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Abstract—The benefits of providing access control with groups of
users as the unit of granularity are well known. These benefits are en-
hanced if the groups are organized in a hierarchy (partial order) by
the subgroup relation <, where g < h signifies that every member of
group g is thereby also a member of group h. It is often useful to dis-
tinguish the case when g is an immediate subgroup of h, that is when g
< h and there is-no group k such that g¢ < k < h. The class of partial
orders called n-trees was recently defined by using rooted trees and
inverted rooted trees as basic partial orders and combining these re-
cursively by refinement [12]. It has been shown that n-trees arise nat-
urally in many practical situations and they have a simple represen-
tation. Any n-tree hierarchy can be expressed as the intersection of two
linear orderings. So it is possible to assign a pair of integers /[x] and
r[x] to each group x such that g < h if and only if /[ g] < [[}] and
rl g1 < r[k]. In this paper we show how to extend this representation
of n-trees by assigning four additional integers to each group so that it
is also easily determined whether or not g is an immediate subgroup of
h.

Index Terms—Access control, access control lists, authorization,
protection, protection groups, security.

1. INTRODUCTION

HE ability to share files and other resources among
the users of a system has obvious benefits. It is con-
venient for both users and system administrators to have
a facility to specify access based on groups of users as a
unit. Since membership in a group is presumably deter-
mined by the need to share resources and information, the
group provides a suitable unit for an individual user’s ac-
cess decisions. A user can make a file available to an en-
tire group without having to explicitly provide access to
every member. Similarly, a user can revoke a file’s avail-
ability from an entire group without explicitly revoking
each member’s access to the file. Also, new users can be
made members of appropriate groups, thereby obtaining
access to a number of files and resources. Some systems
such as the popular Unix [10] allow for access control
only in terms of groups. Even the more sophisticated sys-
tems such as Multics [11], which have provision for spec-
ifying access at the level of individual users, recognize
the advantages of protection groups and provide facilities
for specifying access in terms of groups.
In practice, it is often desirable that groups bear some
relationship to each other. For instance, consider a project
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divided into several independent tasks assigned to differ-
ent terms. We can define a group for each task team so
its members have common access to resources relevant to
the task. Since some resources may pertain to the entire
project, we can define a project group such that members
of the individual task groups are thereby also members of
the project group. The project-wide resources are then
made explicitly available to the project group alone. This
is certainly more convenient than having to explicitly
make such resources available to every task group, even
if it were possible to do so. It is also more convenient
than explicitly making every member of a task group a
member of the project group. By allowing membership in
a group to automatically imply membership in some other
groups, we can reduce the number of explicit access de-
cisions that need to be made by the users, as well as re-
duce the number of groups to which a user must explicitly
belong.

Let G be a set of groups and let g < h signify that group
g is a subgroup of group A, in the sense that every member
of g is thereby also a member of h. If g is a proper
subgroup of h we write g < h, thatis g < hand g # h.
We say a user is a direct member of g if the user is ex-
plicitly designated as a member of g and thereby is an
indirect member of every h such that g < h. The intention
is that a user will be a direct member of a small number
of unrelated groups, perhaps just one, but will thereby
obtain indirect membership in a larger number of groups.

We require that the subgroup relation is a partial order-
ing of G, that is =< is a reflexive, transitive, and asym-
metric binary relation on G. The reflexive property is ob-
viously required since every member of g is already a
member of g. Transitivity is certainly an intuitive and rea-
sonable assumption and perhaps even inevitable. After all,
if g < hand h < k then every direct member of g is an
indirect member of 4 and so should also be an indirect
member of k. The asymmetric requirement merely elimi-
nates redundancy by excluding groups which would oth-
erwise be equivalent.

Our objective is that once the access control mechanism
knows that a user is a direct member of group g, it should
be easily determined whether the user is therefore an in-
direct member of some other group 4. To do so we must
represent the subgroup partial order so it is easy to deter-
mine whether one group is a subgroup of another. A class
of partial orders called n-trees has been recently proposed
by this author [12] and it has been shown that n-trees have
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a representation which meets this objective. The practical
application of n-trees has also been demonstrated by ex-
amples which show that these hierarchies arise naturally
in many situations [12].

In this paper we show that the representation for n-trees
can be extended to make some important finer distinctions
regarding the relationship between two groups. We say
that g is an immediate subgroup of h if g < h and there
is no group k such that g < k < h. In such cases we call
g an immediate predecessor of h and h an immediate suc-
cessor of g. We propose a technique for representing
n-trees which allows this distinction to be easily made.

Distinguishing immediacy is useful because in many
practical situations there is considerably stronger affinity
between a group and its immediate successors or prede-
cessors as compared to the nonimmediate ones. For in-
stance, consider a corporate hierarchy with various divi-
sions, departments and projects at successive levels of the
hierarchy. It is clearly of practical value to identify a par-
ticular division and its immediate successors, viz. the de-
partment groups within that division, as a unit for access
control purposes while excluding the project groups,
which are nonimmediate successors of the division group.
This enables the management of the division and its de-
partments to share information which is kept confidential
from their project staff. In a complementary manner a
group and its immediate predecessors can be usefully
treated as a unit for acess control. In practical situations
the immediate predecessors of a group often have direct
responsibility for supervising that group’s activities. Be-
cause of this close working relationship it is therefore ap-
propriate to have a means by which one can share infor-
mation with one’s immediate predecessors while
excluding nonimmediate ones. So members of a project
which reports to multiple departments should be able to
share files with these department groups, which are im-
mediate predecessors, while excluding the nonimmediate
division groups. We will shortly consider more concrete
examples of access-control policies based on immediacy.

The paper is organized as follows. In Section II we re-
view the concept of n-trees [12]. An n-tree is defined re-
cursively by using a forest of rooted trees or inverted
rooted trees as basic partial orders and combining these
by an operation called refinement. We discuss examples
to show the practical importance of n-trees for protection
groups. In Section III we further pursue the reasoning out-
lined above to establish that recognizing immediacy in a
hierarchy is a useful feature for access-control policies.
Section IV goes on to review the property that an n-tree
can be represented as the intersection of two linear order-
ings [12]. So it is possible to assign a pair of integers /[ x]
and r[x] to each group x such that g < 4 if and only if
I{g]l < I[h] and r[g] < r[h]. The main result of this
paper, presented in Section V, is to extend the represen-
tation of n-trees by assigning four additional integers to
each group so it is also easily determined whether or not
g is an immediate subgroup of h. Section VI concludes
the paper.
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II. N-TREe PARTIAL ORDERS

Partial orders are conventionally depicted by Hasse dia-
grams as shown in Fig. 1 for instance. The partial order
represented by a Hasse diagram is obtained by directing
the edges downwards, for example from a to b in Fig.
1(a) indicating a < b, and taking the reflexive transitive
closure of the resulting directed graph.

The simplest and most familiar partial orders are the
rooted tree and its dual, the inverted rooted tree. These
represent important relationships between groups which
have practical application. Consider a project divided into
three independent tasks with each task assigned to a team.
We can define groups 1y, #,, and #; for the tasks and a group
s for the project supervisors related as in Fig. 2(a) so the
supervisors are members of each task team but not vice
versa. This tree allows the information and resources such
as working documents for each task group to be kept sep-
arate and inaccessible from other task groups while a su-
pervisor can access all of these. Alternatively we can de-
fine a single group p related to the task groups as shown
in Fig. 2(b). With this inverted tree the task teams can
share information and resources of common interest, such
as the final design produced by a task team, while keeping
working documents within each task group. Finally, the
tree and inverted tree are not only useful by themselves
but can occur together as in Fig. 2(c).

The partial order of Fig. 2(c) is an example of the class
of partial orders called n-trees. The ntree embodies three
important aspects of a protection policy.

1) Separation: The three task groups ¢,, t,, and ¢; are
pairwise incomparable with respect to the subgroup or-
dering.

2) Sharing: The three separate task groups are all
subgroups of a common group p which allows sharing of
information and resources.

3) Oversight: The three separate task groups all have
s as a common subgroup to facilitate oversight and coor-
dination.

Independent groups which are pairwise incomparable
provide support only for separation. A tree can support
separation and oversight while an inverted tree supports
separation and sharing. The n-tree partial order supports
all three aspects.

N-trees are constructed by using rooted trees and in-
verted rooted trees as basic partial orders and combining
these recursively by the operation of refinement defined
as follows. Let P and Q be partial orders on disjoint sets
G and H, respectively. Consider some u € G. The refine-
ment of u in P into Q is the partial order P’ on the set (G
— {u}) U H formed by the union of the following sets
of ordered pairs. :

D {(x,x")|(x,x')ePforallx,x’ € G — {u}}
2) {(x,)|(x,u)ePforalxe G — {u},yeH}
3) {(y,x)|(u,x)ePforallxeG — {u},yeH}
4 {(y,y)(y,y')eQforally,y' e H}

Fig. 3(c) shows the result of refining b in the partial order
of Fig. 3(a) into the partial order of Fig. 3(b). Informally,
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Fig. 3. An example of refinement.

the refinement of u in P into Q is the partial order whose
Hasse diagram is obtained by substituting Q’s Hasse dia-
gram in place of u in P’s Hasse diagram. We think of
refinement as exploding an existing group into a partially
ordered set of new groups while maintaining the same re-
lationship between the new groups and other previously
existing groups which the exploded group had. Refine-
ment is a natural method for incrementally developing
more detail in a top-down manner.

The refinement operation is used to define the class of
partial orders called n-trees as follows.

1) A partial order whose Hasse diagram is a forest of
mutually disjoint rooted trees and inverted rooted trees is
an n-tree.

2) A partial order obtained by refining a node in an
n-tree into another n-tree is an n-tree.

3) Nothing else is an n-tree.

The n in the name n-tree is intended as a mnemonic
both for inverted and for nested in the sense of refinement.
Fig. 4 shows one method of constructing the n-tree of
Fig. 2(c) by refinement. We begin with two groups, s for
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Fig. 5. Further refinement of the project n-tree.

supervisors, and w for workers as in Fig. 4(a). Then w is
refined into the three task groups and project group of Fig.
4(b) to obtain the n-tree of Fig. 4(c).

N-trees constitute a rich class of subgroup relations of
practical importance. The advantage of adopting the tree
and inverted tree as the basis for generating complex par-
tial orders is that incremental policy decisions are easy to
understand. Repeated application of the refinement oper-
ation provides a natural method for constructing a com-
plex n-tree in a top-down manner. For instance if it turns
out that task #; of Fig. 4(c) is complex enough to justify
treating it as a subproject the group 3 can be refined into
the n-tree of Fig. 5(a) with two distinct task groups #, and
t; and supervisory and project groups s3 and p;. At the
same time the supervisory group s of Fig. 4(c) may be
refined into the tree of Fig. 5(b) with separate supervisory
groups s, and s, for software and hardware respectively
and an overall supervisory group s, at the root. The n-tree
obtained after these two refinements is shown in Fig. 5(¢).
It is evident that it would be quite difficult to arrive at this
result directly while the sequence of refinements indicated
in Figs. 4 and 5 do so by straightforward incremental
steps.
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As a final note we wish to point out that there are partial
orders of practical importance which are not n-trees. Most
notably the partial order obtained by ordering the subsets
of a set § by set inclusion fails to be an n-tree for | S| >
2. Other examples are discussed in [12]. We will see in
Section V that the partial order of Fig. 1(b) fails to be an
n-tree.

III. IMMEDIACY AND AccCESs CONTROL

In Section I we outlined the basic reason why immedi-
acy in a hierarchy is an important issue for access control
policies. That is, there is considerably stronger affinity
between a group and its immediate successors or prede-
cessors as compared to the nonimmediate ones. To make
this point more concrete let us consider some policies
based on immediacy in context of the n-tree of Fig. 5(c).
For simplicity assume each user is a direct member of
exactly one group. Of course, he thereby obtains indirect
membership in all groups which are successors of his di-
rect group.

Now the supervisory groups at the top of the n-tree are
Sq» S5, and s, It is very reasonable that the direct members
of these three groups would like to share files while ex-
cluding the rest of the hierarchy. The most natural way to
do so is to associate access control information with such
files, perhaps in an access control list, saying that the file
is accessible by the direct members of s, and its imme-
diate successors. One might be able to achieve the same
result by explicitly enumerating all three groups, s,, s,
and sy, in the access control list with the stipulation that
only the direct members of these three groups have access
to the file. This latter approach has several disadvantages
as compared to the former. Principally if the hierarchy is
later changed to include a third child of s, as another su-
pervisory group, by say refining s, into two incomparable
groups, we would need to update the access control list
on all such files to reflect this change. In the former ap-
proach additional children of s, would be automatically
included in the access set without any modification of the
access control lists. The latter approach moreover ob-
scures the intent of the access control decision. The same
observations apply to s, and its immediate successors, z,,
t;, and s3, and so on.

In a dual manner, looking upwards in the hierarchy,
there is practical value in the ability to share files with the
immediate predecessors of a group. For example the di-
rect members of task 7, presumably report to the direct
members of s; and s,,, and should therefore be able to share
files among these three groups while excluding everyone
else. Similarly direct members of #, should be able to share
files with their supervisors, i.e., the direct members of s;,
confidentially from all other groups.

We now consider a more subtle issue, concerning
limits' on the discretionary ability of a user to make ac-

'We would like to use the term mandatory controls for such inviolable
limits. However this term is often used in the narrow sense of confiden-
tiality policies in the military based on levels and compartments, so we
refrain from using it here.
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cess control decisions regarding his own files. The intui-
tive policy we wish to implement is that information
should be ‘‘passed upward’’ in the hierarchy in a very
controlled manner. Note that the groups at the top of the
hierarchy are the most powerful regarding the ability of
their members to access files. So the direct members of s,
potentially have access to a large amount of information.
The critical ability is that they can see this information
whenever they deem it necessary to do so for performing
their jobs. There is an intuitive notion that information
restricted to the higher levels of the hierarchy is of greater
value to direct members of the top few groups. It is after
all this information which is excluded from the rest of the
hierarchy and therefore is the critical resource for the su-
pervisory groups. In order to control the quantity and
quality of such information it is reasonable to control the
manner in which users can generate it. Thus it makes little
sense to allow the direct members of p the ability to mark
their files as being accessible by members of s, alone. For
this reason we suggest the policy that a user can mark his
files as being accessible only by groups which are domi-
nated by his own direct group. This is a reasonable policy
except that it totally cuts off communication strictly up-
ward in the hierarchy. So we modify it to allow direct
members of a group to mark their files as being accessible
by the immediate predecessors of that group. For exam-
ple, direct members of ¢, can make their files accessible
to any of s, s, t;, or p. This policy limits the manner in
which direct members of ¢, can share their files with other
users, but the limits are very useful and impose a disci-
pline adhering to the natural structure of the hierarchy.
Thus members of two task teams cannot share a file with-
out making it available to all task teams of that project.
At the same time the members of a task team cannot by-
pass the hierarchy in making their files available to non-
immediate predecessors while withholding them from im-
mediate ones. Thus direct members of ¢, can make their
files available to direct members of s,, s,, or s;, only by
making them accessible by direct members of s3. So the
immediate predecessors of a group cannot be bypassed in
making files available strictly upward in the hierarchy.

These examples demonstrate that immediacy is a natu-
ral concept in a hierarchy which has useful practical ap-
plications for access control policies. This is particularly
so in an n-tree, which is after all constructed by combin-
ing trees and inverted trees. In a tree each node, other
than the root, has a unique immediate predecessor. Sim-
ilarly, in an inverted tree each node, other than the root,
has an unique immediate successor. An n-tree allows mul-
tiple immediate predecessors and successors, but these are
the net result of incremental decisions where at each step
we have uniqueness. Therefore there is strong reason for
immediacy to be significant in an n-tree.

IV. THE DIMENSION OF AN N-TREE

In this section we review the basic result of [12] that
any n-tree can be represented as the intersection of two
linear orderings. That is ¥ < v in the n-tree if and only
if u precedes v in both linear orderings. An n-tree can

il
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therefore be represented by assigning a pair of integers
I[x] and r{x] to each node x whose values are the posi-
tion of x in the two linear orderings, respectively. To de-
termine whether node u is a predecessor of node v we
need only check whether I[u] < I[v] and r{u] < r[v].
We refer to these numbers individually as the ! values and
r values and jointly as the Ir values.

By the familiar procedure of topological sorting we
know that every partial order P on a set of elements G can
be extended to a linear ordering of G. In general, there
will be more than one linear extension of P. Let I'(P ) be
the collection of all linear extensions of P. The intersec-
tion of linear orderings L, L,, * * * , L; is defined as the
set of ordered pairs

{(u, v)|(w, v) e LiA(u,v) €Ly -+ A (u, v)eLk}.

A realizer of P is a subset of I'(P ) whose intersection
equals P. The dimension of a partial order P is the size of
the smallest realizer of P. This concept was introduced by
Dushnik and Miller [3]-[5].

Every rooted tree has a size two realizer obtained by a
left-to-right preorder traversal and a right-to-left preorder
traversal. For the rooted tree of Fig. 1(d) these traversals
are, respectively, abefgcdhi and adihcbgfe. This tree can
be represented by assigning Ir values as shown in Fig.
6(a). From these Ir values it is then easy to check, for
instance, that a and b are predecesscrs of e while ¢ and e
are incomparable. A size two realizer for an inverted
rooted tree can be computed by reversing the linear or-
derings which comprise a size two realizer for the corre-
sponding rooted tree. For the inverted tree of Fig. 1(e)
these traversals are respectively ihdcgfeba and efgbchida
leading to the Ir values of Fig. 6(b). A proof of these
observations is quite straightforward [12].

Theorem 1: A partial order whose Hasse diagram is a
rooted tree or an inverted rooted tree has a realizer of size
two.

Proof: Tt suffices to consider the case of a rooted tree.
We claim that the linear orderings obtained by the left-to-
right preorder and right-to-left preorder traversals of the
tree constitute a realizer for the tree. If u < v, that is u
is the root of a subtree which includes v, it is obvious that
u will precede v in both preorder traversals. On the other
hand if « and v are incomparable in the tree there must be
some w such that w < u and w < v, that is w is the root
of a subtree which includes u and v. Without loss of gen-
erality let the path in the tree from w to u be to the left of
the path from w to v. But then u will precede v in the left-
to-right preorder traversal and will follow » in the right-
to-left preorder traversal. ' O

The extension of this property to n-trees is easily shown
due to the following result, first proved by Hirugachi [5],
[6], that refinement does not increase dimension.

Theorem 2: Let P and Q be partial orders on disjoint
sets G and H, respectively. Let u € G. If P’ is the partial
order obtained by the refinement of « in P into Q then the
dimension of P equals the bigger of dimension P or di-
mension Q.
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Fig. 6. Example of Ir values for a tree.

It follows that if P and Q have dimension less than or
equal to two then so does P’. On the basis of Theorems 1
and 2, we have the following result for n-trees [12].

Theorem 3: Every n-tree has a realizer of size two.

Proof: Because of Hirugachi’s theorem we need only
show that a partial order whose Hasse diagram consists of
a forest of mutually disjoint rooted trees and inverted
rooted trees has a realizer of size two. An empty partial
order, where all distinct elements are pairwise incompa-
rable, has a size two realizer obtained by any linear or-
dering of the elements and its reverse. A forest of rooted
trees and inverted trees can be obtained by refining the
elements of an empty partial order one at a time into a
rooted tree or inverted rooted tree as appropriate. O

We conclude this section by noting that there is an ef-
ficient algorithm for computing a size two realizer for any
two dimension partial order and therefore for n-trees in
particular [12]. The algorithm is based on the following
characterization of two-dimensional partial orders due to
Dushnik and Miller [3]. The incomparability graph of a
partial order is the undirected graph whose vertices are
the vertices of the partial orders with an edge between u
and v if u and v are incomparable. An undirected graph
is transitively orientable if and only if we can assign a
direction to each edge so the resulting directed graph has
no cycles. Dushnik and Miller proved that the dimension
of a partial order is less than or equal to two if and only
if its incomparability graph is transitively orientable. An
algorithm for recognizing transitively orientable graphs
and assigning an orientation was presented by Pnueli,
Lempel, and Even [9]. Golumbic [5] shows this algorithm
has low degree polynomial complexity. A transitive ori-
entation of the incomparability graph and it reverse ori-
entation, along with the partial order itself give us the two
linear orderings which constitute a size two realizer. This
last step amounts to topological sorting of an acyclic di-
rected graph, for which efficient algorithms are well
known. Since the incomparability graph can be easily
constructed in polynomial time, this entire procedure has
low degree polynomial complexity.

V. IMMEDIACY IN AN N-TREE

In the previous section we showed that a pair of integers
I[x] and r[x] can be assigned to each node x in an n-tree,
such that u < v if and only if I{u] < I[v] and r[u] <
r[v]. We now extend this representation of an n-tree so
that it is easily determined whether or not u is an imme-
diate predecessor of v, that is whether or not there exists
a node k with u < k < wv. For this purpose, we propose
to assign four additional integers to each node x as fol-
lows.
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1) 17 [x] is the minimum value of /[ y] for all imme-
diate predecessors y of x. If x has no predecessors then
17 [x] = x].

2) r~ [x] is the minimum value of r[ y] for all imme-
diate predecessors y of x. If x has no predecessors then
r [x] = r[x].

3) 1*[x] is the maximum value of /[ y] for all imme-
diate successors y of x. If x has no successors then [ ¥ [x]
= [[x].

4) r*[x] is the maximum value of r[ y] for all im-
mediate successors y of x. If x has no successors then
rfix] = r[x].

The top two rows of Fig. 7 show a possible assignment
of Ir values for the n-tree of Fig. 5(c). The remaining
rows show the values for these additional four integers
derived from the Ir values.

Our claim is that node u is an immediate predecessor
of node v if and only if the following inequalities hold.

I"[v] = Hu] < Il[v] = 17 [u4]

r[v] = r[u] < r[v] < r*[u]

IA

The condition that I[u«] and r{u] are, respectively, less
than /[v] and r[v] will hold for all u < v. The additional
conditions stated above distinguish the immediate prede-
cessors of v from the nonimmediate predecessors. It is
convenient for us to treat the / and r values as a pair de-
noted by Ir{u], thatis Ir[u] = <I[u],.r{u] >. We de-
fine inequality of Ir values as follows.

Ir[u] < Irlv] = {u] < l[v] A rlu] < rlo]
Irfu] < Ir[v] = I[u] = I[v] A r[u] = r[v]

The condition for u to be a predecessor of v can then be
written as Ir[u] < Ir[v]. We similarly define Ir ~ [x] and
Ir*[x] to be the pairs <!~ [x], r " [x]> and <" [x],
r*[x] >, respectively. The condition for u to be an im-
mediate predecessor of v is then stated as follows.

Ir-[v] = Ir[u] < Ir[v] < Ir'[u]

(1)

If u is an immediate predecessor of v this condition fol-
lows trivially from the definitions so it certainly is a nec-
essary condition. The proof that it is sufficient is the dif-
ficult part.

Before proving that our claim is true let us see if we
really need both Ir ~ and /r * in condition 1. For the values
shown in Fig. 7 it can be seen by inspection that either of
the conditions Ir " [v] < Ir[u] < Ir[v]orir[u] < Ir[v]
< Ir*{u] correctly identify that u is an immediate pred-
ecessor of v. So, in this case one of Ir~ or Ir " is redun-
dant. In general however we do need both Ir ™ and Ir*.
Consider the tree in Fig. 8 with Ir, Ir ", and Ir* values as
shown. In this case the condition Ir [v] = Irfu] <
Ir[v] correctly identifies immediate predecessors but the
condition Ir[u] < Ir[v] < Ir* [u] incorrectly identifies
a as an immediate predecessor of f. If we invert this tree
the former condition will be incorrect while the latter will
be correct.
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Fig. 7. Ir, Ir™, and Ir* values for the n-tree of Fig. 5(c).
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Fig. 8. Example to show that both Ir~ and Ir* are needed.

In general there will be several distinct size two real-
izers for an n-tree leading to different assignments of Ir
values. The Ir values, and hence the Ir ~ and Ir * values,
can be based on any one of these realizers. Our claim is
that condition 1 correctly determines the immediate pred-
ecessors for an Ir assignment based on any size two re-
alizer of the ntree. For the tree of Fig. 8 we can show that
the condition Ir{u] < Ir[v] < Ir*[u] is incorrect for
any Ir assignment. Based on a method by Golumbic [5]
for counting all transitive orientations of an undirected
graph we can show there are only six distinct realizers for
this tree, each one leading to a distinct Ir assignment.
These correspond to the six different ways that the three
branches of this tree can be arranged left-to-right and
computing the realizer as the left-to-right preorder and
right-to-left preorder traversals. In all six cases the middle
leaf will be incorrectly identified as immediate successors
of the root, if we rely on Ir * alone.

We point out that condition 1 does not work correctly
for arbitrary two-dimensional partial orders. For the two-
dimensional partial order of Fig. 9, condition 1 incor-
rectly identifies u as an immediate predecessor of v. For
this case we can show by Golumbic’s method for counting
transitive orientations that there are only two possible Ir
assignments, the one shown in the figure and the other
one obtained by interchanging the / and r values for each
node. So condition 1 fails for every /r assignment for this
partial order.

In the rest of this section we prove that condition 1 is
sufficient for immediacy in n-trees. The proof is by con-
tradiction, so we assume that condition 1 is true but u is
not an immediate predecessor of v. We show this as-
sumption implies there must be a set of nodes related as
in Fig. 9. Finally we show that such a configuration can-
not occur in an n-tree.

Theorem 4: For any n-tree with Ir, Ir 7, and Ir * values
obtained on the basis of any size two realizer, u is an
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Fig. 9. A two-dimensional partial order for which condition 1 is incorrect.

immediate predecessor of v if and only if Ir " [v] < Ir[u]
< Iriv] < Ir' [u].

Proof: The only if part follows trivially from the def-
initions. We prove the if part by contradiction, for which
purpose assume that u is not an immediate predecessor of
vand Ir [v] < Ir{u] < Ir[v] < Ir*[u]. Because u is
not an immediate predecessor of v these inequalities must
be strict, that is Ir " [v] < Irfu] < Ir[v] < Ir*[ul.
Also there exists an x such that ¥ < x < v.

Let v, and v, be the immediate predecssors of v with
minimum [ and r values, respectively, that is [~ [v] =
I[vy]and r~[v] = r[v,]. Similarly let u; and u, be the
immediate successors of ¥ with maximum / and r values,
respectively, that is " {u] = I[u;] and r " [u] = r[w,].
We show that the nodes u, v, x, v,, v;, u,, and u, must
have the following relationship.

1) v, and v, are distinct incomparable predecessors of
v.

Proof: v, and v, must be distinct, otherwise Ir[v, ]
= Ir [v] < Ir[u] so v, < u < v contrary to v; being
an immediate predecessor of v. Since v, and v, are dis-
tinct immediate predecessors of v they are incomparable.

2) u, and u, are distinct incomparable successors of u.

Proof: Follows by a similar argument as for 1.

3) v, and v, are incomparable to u.

Proof: Since v, and v, are immediate predecessors
of v neither one can be a predecessor of u. If u is a pred-
ecessor of either v, or v, we cannot have Ir “[v] < Ir{u].

4) u, and u, are incomparable to v.

Proof: Follows by a similar argument as for 3.

5) vy, v3, u,, and u, are incomparable with x.

Proof: x cannot be a predecessor of v, and v, oth-
erwise u would be a predecessor of ©; or v, in contradic-
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tion to 3. Since v, and v, are immediate predecssors of v
they cannot be predecessors of x. So v, and v, are incom-
parable to x. By a similar argument it follows that #, and
u, must be incomparable to x.

6) v, < upand v, < u,.

Proof: Wehave Ir[v,] < Ir{u,] because of [[v,]
I [v] < I[u] < l[u,) and r{v,] < rl[v] < r*[u]
rluy]. Similarly, Ir{v,] < Ir[u,] because of [[v,]
I{v] < 1"[u] = l[up) and r[v,] = r " [v] < rlu]l
rliu].

7) v, is incomparable to u, and v, is incomparable to
u2.

Proof: To establish that v, and u, are incomparable
first note that [[v,] < I[x] < I[u;]duetol[v,] =1 [v]
< I[u] < l[x] < Il[v] < I*[u] = I[u;]. Now, from
5, we know x is incomparable to v and u,. So it must be
that r[u;] < r[x] < r[v,]. Butthen{[v,] < I[u,] while
rlu;] < riv,]. By a similar argument we can show that
v, is incomparable to u;.

We now argue that the relationships between the nodes
u, v, x, u,, U, v,, and v, established above cannot occur
in an n-tree. Let P be a partial order on the set G and let
G' be any subset of G. The partial order P’ obtained by
inducing P on G' is defined as

P = {(u, v)|(u, v)ePAu,veG }.

A significant property of n-trees is that if P is an n-tree
then any induced partial order P’ must also be an n-tree
[12, Theorem 5]. The seven facts established above assert
that the partial order obtained by inducing the given par-
tial order on nodes u, v, x, u;, U, vy, and v, is exactly as
shown in Fig. 9. So if we induce the partial order on the
nodes vy, 4,, u, and v, we obtain the Hasse diagram N of
Fig. 10.

To complete the proof by contradiction we show that N
is not an n-tree, so the original partial order cannot be an
n-tree contrary to the theorem’s statement. Now N is
clearly not a tree or inverted tree. So if N is an n-tree it
must be constructed by a nontrivial refinement of a node
in an n-tree P into an n-tree Q, where by nontrivial we
mean that both P and Q have at least 2 nodes. Let G be
the set of nodes in Q and H the set of nodes in P excluding
the exploded node, i.e., G and H are a partition of { v,
u,, u, v}. For a nontrivial refinement, |G| = 2 and |H |
> 1. Combined with the fact that |G | + |H| = 4 it is
evident that | H | is 1 or 2. By the definition of refinement
all nodes in H have the same relation to all nodes in G.
Now H cannot consist of a single node since there is no
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node in N which has the same relationship to the remain-
ing three nodes. Similarly, H cannot be of size two since
there is no pair of nodes in N which has the same rela-
tionship to the remaining two nodes. So it is not possible
to construct N by a nontrivial refinement. Therefore N
cannot be an n-tree. O

VI. CONCLUDING REMARKS

To summarize, the concept of n-trees was recently in-
troduced by this author [12] and it was shown that n-trees
are a natural hierarchy for the subgroup relation between
protection groups. The n-tree is a useful and substantial
generalization of the rooted tree and inverted rooted tree
partial orders. We have shown how to develop complex
n-trees incrementally in a top-down manner by successive
refinement. N-trees have an efficient representation in
terms of Ir values assigned to each group, on the basis of
which it is easily determined whether or not one group is
a subgroup of another. Each [ value or r value requires

[ log (m)] bits where m is the number of groups and we
can represent the n-tree using 2 * [log (m) 7] bits per
group.

The main contribution of this paper is to extend this
representation of n-trees by assigning four additional val-
ues to each group so it can be easily determined when a
group g is an immediate subgroup /, that is whether or
not there exists a group k such that g < k < h. This
requires 6 * [log (m)] bits per group. If m = 1000,
that is there are hundreds of groups, it will take less than
8 bytes per group to represent the n-tree in this manner.

In [12] it is shown how to assign Ir values to the groups
in an n-tree so that after refinement of a group we need
only assign Ir values to the new groups introduced by re-
finement while the Ir values assigned to nonexploded
groups do not change. This technique is based on the idea
of assigning a quota to each group which determines the
maximum number of new groups that this group can be
refined into, be it in a single step or by a sequence of
refinements. This technique allows us to continue refining
the n-tree with minimal disruption while the system is in
operation. It would be interesting to see whether quota
based technique can be integrated with the Ir~ and Ir*
values we have now defined for recognizing immediacy.

Although n-trees cover a wide range of practical situa-
tions, as we have mentioned earlier, there are partial or-
ders of practical importance which have dimension greater
than two and hence cannot be n-trees. Most notably let S
be a nonempty set and let 2° be the power set of S, i.e.,
the set of all subsets of S, partially ordered by set inclu-
sion. This class of partial orders arises naturally in the
context of protection groups. For example, S can be the
set of attributes whose subsets determine the compart-
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ments in military security policies [1], [2], [8]. Komm [7]
proved that the dimension of the subset partial ordering
on 2% is | §|. Since this partial order can be represented
using | S| bits for each subset of S, the dimension ap-
proach is clearly not useful for this case. In our opinion
this is the most important case excluded by n-trees.
Clearly restricting the dimensions of partial orders to an
upper bound of some small integer bigger than two does
little to cover this case. We have moreover shown that
our technique for recognizing immediacy is specific to
n-trees and does not apply to arbitrary two-dimensional
partial orders. So it appears that n-trees are the only useful
application of dimension theory to the representation of
the subgroup relation, particularly with the requirement
of recognizing immediacy.
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