance environ-
ments, we have to prove, verify, and certify that a trusted
subject does not leak information. We approach a confi-
dentiality proof for our architecture using the theory of
noninterference [6], [7]. Informally, we say a subject s, is
noninterfering with a second subject s, if no action issued
by the first can influence the future output of the system
to s,. We show how the scheduler cannot introduce inter-
ference across security levels. In other words, we show
how the scheduling of high level processes cannot affect
the scheduling of processes at lower levels. Our proof rep-
resents a concrete application of the noninterference ap-
proach to a real database problem.

The rest of this paper is organized as follows. We begin
in Section 2 by covering some background to multilevel
security and multilevel architectures. Section 3 is devoted to
multilevel security in object-oriented systems and a discus-
sion of our solutions to support secure write-up operations.
In Section 4, we illustrate the trusted subject architecture
and elaborate on how the scheduling scheme can be im-
plemented within the architecture. In Section 5, we give a
confidentiality proof for the trusted scheduler, and Section 6
concludes the paper. )

2 BACKGROUND

In this section, we give a brief introduction to multilevel
security and multilevel architectures.

2.1 Multilevel Security

The notion of multilevel security for data confidentiality
originated in the late 1960s when the U.S. Department of
Defense wanted to protect classified information processed
by computers. Environments and applications requiring
multilevel security are characterized by users with more
than one clearance level sharing data with more than one
sensitivity level (classification). Access control policies and
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mechanisms govern how the various subjects in a system
are allowed to access shared data.

On closer examination, it becomes clear that the mili-
tary security policy is indeed a special case of a more
general lattice-based security policy [4], [23]. Every ob-
ject in the system is assigned a security class, also
known as a security label. Information is allowed to
flow between two objects only if the policy allows in-
formation to flow between the corresponding classes.
Given a set SC of security classes, we can formally de-
fine a binary can-flow relation — < SC x SC. It is also
convenient to define the inverse of the can-flow relation
called the dominates relation. We say A = B (A domi-
nates B) if and only if B — A (B can-flow to A). In a lat-
tice-based approach to multilevel security, the security
classes form a mathematical structure called a lattice.
The security elements of the lattice are partially ordered
under the can-flow (—) relation.

Having introduced multilevel security, we now turn our
attention to security models. The Bell and LaPadula secu-
rity model (also called the BLP model) was the first to for-
mally address multilevel security, and even today remains
the de facto standard [1]. BLP distinguishes two types of
subjects; untrusted and trusted. An untrusted subject is as-
signed a single security level (label). BLP characterizes and
governs access control and information flow for untrusted
subjects with the following two mandatory access control
(MAC) rules (! denotes the label of the corresponding sub-
ject (s) or object (0)).

e Simple Security Property. Subject s can read object
o only if I(s) = I(0).

¢ %-Property. Subject s can write object o only if
I(s) < l(0).

The need for the simple-security rule is obvious; it pre-
vents low level users (and subjects) from reading informa-
tion stored at higher levels. It thus prevents “read-up” op-
erations. This requirement parallels that of the paper world
with documents and human beings (users). However, it
turns out that disallowing read-up operations alone is not
sufficient to prevent illegal information flows that violate
the security policy. To illustrate, a high subject may read a
file classified at high, and write a subset of its contents (or

information derived from its contents) into a second file ata

lower file. This would clearly violate the security policy as
information is flowing downwards in the security lattice.
Now in the paper (noncomputer) world, human users are
trusted to not leak such information. However computer
systems can be riddled with Trojan horses that are mali-
cious pieces of software code for which one cannot associate
the same notion of trust. Thus *-property (pronounced star
property) prevents such violations by disallowing write-
down operations.

A major complication in implementing multilevel secu-
rity is the existence of trusted subjects. This is because such
subjects are exempt from mandatory access control, al-
though we place some trust in them not to behave mali-
ciously and leak information in violation of the security
policy. The need for trusted subjects in computer systems
can be attributed to the provision of many services that re-

quire access to data stored at different security levels. Ex-
amples include services from authentication and file serv-
ers. The processes providing these services cannot be bound
by mandatory access control - restrictions. Consequently,
with the existence of trusted subjects, we need the assur-
ance that such subjects do not leak information. In the latter
part of this paper we develop a confidentiality proof for a
trusted scheduler.

2.2 Multilevel Architectures

In this subsection, we briefly review three multilevel data-
base management system (DBMS) architectures, namely, the
kernelized, replicated, and trusted subject architectures. Of
these, the first two comprise two of the three architectures
identified by the Woods Hole study organized by the U.S.
Air Force [3], and were seen as short-term solutions. Thus
these architectures were motivated by the need to build
multilevel secure DBMSs from existing untrusted DBMSs.
The trusted subject architecture on the other hand, requires
one to build a multilevel DBMS either from scratch or by
modification of existing DBMS technology.
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Fig. 1. Three muitilevel system architectures.

The basic features of the kernelized architecture are
shown in Fig. 1la. For ease of exposition, assume two secu-
rity levels, high and low, where high dominates low. Most
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noticeable is the fact that there exists an individual DBMS
for every security level. A user cleared to level high, inter-
acts with the high DBMS through an untrusted front end
(UFE). Existing DBMSs can be directly incorporated with
minimal modification since they have to manage only sin-
gle-level data at their levels. These single-level DBMSs
communicate with a trusted operating system that manages
both high and low data storage. Although we have consid-
ered only two levels, it is irnportant to note that this archi-
tecture carries over to arbitrary lattices.

The distinguishing feature of the replicated architecture
shown in Fig. 1b is the existence of separate DBMSs for
every level and the replication of low data at the higher
level DBMSs. The high assurance of this architecture stems
from the fact that the DBMSs are physically isolated and a
subject cleared to a level, say /, is allowed to access only the
database for level I, and can obtain all the data needed at
the local DBMS location. In order to maintain the mutual
consistency of replicated data, a trusted front end (TFE) is
employed. The TFE is involved in propagating the various
updates to the databases in accordance with some replica
control scheme.

The trusted subject architecture shown in Fig. 1c differs
from the kernelized one in that we no longer have single-
level DBMSs for every level. Instead, there exists a single
(trusted) DBMS that incorporates multilevel trusted sub-
jects. Recall that such a subject is exempt from the manda-
tory access control rules enforced by the operating system.
In this architecture, the trusted operating system is used to
separate non-DBMS and DBMS data.

2.3 Trusted Subjects: Balancing Assurance, Cost,
and Flexibility

As mentioned before, a trusted subject is allowed to access
information at multiple security levels and thus cannot be
bound by mandatory access control restrictions. As such it
is trusted not to abuse this exemption. To verify that a sys-
tem is secure, we need to develop assurance arguments and
security proofs. Given that this may often be a challenging
task, what then is the attraction of a trusted subject architec-
ture? First, a trusted subject is able to have a global view of
many system states. This simplifies the implementation of
many algorithms, especially when a global snapshot is of-
ten required to make the next decision. Second, for most
systems to be efficient and practical, a certain number of
trusted system services have to be provided. Consider for
example, a file server in a multilevel environment. Such a
server will inevitably have to read and write files with dif-
ferent security labels, and would thus have to be trusted.
The alternative would be to have a file server component
for every security level, clearly not a very cost-effective so-
lution. Other examples include login and authentication
services. Third, there exist many applications in which cer-
tain users have to be occasionally given trusted privileges,
e.g., system administrators have to be given certain privi-
leges to do system maintenance.

In summary the trusted subject approach to architectur-
ing a system currently represents the most viable tradeoff
between assurance, cost, and flexibility. Consider the ker-
nelized architecture in which all components and processes

obey the security policy. As such, in theory, there is no need
to develop rigorous security proofs. However, a look at the
commercial multilevel database landscape will reveal that
almost all commercial vendors have chosen the trusted
subject architecture over the kernelized and replicated ap-
proaches [2]; [11], [22], [24]), [10]. In other words, even with
the effort needed to prove that these systems are secure
with respected to certain trusted subject exemptions, the
trusted subject architecture appears to be most cost-effective
and commercially viable at the present time. This impetus
from industry has motivated us to explore this architecture
for object-oriented databases.

3 MULTILEVEL SECURITY AND OBJECTORIENTED
SYSTEMS

In this section, we discuss security in object-oriented sys-
tems and the complications that arise when write-up op-
erations are supported.

3.1 Security Enforcement through Message Filtering

Central to the object-oriented model of computing is the
notion that objects are encapsulated units of state and
communicate with each other solely through messages.
Thus a natural and intuitive way to enforce security is to
control the exchange of messages. This is the basic idea
behind the message-filter security model proposed in [12].
Attached to every object in the system is a classification.
When a message is sent, the classifications of the sender
and receiver objects are used to determine if an illegal
information flow will take place. The message is delivered
to the receiver only if the resulting information flow does
not violate the security policy. It is important to note that
there is no attempt to analyze the semantics (i.e., message
type) or contents of the message itself. The advantages of
this approach are many. It meshes well with the object-

‘based model of computing, thus it has wide applicability

in providing security for systems ranging from message
and object-based operating systems to object-oriented da-
tabases. It is conceptually simple and elegant to enforce
security by mediating messages at a central point in a sys-
tem architecture.

Let us look at the message-filter model in more detail.
The message filtering is accomplished through a message
filter component. The filtering functions are illustrated
graphically in Fig. 2. There are basically four cases of the
filtering functions. In the first case, when a message is
sent between objects at the same security level, both the
message and the reply are allowed to pass through the
filter. In the second case, when the objects are at incom-
patible levels, the message is intercepted before delivery
to the receiver, and an innocuous NIL reply is returned by
the filter. In the third case, involving a write-up message
to the receiver at a higher level, the message is allowed to
pass but the filter discards the actual reply and substitutes
a NIL reply. The fourth case involves a read-down in
which the message to the lower level receiver is allowed
to pass and the reply is returned to the high level sender.
However, the actual method invocation in the receiver
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object is restricted from directly updating the state of the
receiver object, or any other object at or below the security
class of the receiver object, in order to prevent any poten-
tial write-down violations. It is important to note that this
cannot cause a signaling channel as the receiver method
cannot record any fact regarding its invocation. The actual
implementation of restricted method invocations can be
accomplished by using mandatory mechanisms and
keeping track of the levels of method invocations. Due to
space constraints we do not discuss it here, but details can
be found in [26], [25]. In summary, these filtering func-
tions implement the various mandatory access controls
required in a multilevel environment.

s [
¢ % o .
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: 01 : 02 - -
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NIL repy discarded

]

restricted method

Fig. 2. lllustrating the message-filtering functions graphically.

3.2 Write-up Messages and Signaling Channels

The above filtering functions form an abstract security
specification for enforcing multilevel security in object-
oriented systems. However, when one elaborates such an
abstract specification to an executable one, the potential
for signaling channels surface. Consider, for example, case
3 of the filtering functions, where messages are sent up-
wards in security levels to implement write-up opera-
tions. Recall that mandatory security rules disallow read-
up and write-down operations but place no restrictions on
write-up operations. It turns out that the execution dy-
namics associated with processing such write-up mes-
sages has broad implications on confidentiality, integrity,
and performance concerns.

Going back to the basics, let us see what happens when a
message is sent to a higher security level for the purpose of
initiating some write-up operation. Fig. 3 depicts case 3 of
the filtering functions in more detail. Here a message g, is
sent from a sender object O, to a receiver object O,, with the
receiver classified at a higher security level. With synchro-
nous message passing, the sender method ¢, in object O, is
effectively suspended once the message g, has been sent.
The receipt of g, by O, will result in the invocation of a re-
ceiver method £,. Eventually the invocation £, will terminate
and return a reply which will resume the suspended sender.

gl
ne\ 02 (high)
. r (NIL)
reply discarded

01 (low)

Fig. 3. A write-up message and its reply.

The problem with supporting synchronous message
passing (as above) is that it is fundamentally insecure. This
is because the low level sender object can deduce informa-
tion about the high level receiver object’s processing from
the timing of the reply to the write-up message. A colluding
high level object can return replies at specific times and in-
duce a pattern which can be used to signal information to
the low level sender. The solution we have pursued to ad-
dress this problem is to return the reply independently of
the receiver’s processing and termination times. To be more
precise, we return the NIL reply required by the filtering
function instantaneously to the sender object when it issues
a write-up message. This may result in concurrent compu-
tations as the sender and receiver methods may be execut-
ing at the same time.

The challenge now is to remain faithful to the originally
intended synchronous semantics. Otherwise the integrity of
applications will be affected, especially if concurrent com-
putations modify objects arbitrarily. To see this, consider
weekly payroll processing as illustrated in Fig. 4. With syn-
chronous message passing and message filtering, the mes-
sages indicated by labeled arrows will be processed in the
sequence a, b, ¢, d, e, f. On the other hand, instantaneous
NIL replies and concurrency could lead to the sequence a,
d, e, £, b, c. This means that the RESET-WEEKLY-HOURS
message which resets the hours worked to zero will be re-
ceived and processed by object WORK-INFO before the
message GET-HOURS. Thus the message GET-HOURS will
retrieve the reset hours as opposed to the actual accumu-
lated -houss, resulting in an erroneous calculation of the
weekly pay. To avoid such integrity problems we need to
provide appropriate synchronization schemes.

- Weekly pay
~ Hourly rate
-~ Child Benefits

PAY-INFO (S)

(e) RESET-WEEKLY-HOURS

~ Hours Worked

() DONE

EMPLOYEE (U)

WORK-INFO (U)

Fig. 4. Objects in a payroll database.
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At this point, is is important to note that one can think of
other obvious ways of returning independent replies, such
as after random delays or constant intervals. However, in
addition to the above mentioned integrity problems, these
solutions result in unacceptable performance degradation,
especially when senders are kept waiting longer for replies
than they would have had to in a synchronous execution.

In general when there are cascaded write-up mes-
sages, the concurrent computations created to service
the associated method invocations will fan out and form
a tree such as that shown in Fig. 5. We refer to such a tree
as a session tree as it encompasses all the write-up op-
erations issued by user’s session. In the tree in Fig. 5, a
computation running at level unclassified (U) has issued
three write-up operations by sending a message to an
object at secret (S), a second message to an object at top-
secret (TS), and a third message to an object at confiden-
tial (C). This has resulted in the creation of the corre-
sponding three concurrent computations. The computa-
tion at level C in turn has issued other write-up opera-
‘tions resulting in the subtree rooted at node 4(C). When
the computations in a session tree can guarantee that the
reads and writes of the various methods will have the
same effect as in a synchronous execution, we informally
say that the session preserves serial correctness. A formal
definition will be given later.

(o)
VAR
@) @ (o

7N\

)

6

@)

Fig. 5. A tree of concurrent computations.

Our approach to providing the necessary synchroni-
zation relies partly on scheduling the various computa-
tions in an order that does not violate certain require-
ments of a synchronous (serial) execution of the tree.
The other half of the synchronization mechanism is a
checkpointing and multiversioning scheme. Classical
techniques such as those based on locking and sema-
phores cannot be used as they introduce signaling chan-
nels in a multilevel environment and thus are insecure.
When a computation sends a write-up message, it
checkpoints the state of its home object as well as other
objects at the same security level, as new versions. Sub-
sequent updates made by the computation to these ob-
jects are stored in new versions. These versions in turn
will also be checkpointed when the next write-up mes-
sage is issued. When a high level computation issues a
read request to determine the state of a lower object ob-
ject (this is allowed by mandatory access control rules as

it is a read-down operation), the read is mapped to an
appropriate version whose state reflects the state the
high computation would have seen in a serial execution.
Going back to the payroll example in Fig. 4, when the
write-up message PAY is issued, the unclassified object
WORK-INFO(U) will be checkpointed. The subsequent
GET-HOURS message will retrieve this version which is
unaffected by the RESET-WEEKLY-HOURS message.

3.3 Formal Definitions and Correctness Constraints

Before proceeding further, we formally define several no-
tions related to serial correctness and session trees. In our
further discussions we assume that the creation of a compu-
tation is accomplished through a fork call (as explained in
detail in Section 4). However, the fact that a computation is
forked (created) does not imply that it is executing, as this
requires an explicit start call after the fork. Once started, a
computation will eventually terminate and issue a termi-
nate call.

DEFINITION 1. We define a computation b to be fo the right of a
computation a, if neither b nor a is an ancestor of the other,
and b is encountered later than a in a depth-first traversal of
the corresponding session tree, starting at the root. Similarly, a
computation to the left is one encountered earlier in a (left-to-
right) depth-first traversal.

DEFINITION 2. We say a session preserves serial correctness if for
any computation c in the session’s computation tree, and
running at level 1, the following hold:

1) c does not see any updates (by reading-down) of lower level
computations that are to its right, in the tree;

2) For any of c ' s ancestor computations a, (i.e., any compu-
tation on the path from the root to c) c should see only the
latest updates made by a just before a 's child (or c itself)
on this path was forked.

3) For any level k that is not the level of an ancestor of c, and
k £ 1, c should see the latest updates made by the right-
most terminated computations at level k that are still to the
left of c.

Given the above definitions, let us see the complications
concurrency poses to the maintenance of serial correctness.
If we were to execute the tree in Fig. 5 serially (i.e., in a syn-
chronous fashion), the messages sent to higher level objects
would be processed in the order given by the labels on the
arrows. Note that this order can be derived by a left-to-
right, depth-first traversal of the tree. If we follow this or-
der, it is clear that any computation, say c, should not get
ahead of earlier forked computations to its left. For exam-
ple, under a serial execution of the tree of computations in
Fig. 5, we would expect computation 2(5) and its descen-
dants (if any) to terminate before computation 3(TS) to its
right, is started. Computation 3(TS) should thus see all the
latest updates by 2(S) and any of its descendants. Allowing
arbitrary concurrency may not ensure this. Thus, there is a
need to enforce some discipline on these concurrent compu-
tations by scheduling them in a manner that guarantees
serial correctness.

To see the need for multiversioning, consider again this
tree. With concurrent execution it is possible that computa-
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tions 4(C) and 6(S) may terminate well ahead of 3(TS).
Therefore, our synchronization schemes must ensure that
computation 3 does not see any updates by computations 4
and 6, since 4 and 6 are to the right of 3. In other words,
although 4(C) and 6(S) may terminate well ahead of 3(TS),
our multiversioning scheme guarantees that a read-down
request from 3(TS) will always read versions that existed
before 4(C) and 6(S) were started.

The above example and discussion give us some insights
into certain constraints that are sufficient to guarantee serial
correctness and we state this below as a theorem. Due to
space constraints a formal proof of this theorem is not given
here but the interested reader is referred to [25].

THEOREM 1. Correctness constraints 1, 2, and 3, given below, are
sufficient to guarantee serial correclness of concurrent compu-
tations in a user session.

Whenever a computation c is started at a level 1,

e Correctness-constraint 1: There cannot exist any earlier
forked computation (ie., to the left of c) at level 1, that is
pending execution;

e Correctness-constraint 2: All current as well as future
executions of nonancestral computations that are to the left
of ¢, should be at levels higher or incomparable to 1;

» Correctness-constraint 3: At each level below 1, the ob-
ject versions read by ¢ would have to be the latest ones cre-
ated by the rightmost computation, say k, that is to the left
of c. If x is an ancestor of c, then the latest version given to
c is the one that was created by k just before c was forked.

It follows from the above constraints that given any
tree of forked computations, there can exist at most one
running computation at a given level, at any given time.
Also, a computation cannot be started until all earlier
forked computations at dominated levels have termi-
nated. In summary, the maintenance of serial correctness
requires careful consideration on how computations are
scheduled as well as on how versions are assigned to
process read-down requests.

3.4 An Aggressive Scheduling Scheme

In the last subsection, we discussed the notion of serial cor-
rectness. In particular, we discussed how serial correciness
mandates some scheduling discipline on the concurrent
computations within a session tree. One can formulate a
family of scheduling schemes where each scheme guaran-
tees serial correctness by enforcing the-various serial cor-
rectness constraints. These schemes differ in that they have
varying performance characteristics. That is, the amount of
delay a computation experiences after it is created and be-
fore it is allowed to start, varies from one scheme to the
other. We informally characterize such delays into necessary
and unnecessary delays. A necessary delay is one which a
scheduling scheme imposes to prevent violation of serial
correctness. On the other hand, a scheme induces an unnec-
essary delay if a computation is held up for reasons that
have no bearing on serial correctness. Since serial correct-
ness is an important requirement, we have no latitude in
doing away with necessary delays. However, we can design
scheduling schemes that vary in the amount of unnecessary
delays induced on computations.

We now present an aggressive scheduling scheme. It never

induces unnecessary delays and is thusoptirnal.1 The ag-
gressive scheme is governed by the following invariant.

Inv-aggressive: A computation c is executing at a level 1 only if
all computations that are to the left of c at levels I or lower, have
terminated.

To elaborate further, consider the trees in Fig. 6 that illus-
trate the different stages of the progressive execution of a
sample session tree under the aggressive scheme. The ses-
sion advances to the next stage as a result of the termina-
tion of an active (executing) computation in the tree. This
next stage may see the release (startup) of one or more
computations that were previously held up by the just-
terminated computation. Thus, stage 2 (see Fig. 6(2)) has
resulted from stage 1 due to the termination of computation
2(S). Stage 3 has resulted from stage 2 due to the termina-
tion of 4(C) which in turn has released 5(C) and 7(S) for
execution, and so on.

This scheme is named “aggressive,” because after every
termination, the scheme aggressively attempts to recruit all
possible queued computations for execution solong as this
does not violate serial correctness. To ensure this, a check is
always made to see if the startup of a computation would
violate the above invariant.

In the next section we discuss the implementation of the
aggressive scheduling scheme. In addition to the algo-
rithms, we give an architecture that calls for a trusted
scheduler. Such a scheduler always has a global snapshot of
a session as it progresses to termination. ’

4 ATRUSTED SUBJECT ARCHITECTURE AND
IMPLEMENTATION

We now present the trusted subject architecture and the
implementation of the aggressive scheduling scheme within
this architecture.

4.1 The Architecture and Trusted Cdmputing Base

The basic design of our secure architecture, illustrated in
Fig. 7, is motivated by and built upon the architecture of
existing object-oriented database systems such as ORION
[14], IRIS [5], and GEMSTONE [17], [16]. Assuming a client-
server model of computing, the server side of the architec-
ture is a layered one consisting of storage and object layers.
We refer to the modules implementing these layers as the
storage manager and object server subsystems respectively.
The storage layer interfaces to the operating system and file
system primitives. The functionality supported by this
module enables the read, write, and creation of raw bytes
representing untyped objects. A unique pointer (identifier)
is associated with every chunk of bytes representing an ob-
ject. The association between the pointers and the physical
location of objects is maintained in an object table. A re-
quest to create a new object will result in the allocation of a
new pointer. This module typically provides other functions
such as concurrency control.

1. To present the proof that this scheme is optimal would take us beyond
the scope of this paper. The interested reader is referred to [25].
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Fig. 7. A trusted subject architecture.
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In contrast to the storage layer which manipulates raw
bytes, the object layer provides the abstraction of objects as
encapsulated units of information (instances of abstract
data types). By supporting the notions of messages, objects,
classes, class-hierarchy, and inheritance, the object layer
implements the underlying object-oriented data model. The
object layer thus supports the functionality to enable objects
to send messages and replies to each other, to access and
update object states, as well as to create new objects. The
operations to access, update, and create objects utilize the
services of the lower storage layer.

In designing a secure architecture one of the critical
tasks involves determining the security perimeter. In
other words, we need to determine what functions and
modules need to be trusted and thus implemented within
the trusted computing base (TCB). In this paper we as-
sume that a small subset of the storage layer is trusted.
This subset will provide operating system support includ-
ing basic functions to manage stable storage in a secure
fashion. As far as the object layer is concerned, only a
small portion of the object layer needs to be within the
TCB. This is in accord with an important design objective
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for secure systems—keeping the size of the TCB to a
minimum. In fact, the trusted functions are precisely those
required to implement the message filtering functions.
The trusted portion of the object layer consists of one or
more session manager and message manager modules. The
message manager and session manager modules collec-
tively implement the message filtering algorithm.

A key aspect of our architecture is that the session man-
ager process runs as a multilevel subject while the message
managers are single-level subjects with respect to the Oper-
ating System TCB. As a multilevel process it is responsible
for coordinating single-level (untrusted) message manager
processes running at various security levels. The session
manager is a long-lived process that is created when a ses-
sion starts and is deleted only when the session eventually
terminates. Typically, the start of a session is requested by a
client process interacting with a communications manager
or network listener module. A session manager may create
several short-lived message-manager processes during a
gession. Whenever a write-up message is issued, a message
manager process is created to service the request, and it
implements the message filtering functions. Thus the mes-
sage managers form the tree of concurrent computations
that make up a session tree. ‘

The interface between a message manager and its local
session manager consists of fork, terminate, and start calls. A
fork is issued by a message manager to request creation of a
new (child) message manager. Such a newly created mes-
sage manager may be started immediately if doing so
would not violate any scheduling invariant. A message
manager issues a terminate call to its session manager to
signal termination. A start call is issued by a session man-
ager to a message manager to initiate the execution of the
message manager.

What is the motivation, if any, for the trusted subject
architecture and implementation? The main advantage is
the simplicity with which the scheduling algorithms can
be implemented due to the availability of a trusted sub-
ject. A session manager always maintains a global snap-
shot of a session’s tree of computations as they progress.
With the help of such a global snapshot (view), a session
manager is able to coordinate the various concurrent
computations (message managers) and implement the
scheduling algorithms.

The advantage of using a trusted subject for scheduling
does come at a price. We now have to provide assurance
that such a trusted subject cannot leak information. We later
give a noninterference argument to demonstrate that al-
though being exempt from mandatory access control rules,
the session manager cannot leak information while coordi-
nating various scheduling strategies.

4.2 Implementation of Scheduling Algorithms

Before discussing the algorithms in detail, we describe the
data structures used by the session manager. Recall that our
approach to synchronizing concurrent computations was
based on multiversioning. Every version of an object is as-
signed a unique timestamp upon creation.

We also assume the existence of a forkstamping scheme
such as that shown in Fig. 8. This scheme assigns unique

forkstamps to individual message managers (computations)
to reflect the serial order in a serial (synchronous) execution
of the message managers. Briefly explained, every message
manager except the root is assigned a unique forkstamp by
the parent issuing the fork. Thus for the session tree in Fig. 8
the scheme starts by assigning an initial forkstamp of 0000 to
the root message manager 1(U). Every subsequent and im-
mediate child of the root is then given a forkstamp derived
from this initial one by progressively incrementing the most
significant (leftmost) digit by one. To generalize this scheme
for the entire tree, we require that with increasing depth
along any path in the tree, a less significant digit be incre-
mented. In general for a security lattice with a longest maxi-
mal chain of 7 elements, we need to reserve p * (n — 1) digits
for the forkstamp. In a lattice with [ levels, and ¢ compart-
ments, n = [ + ¢. The value of p would depend on the maxi-
mum degree of a node in a computation tree. For example if
we assume that any computation sends a maximum of 99
messages to higher levels, then setting p = 2 would be suf-
ficient. Even with large lattices and a high number of mes-
sages sent to higher levels, these numbers are reasonable.

AN

-® =
AN

AN
SCECIEMO)

Fig. 8. Generation of forkstamps for a session’s computation tree.

0000

The session manager maintains the following data struc-
ture to keep track of initial versions.

¢ Init-stamp: This is a global table of timestamps with
one entry per level. It identifies the initial version of

objects at every level that exists before a session starts.

An individual message manager can see that portion
of the table pertaining to levels dominated by that
message manager.

The session manager also maintains a tree structure that
reflects the progress of the concurrent message managers
forked in a session. Every forked message manager is repre-
sented by a node in the tree that contains the following in-
formation attributes:

status: active, terminated, queued

level: the level of the message manager

local-stamp: a local table of timestamp entries with
an entry at each level dominated by the
message manager and identifying the
versions at each level that will be used
to process read-down requests

forkstamp: forkstamp issued by the parent mes-

sage manager
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parent: pointer to parent message manager
node

wstamp: this is a timestamp entry indicating the
next version that will be written by the
message manager

object: identification of receiving object

message: message

p: message parameters

A message manager’s local-stamp vector is initialized in
two phases, with the first one undertaken when a message
manager is forked and the second one deferred until the
message manager actually starts. For a message manager
just forked, the first phase entries identify the versions to be
read at the levels of ancestors, on the path from the root to
itself. These first phase entries are actually obtained by a
message manager from another vector that is passed along
by its parent. Such a vector can be seen as one that is incre-
mentally constructed along a path in the computation tree.
To do this, every message manager is required to save the
timestamps in the vector (astamps) obtained from its parent
and on issuing a fork, to reconstruct a new vector to give to
its child. This newly constructed vector will contain the
timestamps from the old vector appended with the write
stamp wstamp at the level of the issuing message manager.
Finally, in the second phase we obtain local-stamp entries
for the levels that did not participate in phase one (this is
done in the start-trusted-agg procedure of Fig. 11).

A high-level pseudocode specification of the session man-
ager algorithms to implement the aggressive scheduling
scheme is shown in Figs. 9, 10, and 11. The algorithms make
extensive use of the tree structure representing the various

message managers. Let us discuss these algorithms in more.

detail. They are basically designed to ensure that the invari-
ant inv-aggressive presented in the last section is never vio-
lated. For easy reference, we give the invariant below:

Inv-aggressive: A computation c is executing at a level 1
only if all computations that are to the left of c at levels 1 or lower
have terminated.

Procedure fork~trusted-agg(level-parent,
level-create, forkstamp, astamps)
{
Let parent be the node issuing the fork;
Let child be a new message manager node;
Make child the rightmost child of parent;
child.level « lubiparent.level, L(0Q,)1;
child. forkstamp « forkstamp;
%$Begin phase 1 of acquiring local-stamp entries
For (every level 1 £ level-parent)
do
initialize child.local-stamp table entries
from astamps; .
End-For
If in a depth-first traversal of the tree
starting at the leftmost path and
until child is traversed, there exists a
non-ancestor node, say n, with
{n.level < child.level and n.status
or queued}
then child.status ¢« queued;
else
start~trusted-agg (child) ;
end-if
}

end procedure fork-trusted-agg:

= active

Fig. 9. Session manager algorithm for FORK.

Procedure terminate-trusted-agg(lmsgmgr, wstamp)

Let term be the node that terminated at level
lmsgmgr;
% Mark this node as terminated
term.status « terminated;
% See if any gueued nodes can be started
Initiate a depth-first traversal of the session
tree such that:
If for every leaf node,
traversed to the right
of term such that leaf.level 2 lmsgmgr,
there exists
no previously traversed non-ancestor node p
with {p.level £ leaf.level and
p.status = active or queued}
then

start-trusted-agg (leaf);
end-if
y

end procedure terminate-trusted-agg;

say leaf, that is

Fig. 10. Session manager algorithm for TERMINATE.

Procedure start-trusted-agg(nn)
{
$Let node nn represent the message manager to
be started
$Complete phase 2 of acquiring local-stamp
entries
YUpdate timestamps from terminated message
managers to the left
Initiate a depth-first search of the tree until
node nn is traversed such that:
If the level 1 of a node n traversed is not a
level of any of the ancestors of nn
and 1 < nn.level
then

nn.local-stamp[l] ¢« n.wstamp;
end-if
%Update remaining local timestamp entries from
the Init-stamp table
If there exists a level 1 lower than the level
of nn and which is neither
the level of a node traversed in the tree nor
of an ancestor of nn
then

nn.local-stamp[l] « Init-stamp(l];
end-~if
execute (nn) ;

}

end procedure start-trusted-agg;

Fig. 11. Session manager algorithm for START.

Whenever a fork request is received (see the procedure in
Fig. 9), the session manager updates its tree structure by
creating a node for the forked message manager and mak-
ing it the right most child of the parent node issuing the
fork. The procedure then records the forkstamp for the
newly forked message manager that has been passed on by
the parent, i.e., the message manager that generated the
fork request. This is followed by the first phase of the ini-
tialization of the local-stamp entries. The session manager
then checks to see if the forked node can be started imme-
diately. To do so, a depth-first traversal of the tree is made
starting at the leftmost path until the newly inserted leaf
node is reached. If during this traversal we find another
node, active or queued, at the same or a lower level, the
newly inserted node is queued and thus forced to wait.
Otherwise it is started.
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The processing of a terminate request begins by up-
dating the status of the node to terminated (as shown in
Fig. 10). We then check to see if this termination can re-
lease other queued up nodes. In determining this, our
invariant leads to the property that any nodes started as
a result of a termination have to be to the right of the
terminated node and at a equal or higher level (and of
course, these nodes have to be leaves in the tree). Thus a
depth-first traversal of the tree is once again initiated.
As in the fork case, a leaf node is allowed to execute
only if required by the invariant.

Both the fork and terminate algorithms utilize a common
Start procedure (shown in Fig. 11) by which message man-
agers are started. This procedure is primarily concerned
with completing the update of the local-stamp table entries
of the node to be started. Recall from our previous discus-
sion that the first phase of updating the local-stamp entries
is achieved at fork time. The second phase is now accom-
plished from the following sources.

1) Terminated. left nodes: For levels dominated by a
node’s level, and for which timestamps were not ob-
tained from the ancestors, the start algorithm looks to
the subtree of computations to the left of the node to
be started. The timestamp of the last written versions
at such levels is obtained from the last forked message
manager (or rightmost node to the left of the node to
be started) which wrote at these levels.

2) Init-stamp table: If there are levels for which times-
tamps could not be obtained from phase 1 or from
terminated left nodes, the algorithm then retrieves the
timestamps from the global Init-stamp table main-
tained by the session manager. This is because objects
at these levels have not been updated so far in the
session. Thus the initial versions of objects that ex-
isted before the session started at these levels should
be used by the starting message manager. The times-
tamps in the Init-stamp table identify such versions.

Once all the local-stamp entries have been collected,
the message manager is started (executed). Thus once a
message manager starts, its node in the tree will have all

the timestamps necessary to process read down requests

for objects classified below its level. These timestamps are
never modified in the local-stamp table after start up.
However, the timestamp entry stored in the variable
wstamp is dealt with differently. On start, the timestamp
is incremented unconditionally before the first write
(update) operation and subsequently incremented after
every fork request issued to the session manager. Thus the
timestamp passed on to the forked children by a message
manager will vary. Each value identifies the state of the
objects at the level of the message manager as of the time
the fork was issued.

5 A NONINTERFERENCE CONFIDENTIALITY PROOF

In this section, we give a confidentiality proof for the trusted
subject architecture. We begin by reviewing the noninterfer-
ence approach to developing confidentiality proofs.

5.1 Confidentiality and Noninterference

The noninterference approach to proving systems secure
was originally proposed by Gougen and Meseguer in [6].
Noninterference reasons about confidentiality from the
input/output interactions a system has with its external
environment. In a multilevel environment, we would con-
sider as insecure any scenarios in which high level inputs
influence future low level outputs. The elegance of the
noninterference framework lies in its ability to abstract
away unnecessary implementation details. Rather than fo-
cusing on mechanisms for enforcing confidentiality, it fo-
cuses on specifications that can be used to rule out nonse-
cure implementations.

The original formulation of noninterference in [6] was in
the context of deterministic systems. Subsequently, a num-
ber of researchers have developed similar abstract models
for nondeterministic systems [8], [18], [20]. In this paper, we
limit our discussion to deterministic systems as the actions
of our trusted subject are deterministic in nature.

Let us begin by considering the reception of inputs as
well as the generation of outputs to be discrete events. As
in [19], we call the events less than or equal to a level [ as
belonging to the view of that level, and all other events as
hidden from I. The basic idea of noninterference can be
stated as follows: A subject s, is said to be noninterfering
with subject s, if no action issued by s, can influence the
future output of the system to s,. To prove that the entire
system is noninterfering we must be able to make this
claim hold up for all subjects, histories (sequences) of in-
puts, and outputs.

high-output

high-input SESSION
MANAGER
low-input ( trusted ) low-output

Fig. 12. The session manager as a black box with inputs and outputs.

Our task is to prove that the session manager, which is
really a trusted scheduler and thus a trusted subject, is
noninterfering. What does this mean? Recall that a session
manager is responsible for the scheduling and management
of the various concurrent computations (message manag-
ers) present in the associated session tree. These computa-

tions will be running at various security levels. We can now ‘

think of the session manager as a black box, as shown in
Fig. 12, that interacts with its environment (consisting of
computations at various security levels) by accepting inputs
and producing outputs. The inputs and outputs are really
the reception and generation of the following requests:

o INPUT: {fork, terminate}
e OUTPUT: {start}

In other words, when a running computation wishes to cre-
ate a concurrent child computation, it sends a fork input
request to the session manager. The session will then create
a new child computation and update relevant data struc-
tures to keep track of it. If the computation can be immedi-
ately started, the session manager sends a start output mes-
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sage to the process; otherwise the computation is queued
for future execution. Such a queued computation will even-
tually be started when the session manager is notified of a
subsequent termination. When a process is about to termi-
nate it sends the session manager a terminate input request.

Noninterference in our context then amounts to dem-
onstrating that the session manager, in the course of
scheduling computations in a user session, will not intro-
duce interference. Consider for example two security lev-
els, low and high. Then this means that the reception of
fork and terminate requests from high computations will
not influence the output to low computations which
manifest as start requests.

The most pertinent question at this point is rather obvi-
ous. How does one go about establishing noninterference?
Given an input sequence, the most intuitive way to proceed
would be to purge all hidden inputs and demonstrate that
the events observed in the view for a lower level subject
remains unchanged. Thus at the heart of the noninterfer-
ence approach is the utilization of purge functions to sys-
tematically purge high inputs. For our architecture, we
need to show that the purge (or pruning) of the session tree
of high computations, will leave the outcome of the
scheduling to low level computations, unaffected.

5.2 Definitions and Assumptions

Let us now make the above ideas more precise and concrete
with the help of some definitions and formalisms. We also
discuss some important assumptions.

DEFINITION 3. We define an event as a triple (type, 1, tstamp)
where type € {fork, term, start}, | is the level of the message
manager (computation) from which the input originated or the
level of the message manager to which an output is directed,
and tstamp is a timestamp indicating the elapsed time since the
occurrence of the last event at 1.

DEFINITION 4. Given any security level, 1, we define the events at
less than or equal to [ as belonging to a set called the view of 1
and all other events as belonging fo a sef called hidden from I.

DEFINITION 5. Given any security level, 1, we define the subset of
events in the view of I that are at levels strictly below | as be-
longing to the set lower-view.

DEFINITION 6. Given two event sequences f, and B, we say that
they are l-equivalent (denoted as B, =, j3) if they contain the
same events, in the same relative order, for levels 1 and lower
(i.e., they contain the same values for the event triples and the
events associated with these triples appear in the same relative
order in both sequences).

DEFINITION 7. Given a sequence [, we define a purge function
purge (B, 1) as one that returns the sequence [ but with all
events of the form (type, 1, tstamp) removed (purged) when-
ever [ # I,

Given any input sequence ¢,, which when processed by
the session manager produces an output sequence f
(denoted o, —— f,), noninterference requires us to show
the following;: If for every level |, purge(e, I) — 3, , then

B= B

Before proceeding on a formal proof that the session
manager is noninterfering, we list our assumptions:

¢ Input-totality. If we view the session manager as a
state machine, this assumption states that the session
manager (or state machine) can accept inputs in any
state. This ensures that the session manager is not
conveying any information by accepting inputs.

¢ Input-output atomicity. This assumption requires the
session manager to accept an input and produce the
corresponding outputs, if any, atomically. In other
words, in the interval between the acceptance of an
input and the subsequent processing and generation
of the corresponding outputs, the session manager
cannot be interrupted, especially by other inputs.

The assumptions of input totality and input-output
atomicity may seem at first to be irreconcilable. After all, if
the session manager cannot be interrupted in the interval
between the acceptance of an input and the production of
the corresponding output, how could it be capable of ac-
cepting other inputs that come within such an interval? In
other words, how could it remain input-total? Assume for a
moment that inputs arrive at the session manager boundary
synchronized with clock ticks that are a constant interval
apart. It is important to note that such an interval can be
chosen to deal with worst case arrival rates of inputs and to
guarantee that no two inputs can arrive at the same tick.
The session manager is required to accept an input at a
clock tick, and produce all the corresponding outputs, be-
fore the next clock tick. In other words, at every clock tick,
the session manager is ready to accept an input, and within
clock ticks cannot be interrupted to accept other inputs.

In the above model, given an input, we require that the
corresponding outputs be produced within the same inter-
val. In other words, the outputs cannot spill over to time
intervals between subsequent clock ticks. However, one
needs to approach the implementation of this requirement
with caution. In particular, the timing of the outputs within
an interval should not be used to build a channel. Hence we
require the scheduler to hold off all outputs until the expi-
ration of the interval. Upon expiration, the outputs are de-
livered as a batch (unordered set) to a lower level subsys-
tem or operating system.

The realization of the input-output atomicity assump-
tion also requires that the tree data structure implementa-
tion utilized by the session manager be an “ideal” one. By
ideal we mean that the elementary data structure opera-
tions such as the insertion and deletion of nodes in the
tree are implemented in such a way that their timing can-
not be exploited for covert timing channels. In particular,
tree operations should be completed within a clock tick.
For if this were not the case, a method in a high level ob-
ject can maliciously cause the tree to grow to a consider-
able size by issuing write-up actions and causing a lot of
nodes to be inserted into it. A low-level computation gen-
erating fork requests may now experience observable de-
lays due to the increased time taken by the session man-
ager to update and manage the tree.

A possible solution to deal with the above scenario
would be for the TCB to do the tree operations at random
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intervals. An approach that pursues a similar idea to ad-
dress hardware timing channels is based on the technique
of fuzzy time [9]. Fuzzy time techniques reduce the band-
width of timing channels by adding noise to all sources of
timing information and by ensuring that inputs and out-
puts are delivered at random intervals. We do not consider
such solutions as they would take us beyond the scope of
this paper.

5.3 The Confidentiality Proof

In approaching a confidentiality proof, we first make a cru-
cial observation. If we look more closely at the processing of
fork, term, and start requests, we see that it is a repetitive
two-step processing cycle. More precisely, the cycle consists
of accepting an input and generating the corresponding
outputs, as shown in Fig. 12. What restrictions would con-
fidentiality considerations impose on such a processing cy-
cle? Confidentiality and noninterference requirements man-
date that if an input is accepted at a level /, the correspond-

ing outputs be generated at ! or higher. To see this more °

clearly, consider only two security levels—low and high
(low < high). A fork request issued by a process
(computation) at low will form a low-input (low-fork) to
the session manager. Since a fork is a request to create and
start a process at a level higher than the requester, it follows
from the semantics that such an input can generate only a
high output (high-start) when the request is processed. The
confidentiality and noninterference requirement is thus
trivially satisfied. Now consider three levels—low, med,
and high. The termination of a process at level med should
result in the start-up of queued processes (if any) but only
at levels med or high. If this were not the case, the process
at level med can signal information to the subjects at low.
The implication of this on scheduling is that a process could
never be suspended or queued waiting for a higher level
process to terminate.

From the above discussion, it should be clear that the
two-step processing cycle invoked by the session manager
upon accepting a single input in isolation is noninterfering.
In particular, after the acceptance of an input, information
flow occurs through the session manager only in an up-
wards direction in a lattice. But what about the case when
the session manager accepts multiple inputs from different
security levels? We now have to show that high inputs do
not interfere with the outputs to low inputs for all sets of
traces. We thus have to consider all possible interactions of
high inputs and low inputs. We now state and prove this as
a theorem.

THEOREM 2. In scheduling various concurrent computations, the
session manager process is noninterfering.

PROOF.

The proof is by induction on the number of inputs in a
session manager trace.

Basis: For the base case consider a trace with exactly
one input. It follows from our earlier discussion that by
accepting only one input at a single security level, say
I, the corresponding outputs will be at I or higher. This
does not influence the outputs at the lower-view of I

e}

and it follows that the session manager will be trivially
noninterfering. ‘

Inductive Step: For the induction hypothesis assume that
for all traces with 7 or fewer inputs, the session manager |
is noninterfering. Consider any trace, say ¢, with n+ 1|
inputs which exhibits downward interference. Let
J be the (n + 1)th input in this string, as shown in
Fig. 13. Let the outputs generated by the scheduler af-
ter the reception of the input & belong to the
(possibly empty) set 8 with the individual outputs in
the set denoted as 6, @, ..., 6. |

sy 44V
outputs 1 l l l

=
g

<

Fig. 13. lllustrating the noninterference proof.

Suppose the downward interference in « is observed at
level 7. By this we mean that there is at least one input at
7, and the purge(e, 7) will cause some output(s) in the
lower-view of 7 to change. The output(s) that change
must be in §, otherwise interference with outputs prior |
to & implies existence of a trace with n inputs that is in-
terfering (contrary to induction hypothesis). From our |
earlier discussion on the two-step processing cycle of the
session manager, the following observation should be
clear. Observation 1: The levels of the individual outputs in
the set @dominate the level of J (i.e., Z(Bj) 2l(9,j=1,...k). ‘

Consider all inputs preceding ¢, Note that an input at a
level can only interfere with outputs in the lower-view of
the level. So let us pick the most recent input, say ¢ at
level z. We now show that i cannot interfere with outputs
in @ that are in the lower-view of 7. Since interference is
observed at level zin the outputs in 6, at least one output
in fis in the lower-view of 7 In conjunction with obser-
vation 1 this leads to another observation. Observation 2:
The level of the computation generating 1 strictly dominates
that of & (ie, I(1) > I(§). This observation, in turn, com-
bined with our invariants and the requirements of serial
correctness, lead to a very important third observation.
Observation 3: The node representing the computation that
generated the input 1will be to the left of the node representing
6, in the session tree. (If this were not the case, that is, if
the low computation dwas to the left of the high compu-
tation, the high computation would not be executing due
to serial correctness restrictions and thus cannot generate
any high inputs.) As such the node of ¢ will always be
traversed before that of &, in a (left-to-right) depth-first
search of the session tree.

Consider the interaction of 7 and & There are two cases |
corresponding to dbeing a fork or a term. If §isa fork, \
the procedure fork-trusted-agg in Fig. 9 determines if
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the forked computation generated by & (referred to here-
after as comps) can be immediately started or if it has to
be queued for future execution. This is done by initiating
a depth-first traversal of the session tree starting at the
leftmost path and ending at the node representing comps.
In general, a computation f is denied immediate execu-
tion (startup) only if such a traversal encounters at least
one nonterminated nonancestor computation at or below
the level of f and to the left of f in the session tree. Hence,
during the depth-first traversal, by observation 3 the
computation associated with z would be encountered be-
fore the computation generating d Now, if we purge the
computation that generated the input 7, the outcome
from the traversal of tree will be unaffected. In other
words, if the computation associated with § was denied
execution, or allowed to start, this will continue to be the
case after the purge of 1 So in this case ¢ does not inter-
fere with 6.

For the second case dis a term event. Next let us look at
the procedure terminate-trusted-agg in Fig. 10 to see
how terminate input requests are processed. We observe
that when a computation, say ¢, terminates, a depth-first
traversal of the session tree is initiated to identify poten-
tial leaf computations to the right of ¢ that could be re-
leased for execution. A leaf computation in the tree is
started only if there exists no previously traversed active
or queued computation at or below the level of the leaf
computation. Once again it follows from observation 3
that in a depth-first search, the computation generating ¢
will be encountered before the one generating 6. How-
ever, the computation generating ! is at a higher or in-
comparable level with respect to the computation gener-
ating &, and thus the purge of the former will not affect
the outcome of the traversal. Thus there is no interfer-
ence as the output events in @ that are generated in re-
sponse to § would remain the same. More precisely, the
output events in the lower-view of 7 that are in §, remain
the same.

Thus far, we have shown that the input 7 does not inter-
fere with outputs in the set #and in the lower-view of =.
We now construct a trace §that is identical to & upto but
not including ¢, followed by the inputs of o subsequent
to 7 at levels strictly below % The outputs of § will be
identical to zup till « The outputs in fand o subsequent
to 1 can differ only at levels that are not strictly below 7
(i-e., levels # 7). In particular the output set 8’ following
J may differ from 6 only in outputs outside the lower-
view of 7. Thus, outputs in the lower-view of 7remain un-
changed in both sets fand 8’. Since we just demonstrated
that the input 1 causes no interference, it follows that if the
trace oz with n + 1 inputs has interference at 7in 6, this in-
terference must be also observed in fat 7in ’. However,
the trace Bhas n or fewer inputs, and cannot exhibit in-
terference due to induction hypothesis. Hence, the in-
duction step follows. a

6 SUMMARY AND CONCLUSIONS

The field of object-oriented database management systems
continues to evolve as an important arena for research and
development. The successful evolution of secure object-
oriented databases depends to a great extent on the func-
tionality, confidentiality, and integrity guarantees, as well as
the commercial viability of various solutions that have been
proposed. ) .

In this paper, we have discussed a trusted subject
multilevel architecture to implement synchronous abstract
write-up operations free of signaling channels and an as-
sociated confidentiality proof to demonstrate the security
of the architecture. ‘

However, supporting write-up operations in object-
oriented systems in inherently complicated by the fact that
such operations are complex and, as such, take varying
amounts of processing time. Thus, they are much more vul-
nerable to attacks that utilize timing information. Further,
any solution to secure write-up in databases cannot address
the confidentiality requirement in isolation. This is because
integrity is a crucial aspect of database management sys-
tems. The utility of a database management system is
largely dependent on maintaining data in accordance with
certain integrity and correctness constraints. The solution
we have given in this paper addresses the confidentiality
issue by closing signaling channels and, in addition, pro-
vides the necessary synchronization to ensure integrity.

The trusted subject architecture mains the popular choice
of many database vendors. The work reported here demon-
strates that this commercially popular and viable architec-
ture can be utilized to build multilevel secure, object-
oriented database management systems that support high-
assurance write-up operations. The confidentiality proof
given in the paper gives us the assurance that the scheduler
(trusted component) can be truly trusted not to leak infor-
mation in a manner that violates mandatory security re-
quirements. This also makes it easier to certify the architec-
ture in environments that require high assurance.

There are several research issues that warrant further in-
vestigation. For example, how do we deal with failures and
exceptions among the computations in a user session with-
out compromising confidentiality in a multilevel environ-
ment? Also, how do we accomplish secure garbage collec-
tion? More study is needed to understand when versions
created as a result of write-up operations can be safely
purged. We hope to address these issues in the future.
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