
Information Assurance: A Personal Perspective

Ravi Sandhu www.list.gmu.edu

Agenda

- Selected highlights from my 25+ years in this business (roughly chronological wrt start)
 - Typed Access Matrix (TAM) Model
 - Multilevel Relational (MLR) Model
 - Role-Based Access Control (RBAC)
 - Policy-Enforcement-Implementation (PEI) Layers
 - Usage Control (UCON) Model
 - TriCipher Authentication Ladder
- Selected ongoing research projects
 - Assured Information Sharing Enabled by Trusted Computing
- Perspective on the future of Information Assurance
- Q&A

Safety in Access Control: Access Matrix Model (Lampson, 1971)

Safety in Access Control: HRU Model (1976)

command $\alpha(X_1, X_2, \ldots, X_k)$ if r_1 in (X_{s_1}, X_{o_1}) and r_2 in (X_{s_2}, X_{o_2}) and \dots r_m in (X_{s_m}, X_{o_m}) then op_1 op_2 \dots op_n end

enter r into (X_s, X_o) delete r from (X_s, X_o) create subject X_s create object X_o destroy subject X_s destroy object X_o

Theorem 1. Safety in HRU is undecidable

Theorem 2. Safety in monotonic mono-operational HRU is undecidable

Safety in Access Control: TAM Model (Sandhu, 1992)

```
command \alpha(X_1 : t_1, X_2 : t_2, \dots, X_k : t_k)

if r_1 in (X_{s_1}, X_{o_1}) and

r_2 in (X_{s_2}, X_{o_2}) and

\dots

r_m in (X_{s_m}, X_{o_m})

then

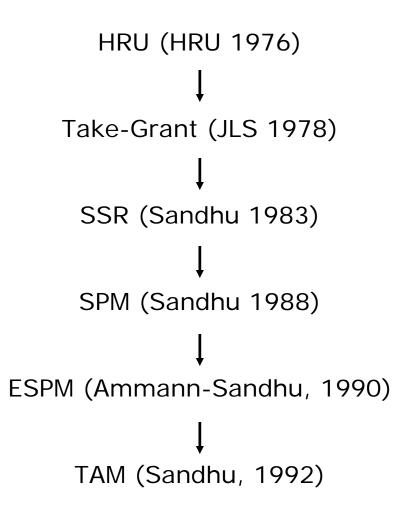
op_1

op_2

\dots

op_n

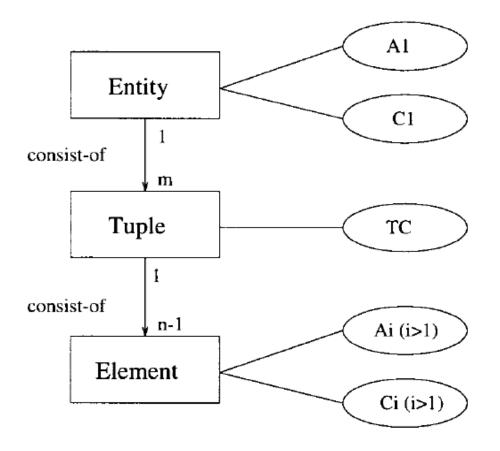
end
```


enter r into (X_s, X_o) delete r from (X_s, X_o) create subject X_s create object X_o destroy subject X_s destroy object X_o

Theorem 1. Safety in TAM is undecidable

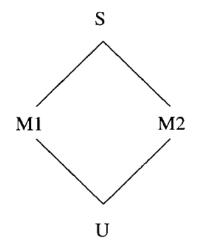
Theorem 2. Safety in monotonic acyclic ternary TAM is polynomially decidable

Safety in Access Control: From HRU to TAM

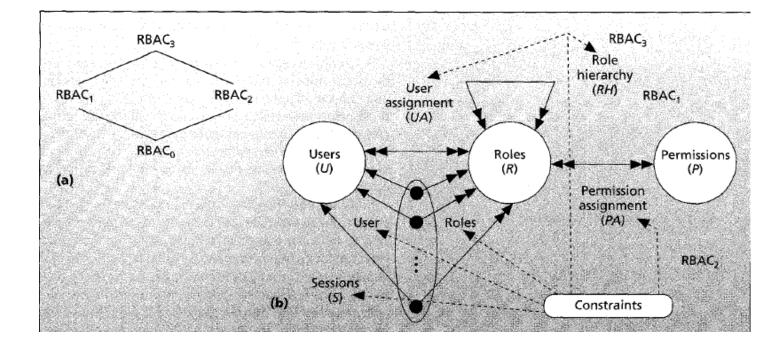

The Multilevel Relational (MLR) Model: Taming Polyinstantiation (1998)

Enterprise	Ū	Exploration	Ü	Talos	U	U
Enterprise	U	Spying	S	Talos	U	S

Enterprise	U	Exploration	U	Talos	U	U
Enterprise	U	Spying	\mathbf{S}	Talos	U	S
Enterprise	U	Exploration	\mathbf{U}	Rigel	S	S
Enterprise	U	Spying	S	Rigel	S	S

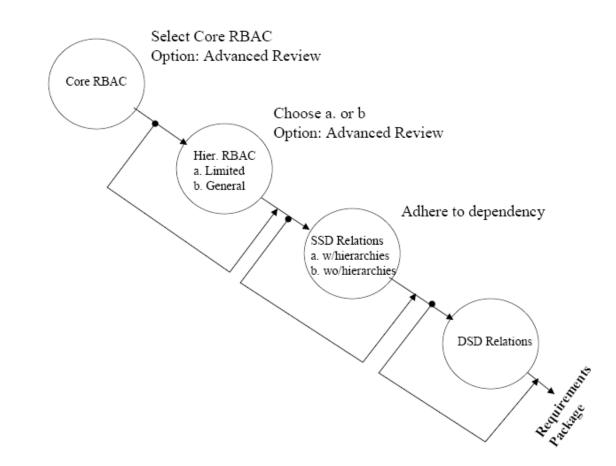


The Multilevel Relational (MLR) Model: Taming Polyinstantiation (1998)



The Multilevel Relational (MLR) Model: Taming Polyinstantiation (1998)

SHIP		OB	OBJ		DEST	
Enterprise Enterprise Enterprise Enterprise	U U U U	Mining Mining Exploration Exploration	$\begin{array}{c} M_1\\ M_1\\ U\\ U\\ U\end{array}$	Sirius Talos Sirius Talos	M ₂ U M ₂ U	$\begin{array}{c} S\\ M_1\\ M_2\\ U\end{array}$


Role-Based Access Control: RBAC96 Model (1996)

Theorem. RBAC can be configured to enforce

- Lattice-Based Access Control (or Bell-LaPadula), and
- Discretionary Access Control

Role-Based Access Control: The NIST/ANSI Standard Model (2004)

Policy-Enforcement-Implementation (PEI) Layers (2000 onwards)

Objectives

Policy Model

Enforcement Model

Implementation Model

Implementation

How?

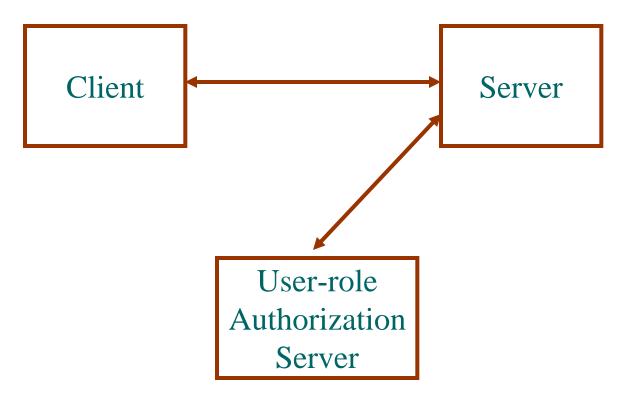
What?

PEI and RBAC

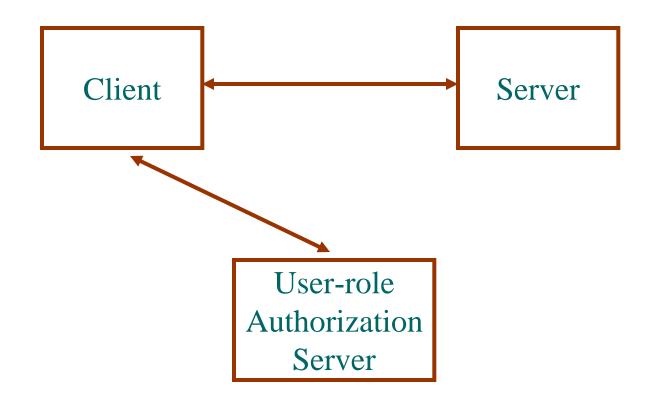
What?

Policy Neutral

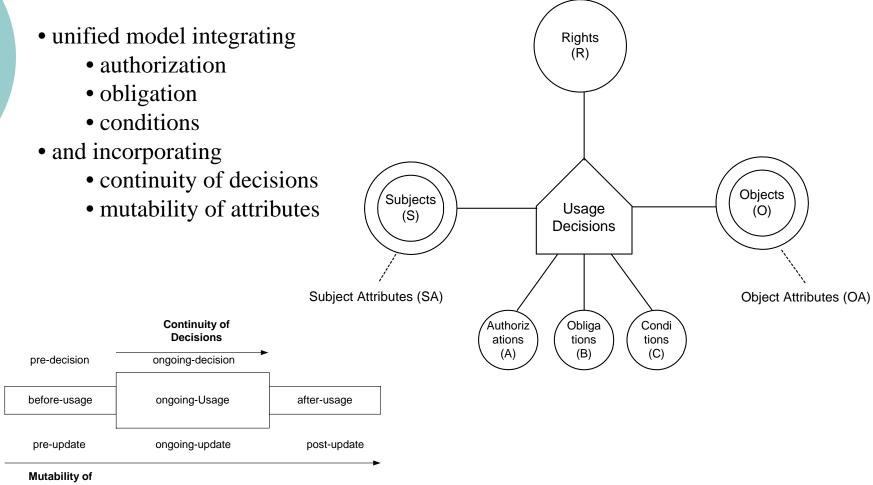
RBAC96, NIST/ANSI04, ARBAC97, Delegation, etc.

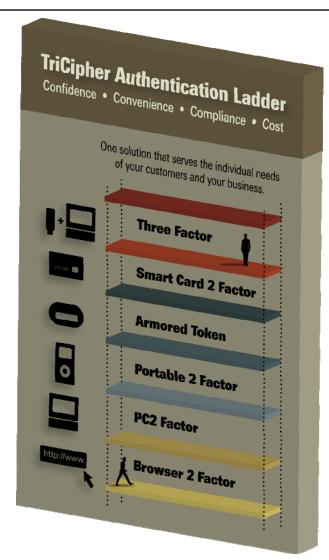

User-Pull, Server-Pull

Digital Certificates, Cookies, Tickets, SAML assertions etc.

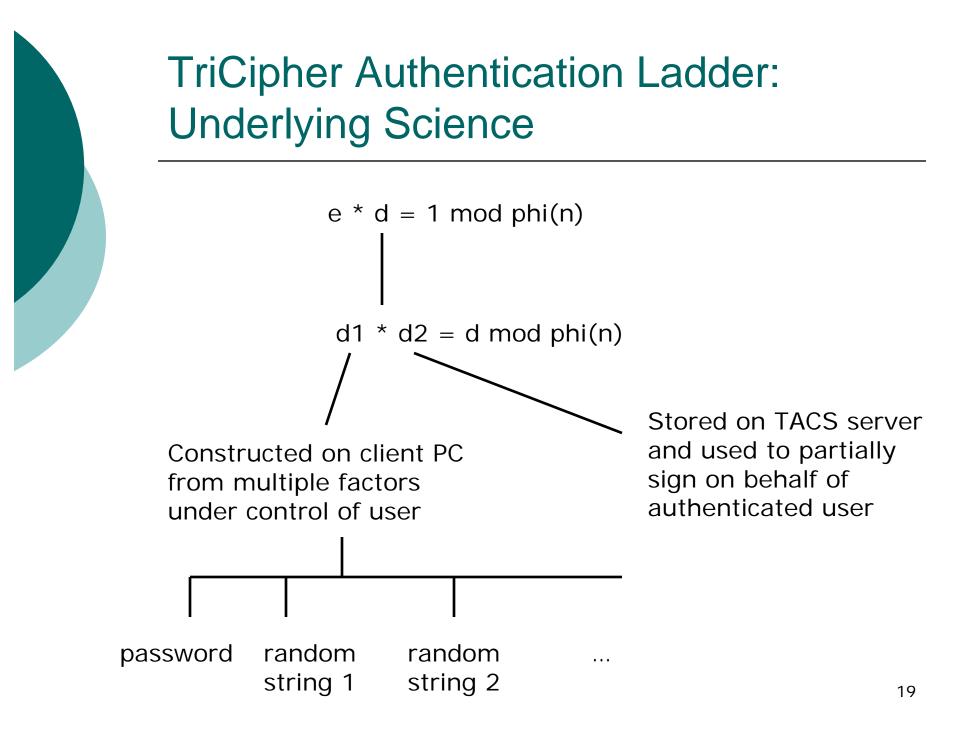

Implementation

How?


PEI and RBAC: Server-Pull Enforcement



Usage Control The UCON Model (2002 onwards)


TriCipher Authentication Ladder: Functional View

TriCipher Authentication Ladder: Underlying Science

o 2-key RSA

- Private key: d (used to sign)
- Public key: e (used to verify signature)
- o 3-key RSA
 - Net effect: as though single private key d was used to sign, BUT
 - Private key: d1 (used by user to partially sign)
 - Private key: d2 (used by TACS server to partially signature)
 - Public key: e (used to verify signature)

Assured Information Sharing Enabled by Trusted Computing (Ongoing work)

Secure Information Sharing (IS) "Share but Protect" "Mother of all Security Problems"

Policy-Enforcement-Implementation Layers (PEI) & Usage Control Models (UCON)

Trusted Computing (TC)

What is Trusted Computing (TC)?

- Basic premise
 - Software alone cannot provide an adequate foundation for trust
- Old style Trusted Computing (1970 1990's)
 - Multics system
 - Capability-based computers • Intel 432 vis a vis Intel 8086
 - Trust with security kernel based on military-style security labels
 - Orange Book: eliminate trust from applications
- What's new (2000's)
 - Hardware and cryptography-based root of trust
 - Trust within a platform
 - Trust across platforms
 - Rely on trust in applications
 - No Trojan Horses or
 - Mitigate Trojan Horses and bugs by legal and reputational recourse

Prevent information leakage by binding information to Trusted Viewers on the client

What is Information Sharing?

- o The mother of all security problems
 - Share but protect
- o Requires controls on the client
 - Server-side controls do not scale to high assurance
- o Bigger than (but includes)
 - Retail DRM (Digital Rights Management)
 - Enterprise DRM

What is Information Sharing?

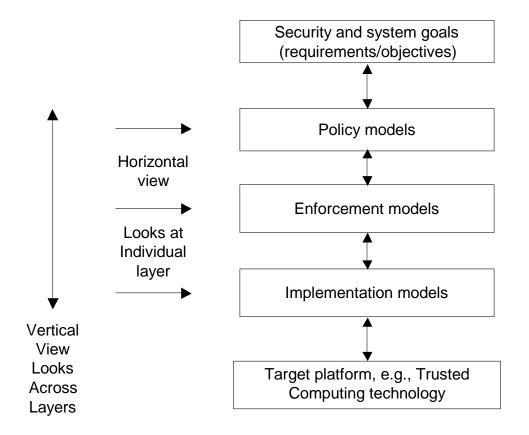
	Strength of Enforcement				
		<u></u>			
Content type and value	Weak	Medium	Strong		
Sensitive and proprietary	Password-protected documents	Software-based client controls for documents	Hardware based trusted viewers, displays and inputs		
Revenue driven	IEEE, ACM digital libraries protected by server access controls	DRM-enabled media players such as for digital music and eBooks	Dongle-based copy protection, hardware based trusted viewers, displays and inputs		
Sensitive and revenue	Analyst and business reports protected by server access controls	Software-based client controls for documents	Hardware based trusted viewers, displays and inputs		

Roshan Thomas and Ravi Sandhu, "Towards a Multi-Dimensional Characterization of Dissemination Control." POLICY04.

	Functionality		Strength of enforcement			
	Simple	Complex		Weak/Medium	Strong	
Legally enforceable versus system enforced rights.				Reliance on legal enforcement; Limited system enforced controls.	Strong system- enforceable rights, revocable rights.	
Dissemination chains and flexibility.	With current state of knowledge the information sharing space is too complex to characterize in a comprehensive manner			Mostly legal enforcement;	System enforceable controls.	
Object types supported.				Reliance on legally enforceable rights.	System supported and enforceable rights and sanitization on multiple versions.	
Persistence and modifiability of rights and licenses.	viral on all disseminated copies.	recipient.		Reliance on legally enforceable rights.	System enforceable.	
Online versus offline access and persistent client-side copies	No offline access and no client-side copies.	no Allows offline access to client-side copies.		Few unprotected copies are tolerated.	No unprotected copies are tolerated.	
Usage controls	Control of basic dissemination.	Flexible, rule-based on instances.	Flexible, rule-based usage controls Some usage abuse No on instances.			
Preservation of attribution.	Recipient has legal obligation to give attribution to disseminator.	System-enabled pr trace- back of the back to original dis	back of the			
Revocation	Simple explicit revocations.	Complex policy-ba				
Support for derived and value-added objects.	Not supported.	Supported. killer products) can be made forcea				
Integrity protection for disseminated	Out of band or non-crypto based validation.	Cryptographic schemes for integrity validation.		Off-line validation.	High-assurance cryptographic validation.	
objects. Audit	Audit support for basic dissemination operations.	Additional support for the audit of instance usage.		Offline audit analysis.	Real-time audit analysis and alerts.	
Payment	Simple payment schemes (if any).	Multiple pricing models and payment schemes including resale.		Tolerance of some revenue loss.	No revenue loss; Objective is to maximize revenue.	

Roshan Thomas and Ravi Sandhu, "Towards a Multi-Dimensional Characterization of Dissemination Control." POLICY04.

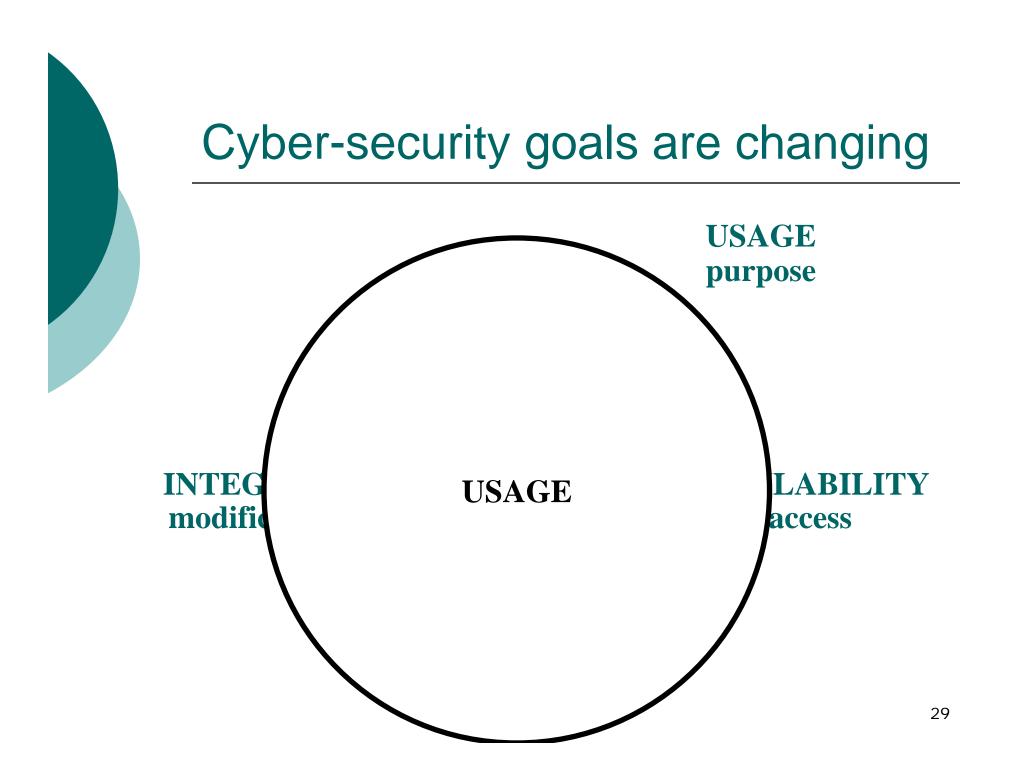
Classic Approaches to Information Sharing


- o Discretionary Access Control (DAC), Lampson 1971
 - Fundamentally broken
 - Controls access to the original but not to copies (or extracts)
- Mandatory Access Control (MAC), Bell-LaPadula 1971
 - Solves the problem for coarse-grained sharing
 - Thorny issues of covert channels, inference, aggregation remain but can be confronted
 - Does not scale to fine-grained sharing
 - o Super-exponential explosion of security labels is impractical
 - Fallback to DAC for fine-grained control (as per the Orange Book) is pointless
- Originator Control (ORCON), Graubart 1989
 - Propagated access control lists: let copying happen but propagate ACLs to copies (or extracts)

Not very successful

Modern Approach to Information Sharing

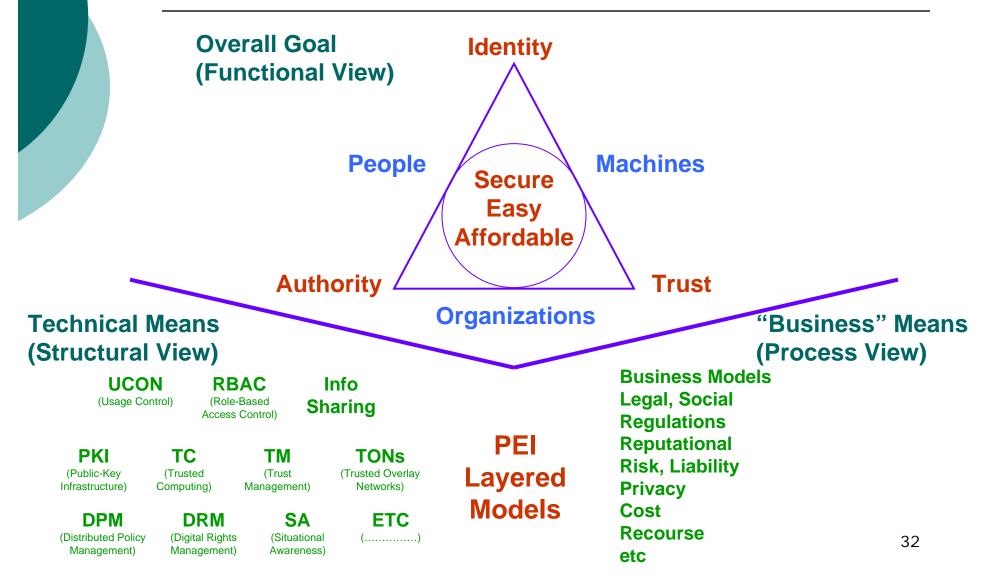
- Prevent leakage by binding information to Trusted Viewers on the client
 - Use a mix of cryptographic and access control techniques
- Cryptography and Trusted Computing primitives enable encapsulation of content in a Trusted Viewer
 - Trusted Viewer cannot see plaintext unless it has the correct keys
- Access control enables fine-grained control and flexible policy enforcement by the Trusted Viewer
 - Trusted Viewer will not display plaintext (even though it can) unless policy requirements are met
 - Enables policy flexibility and policy-mechanism separation


PEI Models Framework for Information Sharing

The Future: Three Megatrends

Fundamental changes in
Cyber-security goals
Cyber-security threats
Cyber-security technology

Cyber-security attacks are changing


o The professionals have moved in

- Hacking for fun and fame
- Hacking for cash, espionage and sabotage

Cyber-security technology is changing

- o Trusted computing on the client
- Virtualization
- o Massive parallelism on the desktop
- Computation-and-power challenged mobile devices
- o etcetera

Cyber-Identity, Authority and Trust Systems

Information Assurance: A Personal Perspective

Q&A

Ravi Sandhu www.list.gmu.edu